Aarch64 что за процессор

Обновлено: 06.07.2024

При возвращении из аномалии ненормальный уровень может быть снижен только или удерживается.

Ненормальные уровни, которые получают исключение для переключения или удержания, называются целевыми ненормальными уровнями

Каждый сам уровень исключения имеет уровень исключений по умолчанию и может также установить целевой аномальный уровень за счет регистрации, целевой ненормальный уровень не может быть EL0

Когда PE работает на ненормальном уровне, вы можете получить доступ к следующим двум ресурсам:

  1. Ресурсы в соответствии с текущим ненормальным уровнем и статусом безопасности;
  2. Низкие ненормальные уровни доступные ресурсы (для соблюдения состояния безопасности)

2.2 Типичный уровень использования уровня исключения

Ненормальный уровень

Запуск программного обеспечения

EL0

EL1

Linux kernel- OS

EL2

Hypervisor (вы можете понять, как запустить несколько виртуальных ОС выше)

EL3

Secure Monitor(ARM Trusted Firmware)

2.3 Ненормальные Связанные термины

срок

инструкция

Taking an exception

PE впервые отреагировал на исключение. В это время государство PE называется из-за того, что государство PE принимается в

Returning from exception

Когда представляется инструкция по возврату исключений, состояние PE возвращается от исключения

Ненормальный уровень

Различные ненормальные уровни, исключения отличаются, такие как EL3 Исключения, чем EL1

Точность ненормальный

Найдите некоторые инструкции, все инструкции до выполнения этой команды все инструкции после этой инструкции не выполняют (надо отступать), чтобы статус PE записывается, и обработка ненормальности может быть восстановлена. В дополнение к Serr IRQ, другие точные аномалии

Синхронное исключение

(1) Ненормальное производство - это инструкция, выполненная основным процессором CPU или попытка выполнить связанные

(2) Адрес возврата, предоставляемый для обработчика, является адресом, в котором создается инструкция.

(3) Синхронное исключение также можно разделить на две категории:

а). Вид синхронного прерваности, таких как неопределенные инструкции, препараты, префитовые инструкции, SP не выровнен, отладки исключения и т. Д.

б). Другой вызван нормальными инструкциями, включая инструкции SVC / HVC / SMC, и миссия этих инструкций является создание исключений.

Асинхронный

Асинхронное исключение может быть в основном аналогично всем, оно не имеет никакого равных, и не учитывает внешнее событие CRO CPU, которое не рассматривается: внешний не является периферийным, а снаружи предназначена для CPU Core. Некоторые прерывания от других блоков HW От SOC, например, GIC. В это время эти события являются внутренним), что прерывает CPU CORE для выполнения текущего программного обеспечения, поэтому прерывание. Прерывание или асинхронное исключение имеет следующие особенности:

(1) Инструкции, выполняемые исключением, и ЦП, независимы.

(2) Адрес возврата заключается в том, что аппаратное обеспечение сохраняется и подается в обработчик для обработки аномалии, возвращается на сайт. Этот адрес возврата не является инструкцией, когда генерируется исключение.

На основании этого определения IRQ, FIQ и прерывание серебро принадлежат асинхронному исключению.

SError interrupt

Прерывание сереор - это асинхронное исключение (или прерывание), вызванное внешним прерыванием.

Внешний прерваний исходит из системы памяти, которая является исключением, сгенерированным доступом к внешней системе памяти (конечно, не все от прерывания системы памяти - это внешний прервать, например, прервать от MMU, не является внешним прерыванием, здесь внешний для процессора, а не CPU Ну, ММУ на самом деле внутренняя). Внешний прерваний возникает, когда процессор имеет доступ к памяти доступа через шину (может быть прочитано или записываться непосредственно к адресу, может также быть доступом к памяти, вызванным инструкцией), и процессор инициирует транзакцию на шине, что происходит в этом процессе., Прерывается Из блока памяти блока устройства или блока подключения к соединению наружного процессора используется для информирования процессора, вы можете сделать это самостоятельно. Внешний прерваний может быть реализован в виде синхронного исключения (точное исключение), или он может быть реализован как асинхронное исключение (неточное исключение). Если внешний прервать асинхронный, то он может уведомить CPU Core через Serrrortutt

Операционный статус

Характеристики

AArch32

1332-битные Универсальные регистры R0-R12, 32-битный PC указатель ПК (R15), Poker Stacker SP (R13), R14 Link LR (R14)

Укажите 32-битную ненормальную ссылку Register ELR для возврата исключения в режиме ГИП

32 64-битный вектор SIMD векторные и скалярные плавающие-точки

Обеспечить два инструкции A32 (32bit), T32 (16/32 бит)

Совместим с моделью исключения ARMV7, сопоставлена ​​на модель исключения ARMV8

Используйте 32-битные виртуальные адреса

Используйте CPSR, чтобы сохранить текущее состояние PE

Coprocessor поддерживает только CP10 \ CP11 \ CP14 \ CP15

AArch64

Обеспечивает 31 64 бит Universal регистров X0-X30 (W0-W30), где X30 - это программа Link Register LR

Предоставить 64-битный указатель ПК, указатель стека SPX, Exception Link Register ELRX

32 128bit Simd Vector и Scalar Floating-Point Point

Определите аномальный уровень ARMV8 ELX (X <4), чем выше X, чем выше уровень, тем больше разрешения

Обеспечить 64-битный виртуальный адрес

Определите набор регистров государств PE SPSR_ELX для сохранения PSTATE (NZCV / DAIF / CENICEEL / SPSEL и т. Д.) Для сохранения текущей информации о состоянии текущей

Нет концепции Coprocessor, системный регистр с суффикс N FLAG Самый низкий уровень доступа к исключением

Примечание. Переключение AARCH32 и AARCH64 называется интерпретированием, а интерпретирование может происходить только в (1) сбросе; (2), когда аномальное преобразование уровня

3.1 Условия для выполнения состояния

SPSR_EL1.M [4] определяет состояние выполнения EL0, 0 => 64bit, в противном случае => 32 бит

Hcr_l2.rw Определяет состояние выполнения EL1, 1 => 64bit, в противном случае => 32 бит

Scr_el3.rw Определяет состояние выполнения EL2 или EL1, 1 => 64bit, в противном случае => 32 бит

Переключатель между AARCH32 и AARCH64 может быть реализован только путем сброса исключения или системы. (A32 -> T32 переключается инструкцией BX)

Non-secure

EL0 / EL1 / EL2, только доступ к небезопасному физическому адресу пространства

Secure

EL0 / EL1 / EL3, вы можете получить доступ к непроференным физическим адресным пространством и безопасным физическим адресным пространством, может использоваться для физической барьерной безопасности.

4.1 Воздействие EL3 на безопасное состояние

Внедрить EL3.

  1. EL3 - только безопасное состояние;
  2. Небезопасное состояние для защищенного состояния может произойти только при EL3 получает исключение;
  3. Безопасное состояние для небезопасного состояния может происходить только в результате возврата исключения из EL3;
  4. Если EL2 реализован, доступно только не безопасное состояние.

Не реализуйте EL3

  1. Если EL2 не реализован, безопасное состояние определяется производителем SOC;
  2. Если вы реализуете EL2, только не безопасное состояние

4.2 EL3 влияет на влияние Aarch64 или Aarch32

Пользовательский режим (Aarch32 только) только в небезопасных EL0 или безопасных EL0

SCR_EL3.Ns определяется статусным состоянием низкого уровня EL, чтобы не определить свой собственный

EL2 только небезопасное состояние

EL0 имеет оба не защищенное состояние, также имеет безопасное состояние

Если scr_el3.ns == 0, переключитесь в безопасный статус EL0 / EL1, в противном случае переключитесь на небезопасное состояние EL0 / EL1

Защищенное состояние имеет безопасную EL0 / EL1 / EL3

Защищенное состояние только безопасно EL0 / EL3, без безопасного EL1


Рисунок EL3 Исполнение состояния и защищенная государственная комбинация при использовании Aarch64


Рисунок EL3 использует AARCH32 при выполнении состояния и защищенной государственной комбинации

arm-64-bit

Об истории архитектуры ARM, специфике деятельности компании ARM Limited и поколениях процессоров ARMv5, ARMv6 и ARMv7 вы можете прочитать в статье «Процессоры ARM: особенности архитектуры, отличия и перспективы». А про популярные модели ARMv7-чипов производства Qualcomm, NVIDIA, Samsung, Apple, MediaTek и др. подробно рассказано в статьях «Процессоры ARM: производители и модели» и «Процессоры ARM: обновление модельного ряда».

ARM_Licensees

Нововведения ARMv8

Обновленную архитектуру процессоров семейства ARMv8 окрестили именем AArch64. Она получила 64-битный набор инструкций и возможность работать с большим объемом оперативной памяти (4 Гбайт и больше). Само собой, предусмотрена совместимость с 32-битными приложениями (AArch32). Другими важными нововведениями ARMv8 стали:

Референсные ядра ARM Limited

Первыми процессорными ядрами ARMv8, разработанными непосредственно компанией ARM Limited, стали Cortex-A53 и A57. Ядро A53 является среднеуровневым решением с производительностью 2,3 DMIPS/МГц, что находится примерно по середине между нынешними Cortex-A7 (1,9 DMIPS/МГц) и A9 (2,5 DMIPS/МГц). Тогда как A57 занимает верхний сегмент, ведь его быстродействие (4,1 DMIPS/МГц) превосходит показатели обеих 32-битных флагманов: Cortex-A15 (3,5 DMIPS/МГц) и А17 (4 DMIPS/МГц).

Помимо лицензирования референсных процессорных ядер компания ARM Limited продает расширенные лицензии, позволяющие чипмейкерам по своему усмотрению модифицировать архитектуру ARM. Такие лицензии есть, к примеру, у Apple, Qualcomm и NVIDIA. Поэтому ничто не мешает производителям процессоров создавать собственные решения на базе ARMv8, существенно отличающиеся от референсных Cortex-A53 и A57.

1
1

Apple A7

Первым и пока единственным 64-битным ARM-процессором, который уже применяется в смартфонах и планшетах, является Apple A7. Построен он на фирменной архитектуре Apple Cyclone, совместимой с ARMv8. Это вторая разработанная внутри компании процессорная архитектура; первой же была Swift (чипы A6 и A6X, семейство ARMv7).

Процессорных ядер у однокристальной системы A7 только два (частота до 1,4 ГГц), но присутствует графический ускоритель PowerVR G6430 с четырьмя кластерами ядер. Быстродействие чипа A7 в процессорозависимых задачах выросло примерно в полтора раза по сравнению с А6, тогда как в различных графических тестах прирост составляет от двух до трех раз.

Apple_A7

А вот теоретическую возможность работать с большим объемом оперативной памяти благодаря 64-битной архитектуре процессора A7 устройства под управлением iOS пока не ощущают. У iPhone 5s, iPad Air и iPad mini Retina всего лишь 1 Гбайт оперативки; и вряд ли в новом поколении мобильных устройств Apple объем ОЗУ вырастит больше чем вдвое.

Qualcomm Snapdragon 410, 610, 615, 808 и 810

Вслед за Apple свои 64-битные ARM-процессоры поспешила анонсировать компания Qualcomm, причем сразу пять моделей. Правда, пока ни одна из них в коммерческих смартфонах или планшетах не применяется. Скорее всего, расцвет эпохи 64-битных Android-устройств состоится в начале 2015 года на выставках CES и MWC.

Однокристальная система Snapdragon 410 (MSM8916) – младшая из анонсированной 64-битной линейки Qualcomm. Она включает в себя четыре ядра Cortex-A53 с частотой от 1,2 ГГц, графический ускоритель Adreno 306 и, что интереснее всего, навигационный модуль с поддержкой спутниковых сетей GPS, ГЛОНАСС и даже китайской Beidou. Применять Snapdragon 410 планируют в недорогих смартфонах на базе Android, Windows Phone и Firefox OS.

Те же четыре ядра Cortex-A53, что у 410-того, содержит чип Snapdragon 610 (MSM8936), вот только графика у него улучшенная Adreno 405. Тогда как Snapdragon 615 (MSM8939) схож с 610-тым графикой, но процессорных ядер Cortex-A53 у него вдвое больше – восемь Cortex-A53.

Qualcomm_810

Но главный вопрос: когда именно компания Qualcomm представит собственную процессорную архитектуру на основе ARMv8, как это было со Scorpion и Krait (модифицированные ARMv7)?

MediaTek MT6732, MT6752, MT6795

Не могла долго оставаться в стороне 64-битной гонки и компания MediaTek, всего за несколько лет превратившаяся из мелкого производителя процессоров для китайских клонов iPhone в одного из крупнейших в мире чипмейкеров, пусть и безфабричного. Впрочем, Apple и Qualcomm собственных производственных линий по «штамповке» полупроводников тоже не имеют.

Однокристальные системы MediaTek MT6732 и MT6752 должны составить конкуренцию чипам Snapdragon 610 и 615. У них четыре и восемь процессорных ядер Cortex-A53 (частота 1,5 и 2 ГГц соответственно) и одинаковая графика Mali-T760 (разработка ARM Limited). Старший же чип MT6795 стал ответом Snapdragon 810: архитектура big.LITTLE, по четыре ядра Cortex-A57 и A53 с частотой 2,2 ГГц, а также графический ускоритель PowerVR G6200.

MediaTek

NVIDIA Tegra K1 (Project Denver)

Компания NVIDIA решила перевести на 64-битную процессорную архитектуру свой уже существующий чип Tegra K1. Графическая составляющая у него и раньше была едва ли не лучшей среди конкурентов – GK20A с 192 ядрами Kepler, производительностью 365 GFLOPS и поддержкой ПК-стандартов графики DirectX 11.2 и OpenGL 4.4 (а не их мобильных аналогов).

NVIDIA_K1_Denver

Выводы

За один такт процессоры архитектуры ARMv8 способны обработать значительно больше данных. Это повышает как общую производительность процессора, так и производительность на ватт. Учитывая ограничения технологических норм (максимально допустимую тактовую частоту), переход на ARMv8 – это единственный возможный способ нарастить быстродействие мобильных процессоров, не выходя за разумные рамки энергопотребления и нагрева.

Естественно, пользу от архитектуры ARMv8 получат только те приложения для iOS и Android, которые способны задействовать все ресурсы новых процессоров. Оптимизация программ под новую архитектуру может быть как ручной, так и автоматической, на уровне компилятора.
Первое же Android-устройство с 64-битным ARM-процессором и 4 Гбайт ОЗУ – фаблет Samsung Galaxy Note 4 (чип Exynos 5433: по четыре ядра Cortex-A57 и A53) – представят уже 3 сентября. А вторым, возможно, станет планшетный компьютер HTC серии Google Nexus c процессором Tegra K1 Denver.

ARM как будущая архитектура для настольных ПК

Большинство привыкло к полярному рынку в мире процессоров — поле битвы делят Intel и AMD. Однако вполне вероятно, что ситуация изменится в ближайшем будущем, ведь компания Nvidia покупает фирму ARM — разработчика процессорных архитектур. Что же такое ARM и чем все это может обернуться для IT-индустрии?

Желудь из Кембриджа

Для начала стоит объяснить, что ARM обозначает одновременно и архитектуру процессоров (в данном случае Advanced RISC Machine) и название компании (ARM Limited). История берет свое начало с сотрудничества бывшего сотрудника крупной британской компании Sinclair Research Криса Карри и инвестора Германа Хаузера. В 1978 они основали компанию Cambridge Processor Unit (CPU), которая уже в 1979 была переименована в Acorn (Желудь). Такое названия было выбрано по одной простой причине — находиться в телефонном справочнике перед Apple.

Первым продуктом был карманный компьютер за 80 фунтов Acorn System 1, который стоил дешевле своего аналога ZX80, чем и запомнился многим пользователям.


Через два года Acorn получила крупный тендер от британской BBC (та самая радиовещательная компания) на создание компьютера для школ. Так появился BBC Micro, тираж которого превысил 1,5 миллионов устройств. Поступало даже предложение от Билла Гейтса с портированием MS-DOS на BBC Micro, но в Acorn от этого отказались.


Команда разработчиков увеличивалась и постепенно появилась идея перейти к более сложным технологиям, а именно работать с 16-разрядными процессорами. Сначала решили «прощупать» почву и отправились на экскурсию в компанию National Semiconductor. Ситуация крайне разочаровала разработчиков Acorn: над процессорами трудились сотни человек, но многочисленных ошибок и «проволочек» в разработке избегать не удавалось.

Совсем другая история была в Western Design Center, которую также посетили учредители. Там процессоры разрабатывали буквально несколько человек в «домашней» обстановке. Ведущий разработчик Acorn Роджер Уилсон был настолько впечатлен, что сам загорелся идеей разработки собственных процессоров, а не покупки как это предполагалось ранее.

В 1985 году появился первый процессор ARM на тогда популярной RISC-архитектуре. Вот только он был всего-лишь подключаемым дополнением для BBC Master (продвинутой версии ранее упомянутой BBC Micro).

Своеобразным прорывом стал ARM 2: до 64 Мб оперативной памяти, тактовая частота 8 МГц — для тех времен весьма впечатляющие показатели. Конкурентом был небезызвестный Intel 80368 с частотой 16 МГц. Разница в частоте была двукратная, но не в производительности. ARM 2 выполнял 4 миллиона операций против 5 миллионов у Intel 80368!

Перенасыщение рынка компьютеров в 1984 привело к сложному экономическому положению, и Acorn была куплена итальянским брендом Olivetti. Однако последующее заполнение рынка IBM PC и аналогами привело к тому, что вкладывать средства в архитектуру на базе RISC итальянцы не стали.

Новые союзники

Герман Хаузер искал способы сохранить процессорный бизнес и нашел союзника — Apple. Они же в 1990 проектировали инновационный карманный компьютер Newton, для которого энергоэффективные ARM подходили просто идеально. Третьим союзником стала компания VLSI Technologies, которая имела непосредственное отношение к производству интегральных схем.

В итоге появилась компания ARM, которая специализировалась исключительно на проектировании. Свою интеллектуальную собственность разработчики уже продавали по лицензиям другим компаниям.

Несмотря на то, что на рынке ПК главенствовала архитектура x86, ARM по-прежнему обеспечивала рабочие станции IBM и Sun Microsystems, а также огромный рынок микроэлектроники.

В чем главная особенность ARM

Во многом именно благодаря Apple после появления первого iPhone и iPad стала понятна значимость RISC-архитектуры. Потребление энергии процессоров было столь низким, что позволяло использовать их практически в любых портативных устройствах. Как не старалась Intel, добиться таких же показателей на х86 не получалось.

Итог — процессоры на ARM можно найти практически в любых портативных устройствах — смартфоны, GPS-навигаторы, игровые приставки, фото- и видеокамеры, телевизоры и не только. Как же так получилось, что принципиального в ARM? Ответом на этот вопрос является RISC-архитектура.

В существующей классификации можно выделить CISC (Complex Instruction Set Computing — комплексный набор инструкций) и RISC (Reduced Instruction Set Computing — сокращенный набор команд). Усовершенствование процессоров приводило к увеличению размера команды. В какой-то момент усложнения стали такими, что некоторые команды потребовали двух и больше тактов на исполнение.


Тогда в рамках проекта VSLI был предложен новый принцип — использовать команды заданной длины с заранее предопределенным расположением полей, а также дополнительно увеличить число общих регистров, благодаря которому процессору придется реже обращаться к ОЗУ. Проще говоря, сложные вычисления должны разбиваться на идентичные простые, обработка которых выполняется с большей эффективностью.


Так появилась RISC с сокращенным набором команд. С одной стороны, такой подход не позволял тягаться с устройствами на базе CISC, но уровень вычислительной мощности был достаточным для микроэлектроники, не говоря о мизерном тепловыделении.

ARM против x86/x64 — есть ли перспективы

Могут ли процессоры ARM тягаться с десктопными решениями от Intel или AMD. В одном из материалов был проведен крупный тест процессоров на архитектуре E2K (отечественные Эльбрусы), ARM (v6-v8) и x86 (i386) х86-64 (amd64). Использовались насколько тестов, в том числе LINPACK, который применяется для оценки производительности суперкомпьютеров.

Процессоры ARM были представлены следующими моделями: Amlogic S922X, Samsung Exynos 4412, Allwinner H5, Allwinner A64 и Broadcom BCM2837B0 (последний используется в миникомпьютере Raspberry PI 3).

Весь список результатов вы сможете изучить на этой странице, а мы приведем график для теста liNPACK:


Некоторые модели ARM-процессоров дотягиваются до уровня производительности Intel Atom. Аналогичную ситуацию можно видеть и на примере мобильного процессора Snapdragon 835. Исходя из тестов, он более чем в два раза проигрывает мобильным версиям Intel Core i5, не говоря уже про десктопные решения.


С другой стороны такие тесты нельзя назвать максимально объективными. Во-первых, большинство подборных программ ориентированы под x86/x64, поэтому для ARM часто приходится использовать эмуляторы, которые сказываются на результатах. Во-вторых, все рассматриваемые решения изначально ориентированы на мобильную электронику с минимальным тепловыделением и «жором» аккумулятора.

Однако можно ли использовать ARM для десктопных решений? Вполне вероятно, и первые звоночки уже есть. Каждые 6 месяцев выходит рейтинг ТОП-500 — список самых мощных суперкомпьютеров в мире. Ранее первые места занимали решения c Intel Xeon или Nvidia Volta, однако в рейтинге от сентября 2020 года самым мощным компьютером стал японский Fugaku. Беспрецедентный случай, ведь построен он именно на процессорах ARM (A64FX 48C). Замеры производительности показали 513,8 петафлопс. Много это или мало? Бывший лидер IBM Power Systems AC922 имеет всего 200,7 петафлопс — более чем в два раза меньше!


Конечно, в Fugaku целых 158 976 процессоров на 52 (48+4) ядра, но сам факт того, что на ARM можно строить столь производительные системы уже заслуживает внимания.

Второй звоночек — покупка ARM компанией Nvidia (подписание договора ожидается только к 2022 году), которая является крупнейшим игроком рынка с огромным опытом. Учитывая, что в сфере графических ускорителей они занимают главенствующие позиции, есть вероятность, что «зеленые» попробуют свои силы в сфере ЦП.

Возможно, Nvidia хочет выйти на мобильный игровой рынок. У компании уже существует платформа Tegra, которая объединяет в себе графическое ядро и ARM процессор. C новой покупкой Tegra вполне способна выйти за пределы смартфонов, смартбуков и КПК.


Также Apple объявила о переходе на процессоры ARM собственной разработки и отказ от продукции Intel. Это позволит сделать совместимыми приложения между MacOS и iOS. Как известно, линейка процессоров «A» всегда показывала выдающиеся результаты, благодаря чему iPhone находились в ТОПе самых производительных смартфонов. Однако достаточно ли таких наработок, чтобы заменить хотя бы Intel Core i5 — остается вопросом.

Сейчас у Apple есть только «демонстрационная технология» на базе процессора A12Z Bionic. Разработчики могут получить «девкит» за 779 долларов, но потом его придется вернуть (Apple во всей красе). Новинка A12Z будет установлена в iPad Pro 2020 и, судя по презентации, планшет прекрасно справляется с любыми пользовательскими задачами.


Более того, на процессоре получилось даже запустить Shadow of the Tomb Raider через эмулятор на средне-низких настройках, поэтому потенциал есть.

Если верить тестам за 2017–2018 гг., то iPad и iPhone уже практически дотягиваются до уровня i7 и даже i9, установленных в MacBook Pro.


Есть еще один игрок на рынке — фирма Ampere. Как заявляют представители, их 80-ядерный ARM-процесор превосходит AMD Epyc 7742 и Intel Xeon 8280, однако в тесте для AMD использовался понижающий коэффициент, который компенсировал недоработки пакета компиляторов.


Что ждет x86/x64

Стоит ли хоронить процессоры на x86/x64 — пока об этом рано говорить. Уже достаточно давно процессоры Intel и AMD разбивают входные инструкции на более мелкие микроинструкции (micro-ops), которые в дальнейшем, не удивляйтесь, исполняются RISC-ядром.

Те самые 4–8 ядер вашего процессора, это именно RISC-ядра. Проще говоря, ARM-технология является частью архитектуры x86/x64. Именно поэтому будущим может стать не тотальное вымирание, а именно более совершенная гибридная архитектура. С другой стороны, за счет уменьшения техпроцесса ARM может добиться производительности десктопных процессоров Intel и AMD, но с сохранением приемлемого энергопотребления.

Серверные решения на ARM уже реальность и даже весьма перспективная, а значит, не за горами и массовые процессоры для персональных компьютеров.

Визначення архітектури

Часто при загрузке Андроид-приложений на сайтах предлагающих такую возможность, у пользователей есть возможность выбора файлов для различных архитектур системы. И тут возникают сложности — какую из загрузок нужно скачивать и устанавливать.

Архитектура процессора — это, простыми словами, схема по которой работают части процессора между собой, а также набор команд с помощью которых они «общаются» с другими частями устройства.

Многие разработчики делают универсальные приложения и игры, которые подходят под любые архитектуры процессоров. Но некоторые из них создают несколько версий программ специально «заточенных» под ту или иную архитектуру. При установке такого продукта из Google Play, сервис автоматически определяет все необходимые параметры установки и загружает на пользовательское устройство необходимые файлы. Пользователю не нужно думать над тем какой файл скачать.

Если же установка (по той или иной причине) из Google Play невозможна или нежелательна, пользователь может скачать файл APK на стороннем сайте. С его помощью можно установить приложение или игру «в ручном режиме». Вот тут-то, если на сайте есть несколько вариантов таких файлов, и появляются муки выбора.

На сегодняшний день, сайты предлагающие файлы для установки приложений и игр могут распространять APK-файлы следующих архитектур: armeabi-v7a, arm64-v8a, x86 и x86_64.

  • armeabi-v7a — файлы работающие на устройствах с архитектурой ARM и 32-разрядным процессором. Самые распространенный тип архитектуры.
  • arm64-v8a — файлы работающие на устройствах с архитектурой ARM и 64-разрядным процессором. Сейчас все больше девайсов используют такие процессоры.
  • x86 — файлы работающие на устройствах с архитектурой от компании Intel с 32-разрядным процессором. Довольно мощные, но плохо оптимизированные для работы с батареей чипы. В основном используются в планшетах.
  • x86_64 — файлы работающие на устройствах с архитектурой от компании Intel с 64-разрядным процессором. Такие процессоры используются в некоторых мощных планшетах. Также файлы этого типа можно запускать на эмуляторах Андроид для ПК.

Исходя из вышесказанного, можно составить такие правила совместимости:

  • На устройства с архитектурой armeabi-v7a можно ставить только файлы armeabi-v7a.
  • На устройства с архитектурой arm64-v8a можно ставить файлы armeabi-v7a и arm64-v8a.
  • На устройства с архитектурой x86 можно ставить только файлы x86.
  • На устройства с архитектурой x86_64 можно ставить файлы x86 и x86_64.

В большинстве случаев телефоны используют архитектуру ARM. Более дешевые устройства используют версию armeabi-v7a, более мощные — версию arm64-v8a. Поэтому, если сомневаетесь в том, какую версию файла выбрать, выбирайте ту, которая имеет отметку «armeabi-v7a».

Определение архитектуры процессора устройства

Теперь, когда мы разобрались с теоретической частью, пора определить — на какой архитектуре разработан ваш телефон или планшет.

Для этого можно воспользоваться инструкцией к устройству (но в ней не всегда можно найти нужную информацию) или же найти данные в интернете. Но лучше всего это сделать с помощью специального приложения.

Самый простой способ!

Telegram

Если у вас установлено приложение Telegram ( то самое ) вы можете узнать архитектуру процессора буквально за пару кликов. Для этого войдите в меню приложения и нажмите «Настройки». В самом низу открывшегося меню будет черным по белому (или белым по черному, в зависимости от настроек) прописаны нужные нам данные.

Droid Hardware Info

Если вышеописанный способ вас чем-то не устраивает или же вы хотите получить более расширенные данные о системе вашего устройства, воспользуйтесь приложением Droid Hardware Info.

Установите эту утилиту в Google Play или с помощью APK-файла (скачав его на сайте Biblprog). Для получения нужной нам информации запустите Droid Hardware Info, перейдите на вкладку «Система» и обратите свое внимание на раздел «Процессор».

Droid Hardware Info


В самой первой строке с названием «Архитектура процессора» вы увидите одно из значений: ARMv7, AArch64 или x86, а в строке «Набор инструкций»: armeabi-v7a, arm64-v8a или x86abi. Этого вам должно хватить для того, чтобы решить какой APK-файл скачивать и устанавливать на свой смартфон или планшет.

Нужные данные можно получить и с помощью других приложений, доступных на Google Play, например Inware или My Device .

Как вам данная инструкция? Все ли понятно? Если у вас появились дополнительные вопросы или же возникли замечания к информации выложенной на данной странице — не стесняйтесь. Напишите в комментариях!

Читайте также: