Архитектура процессора pentium в каком процессоре впервые реализованы два конвейера

Обновлено: 06.07.2024

Процессоры Pentium относятся к пятому поколению процессоров или к третьему поколению 32-разрядных процессоров. По своим основным архитектурным принципам они совместимы с процессорами 386 и 486. Но имеются существенные отличия, позволяющие говорить о новом поколении:

  • Суперскалярная архитектура процессора, то есть процессор имеет два пятиступенчатых параллельно работающих конвейера обработки информации, благодаря чему он способен одновременно выполнять две команды за один такт. Необходимо отметить, что преимущества такой архитектуры проявляются только в случае специальной компиляции программного обеспечения, позволяющей осуществлять параллельную обработку.
  • Внешняя 64-разрядная шина данных для повышения производительности. Это требует соответствующей организации памяти. Из-за такой особенности процессор иногда неправильно называют 64-разрядным (хотя внутри он все-таки остался 32-разрядным). Внешняя шина адреса процессора — 32-разрядная.
  • Применение технологии динамического предсказания ветвлений (переходов).
  • Раздельный кэш для команд и данных объемом 8 Кбайт каждый. Длина строки кэша — 32 байта. Оба кэша работают в режиме обратной записи.
  • Повышенная в 2—10 раз по сравнению с процессором 486 производительность встроенного математического сопроцессора. В нем применена восьмиступенчатая конвейеризация и специальные блоки сложения, умножения и деления, что позволяет выполнять операции с плавающей точкой за один такт процессора.
  • Сокращено время (число тактов) выполнения команд.
  • Предусмотрена возможность построения двухпроцессорных систем.
  • Введены средства управления энергопотреблением и тестирования.

Предсказание ветвлений позволяет продолжать выборку и декодирование потока команд после выборки команды ветвления (перехода), не дожидаясь проверки условия перехода. В прежних моделях в данном случае приходилось приостанавливать конвейер. Динамическое предсказание основывается на анализе предыдущей программы и накапливании статистики поведения. Исходя из этого анализа предсказывается наиболее вероятное условие каждого встречающегося в программе перехода.

В дополнение к базовой архитектуре 32-разрядных процессоров Pentium имеет набор регистров MSR (Model Specific Registers). В него входит группа тестовых регистров (TR1 — TR12), средства слежения за производительностью, регистры-фиксаторы адреса и данных цикла, вызвавшего срабатывание контроля машинной ошибки. Название этой группы регистров указывает на их уникальность для каждой модели процессоров Pentium.

Средства для слежения за производительностью (мониторинга производительности) включают в себя таймер реального времени и счетчики событий. Таймер представляет собой 64-разрядный счетчик, инкрементируемый с каждым тактом процессора. Два счетчика событий имеют разрядность по 40 бит и программируются на подсчет событий различных классов, связанных с шинными операциями, исполнением команд, связанных с работой кэша, контролем точек останова и т.д. Сравнивая состояния таймера и счетчиков событий, можно сделать вывод о производительности процессора.

Тестовые регистры позволяют управлять большинством функциональных узлов процессора, обеспечивая возможность подробного тестирования их работоспособности. Специальные биты регистра TR12 позволяют отключить новые архитектурные свойства (предсказание и трассировку ветвлений, параллельное выполнение инструкций), а также работу первичного кэша.

Средства для построения двухпроцессорных систем позволяют на одной локальной шине устанавливать два процессора с объединением почти всех одноименных выводов. Это дает возможность использовать симметричную мультипроцессорную обработку (SMP — Symmetric Multi-Processing) или строить функционально избыточные системы (FRC — Functional Redundancy Checking).

В режиме SMP каждый процессор выполняет свою задачу, порученную ему операционной системой, что поддерживается такими системами, как Novell NetWare, Windows NT, Unix. Оба процессора разделяют общие ресурсы компьютера, включая память и устройства ввода/вывода. В каждый момент шиной управляет один процессор, по определенным правилам они меняются ролями. В идеальном случае производительность системы увеличивается вдвое (без учета обращений к шине и времени на переключение процессоров).




В конфигурации FRC два процессора выступают как один логический процессор. Основной процессор (Master) работает в обычном однопроцессорном режиме. Проверочный процессор (Checker) выполняет все те же операции внутри себя, не управляя внешней шиной, и сравнивает сигналы основного процессора с теми, которые генерирует сам. В случае несовпадения формируется сигнал ошибки, обрабатываемый как прерывание. То есть в данном случае увеличивается надежность системы в целом (в идеале — вдвое).

Развитием Pentium стало добавление технологии MMX, рассчитанной на мультимедийное, графическое и коммуникационное применение. Основная идея ММХ заключается в одновременной обработке нескольких элементов данных за одну команду (SIMD, Single Instruction — Mutiple Data). Расширение ММХ использует новые типы упакованных 64-битных данных:

  • упакованные байты — восемь байт;
  • упакованные слова — четыре слова;
  • упакованные двойные слова (два двойных слова);
  • учетверенное слово (одно слово).

Эти типы данных могут обрабатываться в восьми дополнительных 64-разрядных регистрах MMX0 — MMX7. В систему команд для поддержки MMX введено 57 дополнительных команд для одновременной обработки нескольких единиц данных (команды пересылки, арифметические, логические команды и команды преобразования форматов данных). Команды ММХ доступны из любого режима процессора.

Кроме того, в процессорах Pentium ММХ увеличен объем кэша данных и программ (до 16 Кбайт каждый), увеличено число ступеней конвейеров и введено еще несколько усовершенствований, повышающих производительность обычных (не мультимедийных) операций.

От процессора Pentium Pro принято отсчитывать шестое поколение процессоров. Pentium Pro по сравнению с Pentium имеет следующие усовершенствования:

  • Динамическое исполнение команд предполагает, что команды, не зависящие от результатов предыдущих операций, могут выполняться в измененном порядке (последующие раньше предыдущих), однако последовательность обмена с внешними устройствами (памятью и устройствами ввода/вывода) будет соответствовать программе. То есть процессор сам выбирает удобный ему порядок выполнения команд. Это позволяет повысить производительность процессора без увеличения тактовой частоты.
  • Архитектура двойной независимой шины повышает суммарную пропускную способность. Одна шина (системная) служит для обмена с основной памятью и устройствами ввода/вывода, а другая (локальная) предназначена только для обмена с вторичным кэшем (см. рис. 7.3).
  • В процессор введен кэш второго уровня объемом 256—512 Кбайт.
  • Возможно построение многопроцессорных систем (до четырех микропроцессоров).

Процессор Pentium II сочетает в себе архитектуру Pentium Pro с технологией ММХ.

Размер первичных кэшей данных и команд составляет 16 Кбайт, вторичного кэша — до 512 Кбайт. Кэш второго уровня несколько медленнее, чем кэш первого уровня, зато он имеет больший объем. Такая двухуровневая организация позволяет достигать компромисса между быстродействием кэш-памяти и ее объемом.

Шина адреса имеет 36 разрядов (то есть максимально допустимый объем памяти — 64 Гбайта).

Процессоры Pentium III и Pentium 4 отличаются значительно возросшей предельной тактовой частотой (до 3 ГГц у Pentium 4, а в перспективе и до 5 ГГц), увеличенным объемом кэша (от 512 Кбайт до нескольких мегабайт) и дальнейшим совершенствованием архитектуры Pentium. Размер внутреннего конвейера у Pentium 4 доведен до 20 ступеней.

Уже появились и полностью 64-разрядные процессоры. Правда, полное использование возможностей 64-разрядной архитектуры потребует существенного изменения программного обеспечения.

Надо отметить, что в составе персональных компьютеров практически никогда не используются все возможности процессоров семейства Pentium. Например, многопроцессорные системы встречаются достаточно редко, а объем системной памяти лишь иногда превышает 512 Мбайт.

Для портативных компьютеров были предложены упрощенные версии процессоров Pentium III и Pentium 4, продаваемые под маркой Celeron. Они отличаются уменьшенной тактовой частотой и сокращенным объемом кэша второго уровня. Их тактовая частота сейчас доходит до 2 ГГц. Надо учитывать, что рассеиваемая мощность процессора Celeron остается практически такой же, как у процессоров Pentium III и Pentium 4.

72-летний Citroen выглядит пугающе, но его все еще пытаются продать

72-летний Citroen выглядит пугающе, но его все еще пытаются продать

Баня, лыжи и конфеты: челябинские чиновники потратят миллион на выездной корпоратив

Баня, лыжи и конфеты: челябинские чиновники потратят миллион на выездной корпоратив

Как озвучить видеоролик: советы для новичков

Депутаты Госдумы готовят обращение в Росприроднадзор после видео с Басковым и испуганным тигрёнком

Депутаты Госдумы готовят обращение в Росприроднадзор после видео с Басковым и испуганным тигрёнком

20+ смешных пёсиков в сумках, которые очаровали каждого прохожего

20+ смешных пёсиков в сумках, которые очаровали каждого прохожего

Земля в иллюминаторе: экипаж миссии Inspiration4 поделился снимками из космоса

Земля в иллюминаторе: экипаж миссии Inspiration4 поделился снимками из космоса

Кожаный салон и перегородка между водителем и пассажирами: редкий лимузин ВАЗ-21109 «Консул»

Кожаный салон и перегородка между водителем и пассажирами: редкий лимузин ВАЗ-21109 «Консул»

Сколько платят гастарбайтерам в Катаре, где идет стройка к чемпионату мира по футболу

Сколько платят гастарбайтерам в Катаре, где идет стройка к чемпионату мира по футболу

Николай Гринько: он был лучшим папой Карло советского кино

Николай Гринько: он был лучшим папой Карло советского кино

Всё о работе в офисе: ни цветмета украсть, ни бухнуть в бытовке

Всё о работе в офисе: ни цветмета украсть, ни бухнуть в бытовке

Как быстро сложить одежду

Пошёл против системы: российский футболист попросил уменьшить ему зарплату

Пошёл против системы: российский футболист попросил уменьшить ему зарплату

Авария дня. Кадры страшного ДТП в Амурской области

Примеры классических будней сисадминов, над которыми мы смеялись всем офисом

Примеры классических будней сисадминов, над которыми мы смеялись всем офисом

Пьяный водитель BMW влетел в столб при попытке скрыться от румынской полиции

Пьяный водитель BMW влетел в столб при попытке скрыться от румынской полиции

Муж пришел с работы, а тут такое

Детей, чьи родители выступили против экспресс-тестов на коронавирус, не пустят в школу

Детей, чьи родители выступили против экспресс-тестов на коронавирус, не пустят в школу

Для душа и души: 25 оригинальных занавесок для ванной комнаты

Для душа и души: 25 оригинальных занавесок для ванной комнаты

В Подмосковье задержали нигерийца, притворявшегося американской медсестрой в Сирии

В Подмосковье задержали нигерийца, притворявшегося американской медсестрой в Сирии

В даркнете продается база видеозаписей со скрытых камер в российских отелях

В даркнете продается база видеозаписей со скрытых камер в российских отелях

Как сделать компас в домашних условиях?

"Скиньте с суперджета": Ксения Собчак осталась недовольна новым меню "Аэрофлота"

"Скиньте с суперджета": Ксения Собчак осталась недовольна новым меню "Аэрофлота"

К крымской чиновнице-матершиннице пришли следователи

К крымской чиновнице-матершиннице пришли следователи

Время, когда луна изгибалась от боли как раненая змея: грезы и реальность английских монахов

Время, когда луна изгибалась от боли как раненая змея: грезы и реальность английских монахов

Тайские мастера создали пикап Ford Ranger с «лицом» от Shelby Mustang

Тайские мастера создали пикап Ford Ranger с «лицом» от Shelby Mustang

Военный билет: как получить в 2021 году

30 неприятных открытий, сделанных после переезда в новый дом

30 неприятных открытий, сделанных после переезда в новый дом

Авария дня. В Казани пьяный водитель снес двух пешеходов

Авария дня. В Казани пьяный водитель снес двух пешеходов

Хотели оскорбить Россию, но чуть не получили по щам от боснийцев

Хотели оскорбить Россию, но чуть не получили по щам от боснийцев

Что такое хайп, простыми словами?

В Нидерландах поймали редкого "лимонного" сома

В Москве задержали блогеров, пробежавших с дымовыми шашками по патрульному автомобилю ДПС

В Москве задержали блогеров, пробежавших с дымовыми шашками по патрульному автомобилю ДПС

Трейлер фильма "Месть земли" (2021)

"QR-коды действительно нарушают Конституцию": Наталья Поклонская - о законопроектах властей

"QR-коды действительно нарушают Конституцию": Наталья Поклонская - о законопроектах властей

Поел и спрятался: ловля незваного и очень недовольного гостя

Поел и спрятался: ловля незваного и очень недовольного гостя

Чистое искусство: когда заставки вышли лучше сериалов

Чистое искусство: когда заставки вышли лучше сериалов

Голодный медведь зашел в магазин и напугал американку

Голодный медведь зашел в магазин и напугал американку

В Твери водитель не захотел ударить другой автомобиль и принял решение сбить пешехода

В Твери водитель не захотел ударить другой автомобиль и принял решение сбить пешехода

В 1995 году Intel выпустила на рынок микропроцессор Pentium Pro. Несмотря на название, он имел мало общего с обычным Pentium. Одним из главных нововведений в Pentium Pro стало то, что в нём инструкции x86 не исполнялись напрямую, а декодировались в последовательности простых внутренних микроопераций. Иными словами, Pentium Pro «внутри» был больше похож на современные ему RISC-процессоры, чем на предыдущие чипы семейства x86.

Подобная архитектура позволила Intel реализовать множество мер, которые привели к росту производительности. В частности, Pentium Pro стал первым x86-процессором, который получил внеочередное исполнение. При внеочередном исполнении микрооперации сначала поступают в буфер операций, где сортируются и отправляются в вычислительные блоки не в порядке поступления, а в порядке готовности к исполнению. Подобный подход позволил практически исключить простой вычислительных блоков процессора. Разрядность шины адреса была увеличена до 36 бит, что в сочетании с технологией PAE позволило увеличить максимальный объём оперативной памяти до 64 ГБ. (Впрочем, эта функциональность была реализована только в серверных наборах системной логики, к тому же максимальный объём памяти, доступной одному процессу, по-прежнему был равен 4 ГБ.) Также Pentium Pro получил встроенную кеш-память второго уровня объёмом от 256 кБ до 1 МБ, которая работала на полной тактовой частоте процессора. В результате, на момент выхода на рынок Pentium Pro стал самым быстрым в мире 32-битным микропроцессором, опередив разработанные альянсом AIM (Apple-IBM-Motorola) чипы PowerPC.

Изначально планировалось, что Pentium Pro полностью заменит Pentium, но этого не произошло как раз из-за уже упомянутой кеш-памяти. Оказалось, что выход годных микросхем быстрой памяти SRAM, способной работать на полной частоте процессора, невысок, поэтому Pentium Pro имел очень высокую себестоимость. В результате, наследником Pentium стал вышедший в 1997 году Pentium II, получивший набор инструкций MMX и кеш-память, работающую на половинной частоте процессора. Кроме того, в Pentium II была улучшена производительность при работе с 16-битным кодом (на тот момент это было важно, поскольку Windows 95 и Windows 98, по-прежнему, содержали большое количество 16-битного кода).

Pentium III Tualatin: самый быстрый Pentium III

В 1999 году на смену Pentium II пришёл Pentium III, который был практически идентичен ему архитектурно, но получил новый набор дополнительных инструкций, известный как SSE. Pentium III пережил несколько итераций, поздние чипы этого семейства имели тактовую частоту выше 1 ГГц и 512 кБ кеш-памяти, работавшей на полной частоте процессора.

«Сетевой взрыв»

Несмотря на успешность микроархитектуры P6 (лежавшей в основе Pentium Pro, Pentium II и Pentium III), Pentium 4 был построен по совсем другому принципу. Вместо сложного ядра с высоким IPC (Instructions Per Clock — количеством исполняемых инструкций на такт) и относительно невысокой тактовой частотой было решено перейти к более простому ядру с длинным конвеером и более низким IPC, но более высокой тактовой частотой. Если поздние процессоры Pentium III имели конвеер длиной 10 ступеней, то в Pentium 4 длина конвеера составляла от 20 до 31 ступени (в зависимости от версии чипа). Чтобы компенсировать низкую производительность процессорного ядра, целочисленные вычислительные блоки (ALU) внутри процессора работали на удвоенной тактовой частоте. Например, в процессоре Pentium 4 с частотой 3 ГГц блоки ALU работали на частоте 6 ГГц. Изначально планировалось, что процессоры с микроархитектурой NetBurst достигнут тактовой частоты 4 ГГц, но на деле частота 3.8 ГГц оказалась предельной.

Микроархитектуру NetBurst можно считать относительно неудачной, но на счету процессоров на её базе сразу несколько достижений: Pentium 4 стал первым x86-процессором, достигшим тактовой частоты 3 ГГц, и первым 64-битным x86-процессором Intel. Кроме того, на базе Pentium 4 был создан процессор Pentium D, который стал первым двухъядерным процессором Intel.

Pentium M и его потомки

Практически сразу после появления мобильных Pentium 4 стало понятно, что архитектура NetBurst, в силу высокого тепловыделения и энергопотребления, не подходит для ноутбуков. Поэтому в 2003 году появился процессор Pentium M, который, по сути, был усовершенствованной и осовремененной версией ядра P6. Этот процессор стал основой крайне успешной мобильной платформы Intel Centrino, которая включала в себя процессор, чипсет и беспроводный адаптер Intel. Именно платформа Centrino сделала возможным создание первых тонких и лёгких ноутбуков. На это же время пришлись усилия Intel по продвижению беспроводных сетей, в частности, в Украине под эгидой компании в середине 2000-х годов были реализованы проекты по построению сетей Wi-Fi в Киевском национальном университете им. Т. Г. Шевченко и международном аэропорту «Киев-Борисполь».

Samsung X10: один из первых тонких и легких ноутбуков на базе Centrino

В 2004-2005 годах стало понятно, что процессоры Pentium M обеспечивают более высокую производительность, чем настольные процессоры на базе микроархитектуры NetBurst. Именно поэтому использованные в них архитектурные решения легли в основу микроархитектуры Core, которая использовалась как в настольных, так и в мобильных процессорах. В 2006 году был выпущен первый настольный 4-ядерный процессор Intel — им стал Core 2 Extreme QX6700 с тактовой частотой 2.67 ГГц и 8 МБ кеш-памяти второго уровня.

От Core'ки до Core'ки

В 2008 году Intel представила бренд Core i7, под которым продавались топовые процессоры на базе новой микроархитектуры Nehalem. Эти процессоры получили новую системную шину, интегрированную графику, а также встроенные контроллеры памяти и шины PCIe. В 2009-2010 годах были также представлены бренды Core i5 и Core i3, а процессоры Core 2 и их производные вытеснены из всех ценовых сегментов.

В 2011 году на рынок вышли процессоры на базе архитектуры Sandy Bridge, в 2012 году была представлена усовершенствованная версия Sandy Bridge под названием Ivy Bridge, которая стала первым процессором Intel, использующим техпроцесс 22 нм и 3D-процессоры. В 2013 году были представлены процессоры Haswell, а в 2014 и 2015 годах — Broadwell. Процессоры Broadwell производятся по техпроцессу 14 нм. К ним относится, в том числе, процессор Core M, который имеет расчётное тепловыделение всего 4.5 Вт, что позволяет использовать его в устройствах с пассивным охлаждением.

Можно отметить, что темпы роста чистой производительности процессоров в последнее время несколько снизились: в принципе, даже процессоров Core 2 (не говоря уже о Core i7/i5 первого поколения) достаточно практически для любых задач. Это связано с тем, что производители уделяют больше внимания повышению энергоэффективности процессоров и такому параметру, как «производительность на ватт». В результате, современные ноутбуки, построенные на энергоэффективных процессорах Intel, работают от аккумулятора по 9-12 часов и при этом обеспечивают производительность, достаточную практически для любых задач. Ещё 3-4 года назад такое было невозможно.

Atom: нетбуки, планшеты, смартфоны.

Параллельно с высокопроизводительными процессорами Core компания Intel развивает и линейку энергоэффективных процессоров Atom. Они впервые появились в 2008 году в качестве процессоров для нетбуков (то есть, низкопроизводительных и дешёвых ноутбуков), но с тех пор нашли применение в качестве чипов для смартфонов и планшетов на базе операционных систем Android и Windows. По сути Atom, на сегодняшний день, является единственным конкурентом различных чипов на базе архитектуры ARM. В 2014 году было выпущено 46 миллионов планшетов на базе процессоров Atom.

Quark: меньше, чем Atom

Intel Galileo: плата для разработки с процессором Quark

Новейшим семейством процессоров Intel является линейка Quark. Это совсем простые процессоры, архитектурно близкие к оригинальному Pentium. Каждый процессор также включает все контроллеры, необходимые для построения законченного устройства. Эти процессоры предназначены, в первую очередь, для создания встроенных решений, объединённых в «интернет вещей». Для энтузиастов и разработчиков Intel выпускает платы Intel Galileo с процессорами Quark, эти платы совместимы с Arduino и могут использоваться для создания собственных проектов и выполнения различных задач по автоматизации.

Сегодня мы настолько привыкли к современным реалиям, что воспринимаем их как данность. Смартфон в нашем кармане или ноутбук в сумке кажется нам не чудом технологий, а чем-то обыденным. Но всё начиналось с крошечного чипа, содержащего 2300 транзисторов и работавшего на тактовой частоте 740 кГц. Иногда стоит оглянуться назад, чтобы оценить масштабы проделанного пути.

Викторина «50 лет закону Мура»

В этот раз мы предлагаем вам совершенно необычный конкурс, напоминающий закон Мура в действии. В течение двух недель мы проведем 5 викторин. По одной каждые три дня. И с каждым новым конкурсом количество разыгрываемых призов будет. удваиваться! Среди всех, кто правильно ответит на все вопросы этой викторины мы разыграем сразу шестнадцать памятных сувениров от компании Intel. Этот тур конкурса проводится с 26 по 28 апреля (включительно). Победитель будет выбран в результате жеребьевки. Его имя и правильные ответы викторины будут опубликованы не позднее 30 апреля. В конкурсе, традиционно, могут участвовать только жители Украины. И не могут — сотрудники компании Magnet и их родственники. Удачи и да пребудет с вами Сила!

Процессоры Pentium относятся к пятому поколению процессоров или к третьему поколению 32-разрядных процессоров. По своим основным архитектурным принципам они совместимы с процессорами 386 и 486. Но имеются существенные отличия, позволяющие говорить о новом поколении:

  • Суперскалярная архитектура процессора, то есть процессор имеет два пятиступенчатых параллельно работающих конвейера обработки информации, благодаря чему он способен одновременно выполнять две команды за один такт. Необходимо отметить, что преимущества такой архитектуры проявляются только в случае специальной компиляции программного обеспечения, позволяющей осуществлять параллельную обработку.
  • Внешняя 64-разрядная шина данных для повышения производительности. Это требует соответствующей организации памяти. Из-за такой особенности процессор иногда неправильно называют 64-разрядным (хотя внутри он все-таки остался 32-разрядным). Внешняя шина адреса процессора — 32-разрядная.
  • Применение технологии динамического предсказания ветвлений (переходов).
  • Раздельный кэш для команд и данных объемом 8 Кбайт каждый. Длина строки кэша — 32 байта. Оба кэша работают в режиме обратной записи.
  • Повышенная в 2—10 раз по сравнению с процессором 486 производительность встроенного математического сопроцессора. В нем применена восьмиступенчатая конвейеризация и специальные блоки сложения, умножения и деления, что позволяет выполнять операции с плавающей точкой за один такт процессора.
  • Сокращено время (число тактов) выполнения команд.
  • Предусмотрена возможность построения двухпроцессорных систем.
  • Введены средства управления энергопотреблением и тестирования.

Предсказание ветвлений позволяет продолжать выборку и декодирование потока команд после выборки команды ветвления (перехода), не дожидаясь проверки условия перехода. В прежних моделях в данном случае приходилось приостанавливать конвейер. Динамическое предсказание основывается на анализе предыдущей программы и накапливании статистики поведения. Исходя из этого анализа предсказывается наиболее вероятное условие каждого встречающегося в программе перехода.

В дополнение к базовой архитектуре 32-разрядных процессоров Pentium имеет набор регистров MSR (Model Specific Registers). В него входит группа тестовых регистров (TR1 — TR12), средства слежения за производительностью, регистры-фиксаторы адреса и данных цикла, вызвавшего срабатывание контроля машинной ошибки. Название этой группы регистров указывает на их уникальность для каждой модели процессоров Pentium.

Средства для слежения за производительностью (мониторинга производительности) включают в себя таймер реального времени и счетчики событий. Таймер представляет собой 64-разрядный счетчик, инкрементируемый с каждым тактом процессора. Два счетчика событий имеют разрядность по 40 бит и программируются на подсчет событий различных классов, связанных с шинными операциями, исполнением команд, связанных с работой кэша, контролем точек останова и т.д. Сравнивая состояния таймера и счетчиков событий, можно сделать вывод о производительности процессора.

Тестовые регистры позволяют управлять большинством функциональных узлов процессора, обеспечивая возможность подробного тестирования их работоспособности. Специальные биты регистра TR12 позволяют отключить новые архитектурные свойства (предсказание и трассировку ветвлений, параллельное выполнение инструкций), а также работу первичного кэша.

Средства для построения двухпроцессорных систем позволяют на одной локальной шине устанавливать два процессора с объединением почти всех одноименных выводов. Это дает возможность использовать симметричную мультипроцессорную обработку (SMP — Symmetric Multi-Processing) или строить функционально избыточные системы (FRC — Functional Redundancy Checking).

В режиме SMP каждый процессор выполняет свою задачу, порученную ему операционной системой, что поддерживается такими системами, как Novell NetWare, Windows NT, Unix. Оба процессора разделяют общие ресурсы компьютера, включая память и устройства ввода/вывода. В каждый момент шиной управляет один процессор, по определенным правилам они меняются ролями. В идеальном случае производительность системы увеличивается вдвое (без учета обращений к шине и времени на переключение процессоров).




В конфигурации FRC два процессора выступают как один логический процессор. Основной процессор (Master) работает в обычном однопроцессорном режиме. Проверочный процессор (Checker) выполняет все те же операции внутри себя, не управляя внешней шиной, и сравнивает сигналы основного процессора с теми, которые генерирует сам. В случае несовпадения формируется сигнал ошибки, обрабатываемый как прерывание. То есть в данном случае увеличивается надежность системы в целом (в идеале — вдвое).

Развитием Pentium стало добавление технологии MMX, рассчитанной на мультимедийное, графическое и коммуникационное применение. Основная идея ММХ заключается в одновременной обработке нескольких элементов данных за одну команду (SIMD, Single Instruction — Mutiple Data). Расширение ММХ использует новые типы упакованных 64-битных данных:

  • упакованные байты — восемь байт;
  • упакованные слова — четыре слова;
  • упакованные двойные слова (два двойных слова);
  • учетверенное слово (одно слово).

Эти типы данных могут обрабатываться в восьми дополнительных 64-разрядных регистрах MMX0 — MMX7. В систему команд для поддержки MMX введено 57 дополнительных команд для одновременной обработки нескольких единиц данных (команды пересылки, арифметические, логические команды и команды преобразования форматов данных). Команды ММХ доступны из любого режима процессора.

Кроме того, в процессорах Pentium ММХ увеличен объем кэша данных и программ (до 16 Кбайт каждый), увеличено число ступеней конвейеров и введено еще несколько усовершенствований, повышающих производительность обычных (не мультимедийных) операций.

От процессора Pentium Pro принято отсчитывать шестое поколение процессоров. Pentium Pro по сравнению с Pentium имеет следующие усовершенствования:

  • Динамическое исполнение команд предполагает, что команды, не зависящие от результатов предыдущих операций, могут выполняться в измененном порядке (последующие раньше предыдущих), однако последовательность обмена с внешними устройствами (памятью и устройствами ввода/вывода) будет соответствовать программе. То есть процессор сам выбирает удобный ему порядок выполнения команд. Это позволяет повысить производительность процессора без увеличения тактовой частоты.
  • Архитектура двойной независимой шины повышает суммарную пропускную способность. Одна шина (системная) служит для обмена с основной памятью и устройствами ввода/вывода, а другая (локальная) предназначена только для обмена с вторичным кэшем (см. рис. 7.3).
  • В процессор введен кэш второго уровня объемом 256—512 Кбайт.
  • Возможно построение многопроцессорных систем (до четырех микропроцессоров).

Процессор Pentium II сочетает в себе архитектуру Pentium Pro с технологией ММХ.

Размер первичных кэшей данных и команд составляет 16 Кбайт, вторичного кэша — до 512 Кбайт. Кэш второго уровня несколько медленнее, чем кэш первого уровня, зато он имеет больший объем. Такая двухуровневая организация позволяет достигать компромисса между быстродействием кэш-памяти и ее объемом.

Шина адреса имеет 36 разрядов (то есть максимально допустимый объем памяти — 64 Гбайта).

Процессоры Pentium III и Pentium 4 отличаются значительно возросшей предельной тактовой частотой (до 3 ГГц у Pentium 4, а в перспективе и до 5 ГГц), увеличенным объемом кэша (от 512 Кбайт до нескольких мегабайт) и дальнейшим совершенствованием архитектуры Pentium. Размер внутреннего конвейера у Pentium 4 доведен до 20 ступеней.

Уже появились и полностью 64-разрядные процессоры. Правда, полное использование возможностей 64-разрядной архитектуры потребует существенного изменения программного обеспечения.

Надо отметить, что в составе персональных компьютеров практически никогда не используются все возможности процессоров семейства Pentium. Например, многопроцессорные системы встречаются достаточно редко, а объем системной памяти лишь иногда превышает 512 Мбайт.

Для портативных компьютеров были предложены упрощенные версии процессоров Pentium III и Pentium 4, продаваемые под маркой Celeron. Они отличаются уменьшенной тактовой частотой и сокращенным объемом кэша второго уровня. Их тактовая частота сейчас доходит до 2 ГГц. Надо учитывать, что рассеиваемая мощность процессора Celeron остается практически такой же, как у процессоров Pentium III и Pentium 4.

Читайте также: