Arduino nano какой процессор

Обновлено: 07.07.2024

Arduino Nano (рус. Ардуино Нано) – плата, которая работает на чипе ATmega328P и имеет минимальные размеры, которые лучше всего подходят для создания компактных устройств.

О плате

Ардуино Нано - это аналог Arduino Uno, которая также работает на чипе ATmega328P, но отличается формфактором платы, которая в 2-2,5 раза меньше, чем Уно (53 х 69 мм). Размеры подобны пачке сигарет, и позволяют легко собирать сложные схемы навесным монтажом, но после стадии создания макета идёт сборка действующих экземпляров, а для этого лучше подходит как раз Нано.


Сравнение плат Arduino Uno и Arduino Nano

Сравнение плат Arduino Uno и Arduino Nano

Отличие такой миниатюрной платы, заключается в отсутствии вынесенного гнезда для внешнего питания, но вместо него с легкостью можно подключиться напрямую к пинам. В плате используется чип FTDI FT232RL для USB-Serial преобразования и примененяется mini-USB кабель для связи с ардуино вместо стандартного. Связь с различными устройствами обеспечивают UART, I2C и SPI интерфейсы.


В остальном, способы взаимодействия и характеристики чипов совпадают с базовой моделью Уно, которая больше подходит для экспериментов, чем для реальных проектов. Нет более насущной проблемы для любителя электроники, чем желание красиво и компактно оформить своё устройство.

Платформа имеет контакты в виде пинов, поэтому ее легко устанавливать на макетную плату. Arduino Nano используется там где важна компактность, а возможностей Mini либо не хватает, либо не хочется заниматься пайкой.

Характеристики Arduino Nano

В первую очередь в разговоре о характеристиках нужно отметить, что Нано выпускается в различных версиях и самые распространённые:

Главное отличие – в самом микроконтроллере. Младшая версия использует Atmega168, Atmega328. Основные отличия чипов – это объём Flash-памяти:

  • mega 328: Flash-память – 32 кб, ПППЗУ – 1024 и ОЗУ – 2 кб;
  • mega 168: Flash-память – 16 кб, ПППЗУ – 512 и ОЗУ – 1 кб.
ПППЗУ - это перепрограммируемые запоминающее устройство.

Главный конкурент Arduino Nano по размеру – это Arduino Micro. В целом они похожи, но у «микро» интерфейс SPI разведен на другие пины, как и шина I2C, а также изменено количество выводов прерываний. В целом, платы похожи размерами, но различны соотношения сторон, а также некоторые схемотехнические нюансы.

Arduino Nano имеет 8 аналоговых входов, они могут использоваться как цифровой выход, 14 цифровых из которых 6 могут работать как широтно-импульсный модулятор (ШИМ), еще два задействованы под I2C и 3 под SPI.

В противоположном конце платы от разъёма микро-юсб расположена колодка Arudino ICSP для прошивки микроконтроллера.

ШИМ выходы и транзисторы помогут вам: регулировать обороты двигателя, яркость светодиодов, мощность нагревателей и многое другое. А аналоговые входы позволят читать значения с аналоговых датчиков, таких как:

  • фоторезисторы;
  • терморезисторы;
  • термопары;
  • измерители влажности;
  • датчики давления и другие.

Выходы Digital 2 и 3 могут быть использованы для внешних прерываний. Это такие сигналы, которые сообщают микроконтроллеру о каком-либо важном событии. По этим сигналам вызывается программа обработки прерывания и выполняются необходимые действия, например, выход из режима энергосбережения и выполнение вычислений.

На базе платы Nano получится отличный миниатюрный программатор Arduino ISP, для прошивки целого ряда контроллеров.

Питание модуля

Arduino Nano может работать с разных источников питания, его можно подключить как через Mini-B USB компьютера, или от обычного нерегулируемого 6-20 вольт (pin 30), или регулируемого 5 вольт (pin 27). Плата автоматически выберет питание с самым высоким напряжением.

  1. Через mini-USB или microUSB при подключении к компьютеру;
  2. Через внешний источник питания, напряжение 6-20В.

Внешнее питание стабилизируется благодаря LM1117IMPX-5.0 с напряжением 5В. Когда подключение происходит через USB используется диод Шоттки.


Распиновка Arduino Nano

У Arduino Nano распиновка выполнена так, как показано на картинке ниже:

Arduino Nano - распиновка, интерфейс модуля, схема

1 – TX (передача UART) или порт D0;
2 – RX (прием UART) или порт D1;
3,28 – сброс (RESET);
4,29 – земля;
5. 16 – порты D3. D13;
17 – напряжение 3,3 В;
18 – опорное напряжение АЦП;
19. 26 – 8 каналов АЦП A0. A7;
27 – напряжение 5,0 В;
30 – плюс питания модуля 2-20 В


Первые два вывода используются либо для связи по классическому последовательному интерфейсу с другим устройством, либо как порты для двоичных данных. В arduino nano распиновка 5. 16 выводов, кроме указанных, имеет дополнительные функции:

5 – прерывание INT0;
6 – прерывание INT1 / ШИМ / AIN0;
7 – таймер-счетчик T0 / шина I2C SDA / AIN1;
8 – таймер-счетчик T1 / шина I2C SCL / ШИМ;
9,12,13,14 – ШИМ;
16 – светодиод.

Более подробная схема вводов-выводов на рисунке ниже (нажмите для увеличения):

Распиновка Arduino Nano

Распиновка Arduino Nano

AIN0 и AIN1 – это входы быстродействующего аналогового компаратора. Кроме того, имеется 6 каналов с выходом широтно-импульсного модулятора (ШИМ). К тому же имеется большее число пинов, на которые могут быть переведены запросы прерываний.

Проблема с микроконтроллерами заключается в том, что при больших функциональных возможностях (ведь в них кроме процессора есть еще довольно богатый набор периферийных устройств) они имеют ограниченное число выводов. Разработчику тут есть над чем подумать уже на этапе составления принципиальной схемы, ведь его цель – максимально использовать устройство, в то же время не допуская конфликтов между функциями выводов.

Схема устройства

Распиновка Arduino Nano 3.0

У Arduino Nano 3.0 распиновка не отличается от той схемы, что приведена выше, несмотря на другой контроллер. ATmega328 отличается от ATmega168 вдвое большим объемами памяти всех видов:

Это позволяет улучшить ПО прошивки и загручика, а также дать пользователю больше возможностей для его прикладной задачи. Arduino nano v 3.0 распиновка может быть использована для программирования, но для этих целей используется отдельный разъем. Об этом ниже.


Принципиальная схема платы

Принципиальная схема платы ниже, нажмите для увеличения:


Схема Arduino Nano ISCP

Наконец, надо сказать о подключении программатора. Для программирования контроллеров Atmel, на котором собран модуль Arduino, используется интерфейс ICSP. Для Arduino Nano icsp распиновка выглядит выглядит следующим образом (см. верхнюю часть предыдущего рисунка):

  1. MISO (ведущий принимает от ведомого);
  2. +5V (питание);
  3. SCK (тактовый импульс);
  4. MOSI (ведущий передает ведомому);
  5. RESET (сброс);
  6. GND (земля).

Первый пин 6-контактного разъема имеет в основании форму квадратика и нумеруется по часовой стрелке, если смотреть сверху. Чтобы не возникало сомнений по порядку нумерации выводов коннектора, ниже приводится фрагмент принципиальной схемы платы Ардуино:

Arduino Nano icsp распиновка

Этот разъем подключается к программатору с интерфейсом SPI (интерфейс последовательного программирования контроллеров Atmel). Кроме того, прошивка контроллера может меняться из среды программирования через кабель USB, так что приобретать программатор становится необязательным (он нужен только в том случае, если отсутствует программа загрузчика).

Интерфейсы связи

Arduino Nano поддерживает интерфейс I2C для связи с различными устройствами и периферией. Один из часто встречающихся способов применения – это связь с дисплеем через шину I2C. Благодаря особой технологии вы можете выводить наборы символов и данных на дисплей, используя всего лишь 2 пина, в Нано это пины D4 SDA) и D5 (SCL).


К Ардуино Нано подключение аналогично - используйте отмеченные ранее пины. Для работы с дисплеем вам понадобится библиотека, которую можно скачать ниже:

Код программы ниже:

Пример скетча - управление задней подсветкой модуля I2C LCD1602:

Работа с SPI требует два пина под передачу данных (master in и out):

  • для выбора системы, с которой идёт «общение» (SS или CS – crystal/system select),
  • сигнал тактирования SCLK.

На официальном сайте есть специальная библиотека для работы с ним. При написании программ не забудьте подключить её директивой:

Теперь можно организовывать систему связи.


Принципиальная схема контроллера

Полную схему можно скачать на нашем сайте здесь, а инструкцию можно скачать здесь.

Заключение

Arduino Nano одна из самых маленьких полноценных версий плат Ардуино. По сути своей, она с точностью повторяет Arduino Uno, но имеет два главных отличия:

  1. Размеры платы.
  2. Связь платы UNO с компьютером осуществляется с помощью USB serial преобразователя на базе микроконтроллера типа Atmega8u.

На нано-плате использован преобразователь на базе ft232, однако более дешевые китайские версии используют другой способ связи с ПК Arduino Nano CH341. По сути, эти микросхемы являются основой для USB-UART конвертера.

Конструктор Arduino создан для любителей электроники и робототехники начального уровня, чтобы помочь им обойти сложности низкоуровнего программирования микроконтроллеров, где требуются знания инженера-профи и опыт. Да и монтажника высокого разряда тоже, особенно для новой версии платы.

Паковать крупные платы в большие корпуса в последние десятилетия стало моветоном. Микроконтроллеры слегка улучшили ситуацию тем, что схемы с их использованием стали значительно компактнее, к тому же повысилась простота повторения результата или конструкции.

Вместе с тем активное распространение Ардуино-плат для освоения разработки и проектирования устройств на микроконтроллерных системах породило новый виток в вопросе качества и эргономики.

Всего выпущено несколько платформ Arduino, Nano является одной из них, в миниатюрном исполнении. В то же время сохраняется легкость подключения при помощи разъемов с шагом выводов 2,54 мм, что важно для любительских экспериментов. Для программирования используется Arduino IDE (среда разработки) и язык высокого уровня, похожий на Си, а фактически это и есть C/C++, просто структура программы немного изменена. Вместо функции main() используются две другие: setup() и loop(). Компилятор сам создает из них остальное)

Достоинства. Функциональная маленькая плата Arduino Nano, ничуть не уступающая по функциям большой UNО, – дешевле, удобнее для монтажа и сборки миниатюрных устройств.

Разработчику программы для Arduino приходится также иметь дело со схемотехникой подключаемых устройств. Он должен знать уровни допустимых токов и напряжений, обеспечивать защиту электроники при использовании деталей с большой индуктивностью (моторов, катушек реле). Ардуино объединяет две области знаний: электронику и программирование, основу для построения роботов (здесь немного не хватает еще механики).

Раз уж тут объединены программирование и электроника, то ключевой вещью в использовании модуля становится спецификация его выводов, или распиновка, как еще принято говорить. Выводы модуля можно классифицировать разными способами, поскольку их функции зависят от программной конфигурации контроллера. Кроме того, поскольку есть две версии модулей, один из них использует чип ATmega168, а другой ATmega328, то появляется вопрос, есть ли у них различия в подключении.

В каждом конкретном проекте назначение каждого пина конфигурируется программой пользователя. При запуске контроллера сначала выполняется инициализация регистров конфигурации. Поэтому беспокойства по поводу функций выводов в отлаженном устройстве быть не должно.

Конечно, наборы Ардуино (Arduino) не предназначены для разработки встраиваемых приложений, работающих с большой скоростью в ответственных случаях, поэтому при их использовании возможны косяки, тем более что пользователи еще только учатся.

Но как часть конструктора для изучения автоматизации и робототехники он играет важную роль в образовательных целях и способен привлечь в отрасль много будущих специалистов.

Arduino Nano - это полнофункциональное миниатюрное устройство на базе микроконтроллера ATmega328 (Arduino Nano 3.0) или ATmega168 (Arduino Nano 2.x), адаптированное для использования с макетными платами. По функциональности устройство похоже на Arduino Duemilanove, и отличается от него размерами, отсутствием разъема питания, а также другим типом (Mini-B) USB-кабеля. Arduino Nano разработано и выпускается фирмой Gravitech.



Схема и исходный проект

Arduino Nano 2.3 (ATmega168): руководство (pdf), файлы Eagle. Примечание: печатная плата этой версии Arduino Nano содержит 4 слоя, в то время как бесплатная версия Eagle позволяет работать только с двухслойными платами. Поэтому, для возможности работы со схемой в бесплатной версии, проект выложен без трассировки печатной платы.

Характеристики:

Микроконтроллер Atmel ATmega168 или ATmega328
Рабочее напряжение (логический уровень)
Напряжение питания (рекомендуемое) 7-12В
Напряжение питания (предельное) 6-20В
Цифровые входы/выходы 14 (из которых 6 могут использоваться как ШИМ-выходы)
Аналоговые входы 8
Максимальный ток одного вывода 40 мА
Flash-память 16 КБ (ATmega168) или 32 КБ (ATmega328) из которых 2 КБ используются загрузчиком
SRAM 1 КБ (ATmega168) или 2 КБ (ATmega328)
EEPROM 512 байт (ATmega168) или 1 КБ (ATmega328)
Тактовая частота 16 МГц
Размеры платы 1.85 см х 4.3 см

Питание

Arduino Nano может быть запитан через кабель Mini-B USB, от внешнего источника питания с нестабилизированным напряжением 6-20В (через вывод 30) либо со стабилизированным напряжением 5В (через вывод 27). Устройство автоматически выбирает источник питания с наибольшим напряжением.

Напряжение на микросхему FTDI FT232RL подается только в случае питания Arduino Nano через USB. Поэтому при питании устройства от других внешних источников (не USB), выход 3.3В (формируемый микросхемой FTDI) будет неактивен, в результате чего светодиоды RX и TX могут мерцать при наличии высокого уровня сигнала на выводах 0 и 1.

Память

Объем памяти программ микроконтроллера ATmega168 составляет 16 КБ (из них 2 КБ используются загрузчиком); в ATmega328 - этот объем составляет 32 КБ (из которых 2 КБ также отведены под загрузчик). Помимо этого, ATmega168 имеет 1 КБ оперативной памяти SRAM и 512 байт EEPROM (для взаимодействия с которой служит библиотека EEPROM); а микроконтроллер ATmega328 - 2 КБ SRAM и 1 КБ EEPROM.

С использованием функций pinMode(), digitalWrite() и digitalRead() каждый из 14 цифровых выводов Arduino Nano может работать в качестве входа или выхода. Рабочее напряжение выводов - 5В. Максимальный ток, который может отдавать или потреблять один вывод, составляет 40 мА. Все выводы сопряжены с внутренними подтягивающими резисторами (по умолчанию отключенными) номиналом 20-50 кОм. Помимо основных, некоторые выводы Ардуино могут выполнять дополнительные функции:

В Arduino Ethernet есть 8 аналоговых входов, каждый из которых может представить аналоговое напряжение в виде 10-битного числа (1024 различных значения). По умолчанию, измерение напряжения осуществляется относительно диапазона от 0 до 5 В. Тем не менее, верхнюю границу этого диапазона можно изменить, используя вывод AREF и функцию analogReference(). Помимо этого, некоторые из выводов имеют дополнительные функции:

  • I2С: выводы 4 (SDA) и 5 (SCL). С использованием библиотеки Wire (документация на веб-сайте Wiring) данные выводы могут осуществлять связь по интерфейсу I2C (TWI).

Помимо перечисленных на плате существует еще несколько выводов:

  • AREF. Опорное напряжение для аналоговых входов. Может задействоваться функцией analogReference().
  • Reset. Формирование низкого уровня (LOW) на этом выводе приведет к перезагрузке микроконтроллера. Обычно этот вывод служит для функционирования кнопки сброса на платах расширения

Связь

Arduino Nano предоставляет ряд возможностей для осуществления связи с компьютером, еще одним Ардуино или другими микроконтроллерами. В ATmega168 и ATmega328 есть приемопередатчик UART, позволяющий осуществлять связь по последовательным интерфейсам посредством цифровых выводов 0 (RX) и 1 (TX). Микросхема FTDI FT232RL обеспечивает связь приемопередатчика с USB-портом компьютера, и при подключении к ПК позволяет Ардуино определяться как виртуальный COM-порт (драйвера FTDI включены в пакет программного обеспечения Ардуино). В пакет программного обеспечения Ардуино также входит специальная программа, позволяющая считывать и отправлять на Ардуино простые текстовые данные. При передаче данных компьютеру через USB на плате будут мигать светодиоды RX и TX. (При последовательной передаче данных посредством выводов 0 и 1 данные светодиоды не задействуются).

Библиотека SoftwareSerial позволяет реализовать последовательную связь на любых цифровых выводах Arduino Nano.

В микроконтроллерах ATmega328 и ATmega168 также реализована поддержка последовательных интерфейсов I2C (TWI) и SPI. В программное обеспечение Ардуино входит библиотека Wire, позволяющая упростить работу с шиной I2C; для получения более подробной информации см. документацию. Для работы с интерфейсом SPI см. даташиты микроконтроллеров ATmega168 и ATmega328.

Программирование

Arduino Nano программируется с помощью программного обеспечения Ардуино (скачать). Для этого из меню Tools > Board необходимо выбрать "Arduino Diecimila, Duemilanove, or Nano w/ ATmega168" или "Arduino Duemilanove or Nano w/ ATmega328" (в зависимости от микроконтроллера на вашей плате). Для получения более подробной информации см. справку и примеры.

ATmega168 и ATmega328 в Arduino Nano выпускается с прошитым загрузчиком, позволяющим загружать в микроконтроллер новые программы без необходимости использования внешнего программатора. Взаимодействие с ним осуществляется по оригинальному протоколу STK500 (справка, заголовки C-файлов).

Тем не менее, микроконтроллер можно прошить и через разъем для внутрисхемного программирования ICSP (In-Circuit Serial Programming), не обращая внимания на загрузчик; более подробно об этом см. соответствующие инструкции.

Автоматический (программный) сброс

Чтобы каждый раз перед загрузкой программы не требовалось нажимать кнопку сброса, Arduino Nano спроектирован таким образом, который позволяет осуществлять его сброс программно с подключенного компьютера. Один из выводов микросхемы FT232RL, участвующий в управлении потоком данных (DTR), соединен с выводом RESET микроконтроллера ATmega168 или ATmega328 через конденсатор номиналом 100 нФ. Когда на линии DTR появляется ноль, вывод RESET также переходит в низкий уровень на время, достаточное для перезагрузки микроконтроллера. Данная особенность используется для того, чтобы можно было прошивать микроконтроллер всего одним нажатием кнопки в среде программирования Ардуино. Такая архитектура позволяет уменьшить таймаут загрузчика, поскольку процесс прошивки всегда синхронизирован со спадом сигнала на линии DTR. Такая архитектура позволяет уменьшить таймаут загрузчика, поскольку процесс прошивки всегда синхронизирован со спадом сигнала на линии DTR.

Однако эта система может приводить и к другим последствиям. При подключении Arduino Nano к компьютерам, работающим на Mac OS X или Linux, его микроконтроллер будет сбрасываться при каждом соединении программного обеспечения с платой. После сброса на Arduino Nano активизируется загрузчик на время около полсекунды. Несмотря на то, что загрузчик запрограммирован игнорировать посторонние данные (т.е. все данные, не касающиеся процесса прошивки новой программы), он может перехватить несколько первых байт данных из посылки, отправляемой плате сразу после установки соединения. Соответственно, если в программе, работающей на Ардуино, предусмотрено получение от компьютера каких-либо настроек или других данных при первом запуске, убедитесь, что программное обеспечение, с которым взаимодействует Ардуино, осуществляет отправку спустя секунду после установки соединения.

Плата Arduino Nano — аналог флагманской Uno в миниатюрном размере. На ней предусмотрено всё необходимое для удобной работы с микроконтроллером: 14 цифровых входов/выходов (6 из них могут использоваться в качестве ШИМ-выходов), 6 аналоговых входов, кварцевый резонатор на 16 МГц, разъём Mini-USB, разъём питания, разъём для внутрисхемного программирования (ICSP) и кнопка сброса.


Видеообзор

Подключение и настройка

Для запуска платформы скачайте и установите на компьютер интегрированную среду разработки Arduino IDE.

При выборе платформы выбирайте Arduino Nano.

Если всё получилось — можете смело переходить к экспериментам.

Элементы платы


Микроконтроллер ATmega328P

Микросхема FT232R

Микросхема FTDI FT232R обеспечивает связь микроконтроллера ATmega328P с USB-портом компьютера. При подключении к компьютеру Nano определяется как виртуальный COM-порт.

USB-UART преобразователь общается с микроконтроллером ATmega328P по интерфейсу UART через пины 0(RX) и 1(TX) . Рекомендуем не использовать эти контакты в своём проекте.

Светодиодная индикация

Имя светодиода Назначение
RX и TX Мигают при обмене данными между Arduino Nano и ПК.
L Пользовательский светодиод подключённый к 13 пину микроконтроллера. При высоком уровне светодиод включается, при низком – выключается.
ON Наличие питания на Arduino Nano.

Разъём Mini-USB

Разъём Mini-USB предназначен для прошивки платформы с помощью компьютера.

Регулятор напряжения 5 В

Линейный понижающий регулятор напряжения LM1117MPX-5.0 с выходом 5 вольт обеспечивает питание микроконтроллера ATmega328P и другой логики платформы. Максимальный выходной ток составляет 800 мА.

ICSP-разъём для ATmega328

ICSP-разъём предназначен для загрузки прошивки в микроконтроллер ATmega328 через программатор.

Также через контакты ICSP Nano общается с платами расширения по интерфейсу SPI.

На плате используется чип FTDI FT232RL для USB-Serial преобразования и применяется mini-USB кабель для связи с ардуино вместо стандартного. Связь с различными устройствами обеспечивают UART, I2C и SPI интерфейсы.

Характеристики Arduino Nano V3.x ATmega328

Arduino Nano V3.0 FT232RL FTDI - вид сверху

Arduino Nano V3.0 FT232RL FTDI - вид снизу

Микроконтроллер ATmega328P
Рабочее напряжение 5 В
Напряжение питания (рекомендуемое) 7-12 В
Напряжение питания (предельное) 6-20В
Цифровые входы/выходы 14 (6 из которых могут использоваться как выходы ШИМ)
Аналоговые входы 8
ШИМ (PWM) пины
6
Постоянный ток через вход/выход 40 мА
Максимальный выходной ток вывода 3.3V 50 мА
Flash-память 32 Кб из которых 2 Кб используются загрузчиком
SRAM 2 Кб
EEPROM 1 Кб
Тактовая частота 16 МГц
Встроенный светодиод 13
Длина 45.0 мм
Ширина 18.0 мм
Вес 7 г

Принципиальная схема

Arduino Nano Rev3.0/Rev3.2/V3.0 - Принципиальная схема

Характеристики Arduino Nano V2.3 ATmega168PA

Микроконтроллер ATmega168PA
Рабочее напряжение 5 В
Напряжение питания (рекомендуемое) 7-12 В
Напряжение питания (предельное) 6-20 В
Цифровые входы/выходы 14 (6 из которых могут использоваться как выходы ШИМ)
Аналоговые входы 8
ШИМ (PWM) пины
6
Постоянный ток через вход/выход 40 мА
Максимальный выходной ток вывода 3.3V 50 мА
Flash-память 16 Кб из которых 2 Кб используются загрузчиком
SRAM 1 Кб
EEPROM 512 байт
Тактовая частота 16 МГц
Встроенный светодиод 13
Длина 42.0 мм
Ширина 18.5 мм
Вес 7 г

Принципиальная схема

Arduino Nano V2.3 - Принципиальная схема

Arduino Nano CH340G V3.0

Arduino Nano CH340G V3.0 - вид сверху

Этот вариант Ардуино-контроллера является миниатюрной версией Arduino UNO. Его 30 выводов полностью повторяют выводы UNO и имеют два дополнительных налоговых входа А6 и А7. USB-TTL мост CH340G и USB-mini разъем позволяют проводить полноценную отладку непосредственно из среды разработки. USB-мост CH340G требует установки на компьютер драйвера, который можно скачать здесь.

Arduino Nano CH340G Rev3 - вид снизу

Благодаря интерфейсу USB-UART реализован на базе микросхемы CH340G, данная версия Arduino Nano сильно дешевле, чем её аналог на базе микросхемы FT232RL.

Arduino Nano CH340G Rev3 - USB-TTL мост CH340G

Описание элементов платы Arduino Nano V3

Описание элементов платы Arduino Nano V3.0

Описание пинов/Распиновка Arduino Nano

Arduino Nano V3.x - Описание пинов (Распиновка)

Каждый из 14 цифровых выводов Nano, используя функции pinMode() , digitalWrite() , и digitalRead() , может настраиваться как вход или выход. Выводы работают при напряжении 5 В. Каждый вывод имеет нагрузочный резистор 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина: 0 (RX) и 1 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы подключены к соответствующим выводам микросхемы последовательной шины FTDI USB-to-TTL.
  • Внешнее прерывание: 2 и 3. Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции attachInterrupt() .
  • ШИМ: 3, 5, 6, 9, 10, и 11. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функции analogWrite() .
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Посредством данных выводов осуществляется связь SPI, которая, хотя и поддерживается аппаратной частью, не включена в язык Arduino.
  • LED: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.

На платформе Nano установлены 8 аналоговых входов, каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Стандартно выводы имеют диапазон измерения до 5 В относительно земли, тем не менее имеется возможность изменить верхний предел посредством функции analogReference() . Некоторые выводы имеют дополнительные функции:

  • I2C: A4 (SDA) и A5 (SCL). Посредством выводов осуществляется связь I2C (TWI). Для создания используется библиотека Wire.

Дополнительная пара выводов платформы:

  • AREF. Опорное напряжение для аналоговых входов. Используется с функцией analogReference() .
  • Reset. Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.

Питание Arduino Nano

Arduino Nano может получать питание через подключение Mini-B USB, или от нерегулируемого 6-20 В (вывод 30), или регулируемого 5 В (вывод 27), внешнего источника питания. Автоматически выбирается источник с самым высоким напряжением.

Микросхема FTDI FT232RL (или CH340G) получает питание, только если сама платформа запитана от USB. Таким образом при работе от внешнего источника (не USB), будет отсутствовать напряжение 3.3 В, генерируемое микросхемой FTDI FT232RL (или CH340G), при этом светодиоды RX и TX мигаю только при наличие сигнала высокого уровня на выводах 0 и 1.

Установка драйверов

В Windows драйверы будут установлены автоматически, при подключении платы, если вы использовали установщик. Если вы загрузили и распаковали Zip архив или по какой-то причине плата неправильно распознана, выполните приведенную ниже процедуру.

Выбор платы и порта

Откройте Arduino IDE. Из меню Tools>Board выбирается Arduino Nano.

Arduino Nano V3.0 - выбор микроконтроллера

Arduino Nano V3.0 - выбор COM порта

Если у вас модель Arduino Nano CH340G, то лучше использовать программатор Arduino as ISP.

Читайте также: