Чем заменить диод шоттки в блоке питания

Обновлено: 04.07.2024

Всем ПРИВЕТ .
Вот подумал и составил краткий список диодов, применяемых в блоках питания.
В любимом БП заменить пару диодов ( если позволяет габаритная мощность силового трансформатора) и мощность БП с 250 ватт станет 300. А 300 ватт в 350.

ДИОДЫ t=25 град.
Schottky TO-220 SBL2040CT 10A x 2 =20A 40V Vf=0.6V при 10A
Schottky TO-247 S30D40 15A x 2 =30A 40V Vf=0.55V при 15A
ultrafast TO-220 SF1004G 5A x 2 =10A 200V Vf=0.97V при 5A
ultrafast TO-220 F16C20C 8A x 2 =16A 200V Vf=1.3V при 8A
ultrafast SR504 5A 40V Vf=0.57
Schottky TO-247 40CPQ060 20A x 2 =40A 60V Vf=0.49V при 20A
Schottky TO-247 STPS40L45C 20A x 2 =40A 45V Vf=0.49V
ultrafast TO-247 SBL4040PT 20A x 2 =40A 45V Vf=0.58V при 20A
Schottky TO-220 63CTQ100 30A x 2 =60A 100 Vf=0.69V при 30A
Schottky TO-220 MBR2545CT 15A x 2 =30A 45V Vf=0.65V при 15A
Schottky TO-247 S60D40 30A x 2 =60A 40-60V Vf=0.65V при 30A
Schottky TO-247 30CPQ150 15A x 2 =30A 150V Vf=1V при 15A
Schottky TO-220 MBRP3045N 15A x 2 =30A 45V Vf=0.65V при 15A
Schottky TO-220 S20C60 10A x 2 =20A 30-60V Vf=0.55V при 10A
Schottky TO-247 SBL3040PT 15A x 2 =30A 30-40V Vf=0.55V при 15A
Schottky TO-247 SBL4040PT 20A x 2 =40A 30-40V Vf=0.58V при 20A
UltraFast TO-220 U20C20C 10A x 2 =20A 50-200V Vf=0.97V при 10A

Fast круглые FR101-107 1A \ 30A 50-1000V Vf=1.3V
Fast FR151-157 1.5A \ 50A 50-1000v Vf=1.3V
Fast FR201-207 2A \ 70A 50-1000V Vf=1.3V
Fast PR1001-1005 1A \ 30A 50-600V Vf=1.2V
Fast PR1501-1507G 1.5A \ 50A 50-1000V Vf=1.3V
Михаил.

ЗЫ.
О подборе диодов-------
-------- Иногда позникает трудность, какой диод выбрать или чем заменить диод. Как подобрать диод, по каким параметрам сравнивать диоды.
Вроде, всё просто, надо ставить такой-же или лучьше по параметрам. Параметры диодов указаны для синусоидального тока и при работе в импульсных схемах параметры чуть ниже по току и напряжению. Далее, указан общий ток обеих диодов, а на самом деле пол периода через один диод и другой пол периода через второй диод, 10А - 1диод + 10А - 2диод = равно 10А общего тока в нагрузку, а на диоде написано 20А суммарного тока. Следующий параметр, падение напряжения на открытом диоде, обозначается - Vf , P W = I A умножить на U Vf. Из этой формулы можно узнать следующее, какая мощность выделится на диоде при протикании по нему выбранного тока. При включении 2х диодов параллельно ток протекающий может быть увеличен, а внутреннее сопротивление уменьшается и падение напряжения на открытом диоде тоже уменьшается, рассеиваемая мощность на диоде тоже уменьшается. Диоды меньше греются.
Ребята пишут: spectre Apple писал(а):
3. Параллелить диоды шоттки можно. Если радиатор позволяет - прикручивайте с обратной стороны вторую сборку, если нет под рукой более мощной. Так как прямое падение на переходе диода шотки зависит от тока, и чем больше ток тем больше и падение напряжения причем зависимость там весьма нелинейная, то выпрямляя 30А двумя диодами вместо одного получим меньше тепла в воздух. Посему я бы сказал что не просто можно, а часто даже полезно.
И еще нюанс по поводу параленьных диодов, паралелить можно только одинаковые, а лучше еще и из одной партии, иначе из за неодинаковости параметров может стать только хуже. По этой же причине два шотки по 15А не равны одному на 30А, расчитывать надо на 20 ну 25 ампер от силы, причем лучше таки на 20. Иначе надежность работы такой связки будет оставлять желать много лучшего.

Мощьность блока как правило ограничивает как раз ток выходных диодов и габаритная мощьность транса.
А трансы в младшие модели 300-350w в последнее время часто ставят от более мощьных собратьев, так что поставив шотки расчитанные на бОльший ток, а лучше довесив параленьно к тому что уже есть еще один, вполне можно лишних 50-100w из блока "достать" совершенно безболезненно.


Что касается транзисторов, даже банальные 13007 допускают ток коллектора 8A(16A импульсный), если схема раскачки ровная можно 500w c них можно снимать без напряга. Про всякие 13009, 2SC4140 и т.д. я вобще молчу, последние, например, стоят блоках Sweex 650w и даже не пыхтят при полной нагрузке.
А емкости дело наживное, их довесить или заменить на большие проблеммы вобще не стоит.

хочу добавить к вышесказанному - на дешёвых БП по 12 вольтам китайцы иногда такое Г. ставят, что хоть стой, хоть падай при заявленных на БП 10 Амперах по 12 в. берёш 5-6 (мощными резисторами) и из диодов дым. причём секунд этак через 20-30. меняеш на нормальную сборку Шотке - 10 Ампер спокойно.

p.s. И это на БП под пень-4 с дополнительным разъёмом по 12 в. .

Ну дык это давняя уже история, я помню выколупал из какого-то нонейма вобще пару дискретных диодов FR302 которые по +12v стояли
Сча правда китайцы более-менее испавились, в последнених JNC, например, стоит по +5 сборка на 20A, +3.3 такая-же, +12 сборка 16A 40V. Не образец для подражания конечно но уже сносно.

BTW, в первом посте, IMHO, имеем фактическую ошибку: т.к. каждый из диодов в сборке работает в своем полупериоде, то максимальный ток для сборки S30D40 (к примеру) будет не 2х15А, а 15А или 15Ах1.4 (в смысле, на корень из двух) - тут уж пусть народ, более разбирающийся в ТЦИС, свое веское слово скажет.

- Ситчик веселенький есть.
- Приезжайте, обхохочетесь.

BTW, в первом посте, IMHO, имеем фактическую ошибку: т.к. каждый из диодов в сборке работает в своем полупериоде, то максимальный ток для сборки S30D40 (к примеру) будет не 2х15А, а 15А или 15Ах1.4 (в смысле, на корень из двух) - тут уж пусть народ, более разбирающийся в ТЦИС, свое веское слово скажет.

Выпрямляем не синусоиду, так что на корень из двух множить неправильно.
с одной стороны, даже не 15х1.4 , а 15 /1.4 - если учитывать скважность выпрямляемых импульсов (а то и 15/2 ) - зависит от режима работы БП (не забываем, что у нас напряжением регулирует ШИМ)
с другой стороны - 15х1.5 (а то и 15х2) - если попытаться учесть коэф-т трансформации фильтрующего дросселя (сорри, если с терминами путаю, но где-то так)

(естественно, вышесказанное ИМХО)

Всем привет.
По вопросу о диодах, фирмы указывают сумарный ток обоих диодов, так звучит красивше.
Вот, к примеру, что Я надыбал на просторах Интернета.

Не согласен. Именно потому, что диоды работают по очереди.
Производитель диодов даёт максимальный непрерывный постоянный
ток через сборку, либо максимальный выпрямленный ток. Ток
через каждый диод сборки при поочерёдной их работе равен току
одного диода. Причины отказов выпрямителей надо искать не в
этом. Возможно, плохой теплоотвод, выбросы обратного
напряжения или броски тока при зарядке емкостей (при плохом
дросселе), но никак не превышение предельного тока ---
производители блоков питания насчёт максимального тока лапшу
не вешают. А вот с тем, что запас по току иметь желательно,
согласен --- хуже от этого никому не будет.

Илья RW3FY писал: <<Не согласен. Именно потому, что диоды
работают по очереди. >>

По поводу тока через диодную сборку- читаем технический
паспорт (datasheets) на S30D40C фирмы MOSPEC – эти сборки
стоят в каждом втором современном блоке питания в цепях на
токи до 35 ампер. В паспорте записано дословно: Average
Recttifier Forward Current – 15amp, Total Device – 30 Amp. Я
перевожу это как “Средний выпрямленный прямой ток – 15 ампер,
всего на прибор – 30 ампер” и понимаю так, что средний ток
через ОДИН диод 15 ампер, через два диода – 30 ампер. В
выпрямителе каждое мгновение работает только один диод.
Согласен, что если полпериода через диод проходит ток 30А,
полпериода диод заперт, получаем средний ток через диод 15
ампер. Как будто все получается, хотя и не ясно, чем
руководствовался производитель, накладывая ограничения –
выделением тепла или плотностью проходящего тока. Но. Дальше
в техпаспорте сказано, что предельный ПИКОВЫЙ повторяющийся
ток равен 30 амперам при частоте 20кГц. Но ведь это НЕ средний
ток, при среднем токе 30 ампер пиковый в выпрямителе будет
минимум в 5 раз больше! То есть 150 ампер. Ибо конденсатор
выпрямителя заряжается только на пике периода. Да и частота в
преобразователе будет значительно выше. То есть картина
выглядит совершенно однозначно – диоды используются в режимах,
заметно превышающих их паспортные данные, и восславим
производителей диодов, догадавшихся выпускать их со
значительным запасом. А блоки питания при токах, близких к
предельным, работают в критическом режиме. В том числе и
потому не более 20% БП способны обеспечит свои паспортные токи
и мощности, написанные на бумажке на корпусе БП, это проверяли
многие- читайте соответствующие обзоры.

Илья RW3FY
Это надо понимать как рекомендацию производителю ставить в
выпрямитель дроссель, основное назначение которого --- как раз
исключить перегрузку диодов током заряда емкостей. Я не могу
похвастаться тем, что вскрывал сотни разных БП, но в тех, что
вскрывать мне доводилось, я никогда не видел, чтобы ёмкость
подключалась к сборке напрямую --- везде только через довольно
массивный дроссель. А он, как известно, как раз и обеспечивает
равномерность тока зарядки, без пиковых нагрузок на диоды.
Если есть и такие БП, где китайцы на дросселе сэкономили ---
от их использования лучше вообще отказаться. Частота
преобразования --- 30. 60 кГц. Обычно производители элементов
дают характеристики при заведомо низких частотах из-за того,
что так удобнее мерить. Зависимость предельных параметров от
частоты, полагаю, нелинейная. Поэтому надо смотреть, скорее,
не на соотношение 20 кГц и 60 кГц, а на соотношение 60 кГц с
максимальной рабочей частотой сборки.
.
2. - что бы не быть голословным: даташит на 30CTQ060.
Цитата:
Absolute Maximum Ratings Parameters Values Units Conditions
Max. Average Forward (Per Leg) 15 A 50% duty cycle @ TC = 105°C, rectangular wave form Current * See Fig. 5 (Per Device) 30
Max. Peak One Cycle Non-Repetitive 1000 A 5µs Sine or 3µs Rect. pulse
Surge Current (Per Leg) * See Fig. 7 260 10ms Sine or 6ms Rect. pulse

а если мы посмотрим рис.5 (как рекомендует производитель), то увидим, что кроме графика для тока в 15А через диод,
есть график и для постоянного тока, где Imax = 22A.
рис 6. (Forward Power Loss Characteristics (Per Leg))более интересен для нас. На нём видна зависимость среднего тока через диод от скважности. при скважности 0,33 (как, например, в моём БП) средний ток 12-13А.
отсюда и получается, что сборка ХХХ2040х держит примерно 18А.
.
Откуда-то дернул и не помню, кто это написал, извините. найду - укажу, для дела важно.

Теперь о своём, Я указывал данные по источнику, как приведено в даташите на все эти диоды.
Я вставил в свой любимый БП по 2а диода S30D40 в цепь +3.3в и +5в, а по +12в поставил 63CTQ100.
Поставил кондюки 3300.0 во все цепи и зашунтировал керамикой по 10.0 Мкф. Куплю 470.0х400в или
680.0х400в и заменю 470.0х200в, вот тогда будет хорошо на душе. Уменьшил обороты вентиля.
И теперь тишина и прохладный ветерок из БП идёт.
S30D40
В каждый полупериод (импульс) через 1 диод сборки проходит ток нагрузки = 15А ПООЧЕРЕДИ и теперь
всё зависит от температуры сборки, чем лучьше охлаждение, тем больший ток можно снять со сборки.
Или поставить 2е сборки, и тогда ток будет равен 2х15А = 30 Ампер ПООЧЕРЕДИ на нагрузку, и греться
не будут сильно. IMHO.
Михаил.

Как показывает текущая статистика отказов современных системных блоков питания, наибольшее количество неисправностей возникает цепях источников питания. Отказы силовых транзисторных ключей (наиболее типовая неисправность блоков питания предыдущих поколений) время случаются крайне редко, что является показателем тех успехов, которые были достигнуты пятилетие производителями силовой полупроводниковой электроники. Одним проблематичных узлов современных блоков питания становятся вторичные выпрямители Шоттки, что обусловлено большими значениями выходных токов блока питания. Именно высокая частота отказов диодов Шоттки стала основанием для появления этой публикации нашего журнала.

Диод Шоттки (назван немецкого физика Baльтера Шоттки) – полупроводниковый диод падением напряжения при прямом включении. Диоды Шоттки используют переход металл-полупроводник барьера Шоттки (вместо перехода, как диодов). Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено (MBR40250 большинство диодов Шоттки применяется цепях при обратном напряжении порядка единиц

Достоинства диодов Шоттки

время как обычные кремниевые диоды имеют прямое падение напряжения около 0.6 – 0.7 В, применение диодов Шоттки позволяет снизить это значение до 0.2 – 0.4 малое прямое падение напряжения присуще только диодам Шоттки обратным напряжением порядка десятков вольт. обратных напряжениях, прямое падение становится сравнимым параметром кремниевых диодов, что ограничивает применение диодов Шоттки низковольтными цепями. Например, для силового диода Шоттки 30Q150 возможным обратным напряжением (150 В) при прямом токе падение напряжение нормируется от 0.75 В (T = 125°C) до 1.07 В (T = −55°C).

Барьер Шоттки также имеет меньшую электрическую ёмкость перехода, что позволяет заметно повысить рабочую частоту диода. используется микросхемах, где диодами Шоттки шунтируются переходы транзисторов логических элементов. электронике малая ёмкость перехода короткое время восстановления) позволяет строить выпрямители, работающие кГц Например, диод MBR4015 (15 В, оптимизированный под высокочастотное выпрямление, нормирован для работы при dV/dt до

Благодаря лучшим временным характеристикам емкостям перехода, выпрямители Шоттки отличаются диодных выпрямителей пониженным уровнем помех, что делает предпочтительными для применения блоках питания аналоговой аппаратуры.

Недостатки диодов Шоттки

при кратковременном превышении максимального обратного напряжения, диод Шоттки необратимо выходит диодов, которые переходят обратного пробоя, условии непревышения рассеиваемой максимальной мощности, после падения напряжения диод полностью восстанавливает свои свойства.

диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими температуры кристалла. 30Q150 обратный ток при максимальном обратном напряжении изменяется от 0.12 мА при +25°C до 6.0 мА при +125°C. диодов ТО-220 обратный ток может превышать величину миллиампер до при +125°C). условиях теплоотвода положительная обратная связь по теплу Шоттки приводит катастрофическому перегреву.

характеристика барьера Шоттки имеет ярко выраженный несимметричный вид. прямых смещений ток экспоненциально растёт приложенного напряжения. обратных смещений ток случаях, при прямом смещении, ток Шоттки обусловлен основными носителями электронами.

shotki 1

По этой причине диоды барьера Шоттки являются быстродействующими приборами, поскольку отсутствуют рекомбинационные процессы. Несимметричность характеристики барьера Шоттки является типичной для барьерных структур. Зависимость тока структурах обусловлена изменением числа носителей, принимающих участие зарядопереноса. напряжения заключается числа электронов, переходящих части барьерной структуры

Диоды Шоттки питания

В системных блоках питания, диоды Шоттки используются для выпрямления тока каналов +3.3В и +5В, а, как известно, величина выходных токов этих каналов составляет десятки ампер, что приводит очень серьезно относиться быстродействия выпрямителей потерь. Решение этих вопросов способно значительно увеличить КПД источников питания надежность работы силовых транзисторов первичной части блока питания.

Итак, для уменьшения динамических коммутационных потерь режима короткого замыкания при переключении, сильноточных каналах (+3.3В и +5В), где эти потери наиболее значительны, выпрямительных элементов используются диоды Шоттки. Применение диодов Шоттки каналах обусловлено следующими соображениями:

1) Диод Шоттки является практически безынерционным прибором малым временем восстановления обратного сопротивления, что приводит обратного вторичного тока и броска тока через коллекторы силовых транзисторов первичной части переключения диода. степени снижает нагрузку транзисторы, и, как результат, увеличивает надежность блока питания.

2) Прямое падение напряжения Шоки также очень мало, что при величине тока обеспечивает значительный выигрыш

Так как блоках питания очень мощным становится напряжения +12В, то применение диодов Шоттки канале также значительный энергетический эффект, однако +12В нецелесообразно. что при обратном напряжении свыше 50В (а +12В обратное напряжение может достигать величины и 60В) диоды Шоттки начинают плохо переключаться (слишком долго этом возникают значительные обратные токи утечки), что приводит всех преимуществ Поэтому +12В используются быстродействующие кремниевые импульсные диоды. сейчас выпускаются диоды Шоттки и обратным напряжением, но питания считается нецелесообразным по разным причинам, числе плана. правилах имеются исключения, поэтому блоках питания можно встретить диодные сборки Шоттки и +12В.

В современных системных блоках питания компьютеров диоды Шоттки представляют собой, как правило, диодные сборки диодов (диодные полумосты), что однозначно повышает технологичность блоков питания, улучшает условия охлаждения диодов. Использование отдельных диодов а сборок, является сейчас показателем низкокачественного блока питания.

shotki 6

Диодные сборки выпускается, типах корпусов

diodishotki 2

- TO-220 (менее мощные сборки токами до иногда до 25-30А);

- TO-247 (более мощные сборки токами

- TO-3P (мощные сборки).

Электрическая схема диодной сборки Шоттки представлены на

diodishotki 4

Электрические характеристики диодных сборок, наиболее часто используемых системных блоках питания представлены

Взаимозаменяемость диодных сборок определяется, исходя из Естественно, что при невозможности использовать диодную сборку характеристиками, лучше проводить замену значениями тока случае гарантировать стабильную работу блока питания будет невозможно. Известны случаи, когда производители применяют блоках питания диодные сборки запасом по мощности (хотя чаще приходится наблюдать ситуацию, как раз, обратную), ремонте можно установить прибор значениями тока или напряжения. Однако при такой замене необходимо самым тщательным образом проанализировать характеристики блока питания нагрузки, ответственность такой доработки, естественно, ложится специалиста, производящего ремонт.

Проявление неисправностей диодов Шоттки

Как уже отмечалось, неисправность диодов Шоттки является одной проблем современных блоков питания. предварительным признакам можно предположительно определить Таких признаков несколько.

при пробоях вторичных выпрямительных диодов, как правило, срабатывает защита, питания проявляться

1) При включении блока питания вентилятор «дергается», совершает несколько оборотов после этого выходные напряжения полностью отсутствуют, источник питания блокируется.

2) После включения блока питания вентилятор «дергается» постоянно, блока питания можно наблюдать пульсации напряжения, защита срабатывает периодически, питания при этом полностью

3) Признаком неисправности диодов Шоттки является чрезвычайно сильный разогрев вторичного радиатора, они установлены.

4) Признаком утечки диодов Шоттки может являться самопроизвольное выключение блока питания, при увеличении нагрузки (например, при запуске программ, обеспечивающих 100% загрузку процессора), невозможность запустить компьютер после «апгрейда», хотя мощность блока питания является достаточной.

Кроме того, необходимо осознавать, что питания схемотехникой, утечки выпрямительных диодов приводят первичной цепи и тока через силовые транзисторы, что может стать причиной Таким образом, профессиональный подход блоков питания, диктует обязательную проверку вторичных выпрямительных диодов при каждой замене силовых транзисторов-ключей первичной части блока питания.

Диагностика диодов Шоттки

Проверка диагностика диодов Шоттки, является достаточно непростым делом, многое здесь определяется типом используемого измерительного прибора подобных измерений, хотя определить обычный пробой одного или двух диодов диодной сборки Шоттки особого труда. необходимо выпаять диодную сборку тестером оба диода согласно схеме диагностике тестер необходимо установить проверки диодов. Неисправный диод направлениях покажет одинаковое сопротивление (как правило, очень малое, покажет короткое замыкание), что непригодность для дальнейшего использования. Однако явные пробои диодных сборок встречаются очень

diodishotki 3

В приходится иметь дело (причем зачастую утечками) диодов Шоттки. утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером «диод» является большинстве случаев полностью исправным. Гарантированную точность диагностики, взгляд, позволяет дать только такой метод, как замена диода исправный аналогичный прибор.

Но выявить «подозрительный» диод можно попытаться методики, заключающейся сопротивления его обратного перехода. будем пользоваться проверки диодов, омметром.

Внимание! этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.

Итак, устанавливаем предел измерений [20К] обратное сопротивление диода практика, исправные диоды пределе измерений должны показывать бесконечно большое сопротивление.

shotki 5

при измерении выявляется некоторое, как правило, небольшое сопротивление то такой диод можно считать «очень подозрительным» лучше заменить, или проверить методом замены. проводить проверку измерений [200К], то даже исправные диоды могут показывать направлении очень небольшое сопротивление (единицы кОм), поэтому использовать предел [20К]. Естественно, что пределах измерений (2 Мом, даже абсолютно исправный диод оказывается полностью открытым, его переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. [200К] можно проводить проверку сравнительным методом, брать гарантированно-исправный диод, измерять его обратное сопротивление проверяемого диода. Значительные отличия измерениях будут указывать замены диодной сборки.

Иногда встречаются ситуации, когда выходит только один сборки. случае неисправность также легко выявляется методом сравнения обратного сопротивления двух диодов одной сборки. Диоды одной сборки должны иметь одинаковое сопротивление.

Предложенную методику можно дополнить еще устойчивость. проверки заключается момент времени, когда проверяется сопротивление обратного перехода измерений [20K] абзац), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев Неисправная диодная сборка практически мгновенно начинает «плыть», сопротивление начинает очень быстро уменьшаться, время как исправная диодная сборка достаточно долго удерживает обратное сопротивление большом значении. очень важна, при работе диодная сборка сильно нагревается нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки колебаниям, ведь увеличение температуры корпуса до 125°C увеличивает значение обратного тока утечки раз

Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками злоупотреблять, проводить проверки большом пределе измерений сопротивления сильно разогревать диод, теоретически, все это может привести

Кроме того, отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим пайки). отдать должное производителям диодов, так как многие добились того, что монтаж сборок можно осуществлять при высокой температуре 250 °C

Как определить компонет Маркировка компонентов Логотип производителя Корпуса электронных компонентов Справочники Обмен ссылками Ссылки дня

Как определить электронный компонент?

В первую очередь по его маркировке. Для начинающих, отметим, что во многих случаях для успешного опознования компонента необходимо определить:

  • Маркировку
  • Тип корпуса
  • Логотип производителя
  • Используемый узел
  • Схему включения

Какая маркировка электронных компонентов ?

Marking (маркировка) - это обозначение на корпусе электронного компонента (радиодетали).

Она может быть полной, укороченной, SMD-кодом, цветовой, и тд. И если с резисторами и конденсаторами обычно проблем нет, то с микросхемами и транзисторами часто возникают вопросы с распознованием.

Всю информацию по маркировке производители указывают в даташитах (DataSheet), которые размещены на их сайтах. На форуме накоплен большой опыт в распознавании импортных радиодеталей использующихся в современной аппаратуре. Некоторая документация закачана разделы - микросхемы, транзисторы, диоды и стабилитроны.

Какие логотипы у производителей электронных компонентов?

Logo (логотип) - символика производителя на корпусе компонента.
Как правило, это небольшие рисунки или символы, если позволяет место для размещения.
Распознав производителя уже намного понятнее в каком направлении копать дальше.

Большой список фото и других данных по компаниям производителей размещены в теме логотипы производителей электронных компонентов

Какие типы корпусов электронных компонентов?

Package (корпус) - вид корпуса электронного элемента.
На сайте сущеструет каталог с чертежами часто встречающихся типов корпусов (размеры, спецификация, чертеж)


КорпусКраткое описание
DIP(Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
SOT-89Пластиковый корпус для поверхностного монтажа
SOT-23Миниатюрный пластиковый корпус для поверхностного монтажа
SOP(SOIC, SO, TSSOP) - миниатюрные корпуса для поверхностного монтажа
TO-220Корпус для монтажа (пайки) в отверстия
TSOP(Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
BGA(Ball Grid Array) - корпус для монтажа выводов на шарики из припоя

Где скачать справочник ?

Большинство справочных данных - распиновка, характеристики и параметры расположены в темах и файловом разделе. Некоторые ссылки:

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.

Конструкция

Обычные диоды

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки,
  • Невысокое падение напряжения на переходе при прямом включении,
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний, намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:

Обозначение диода Шоттки на схеме

Но иногда можно увидеть и такое обозначение:

Еще одно обозначение диода Шоттки на схеме

Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом,

2 тип – с общим анодом,

3 тип – по схеме удвоения.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.

Вольтамперная характеристика светодиода (ВАХ)

Вольтамперная характеристика светодиода (ВАХ)

ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.

Smd компонентa

Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.

Проверка диода Шоттки мультиметром

Проверка диода Шоттки мультиметром

Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

Читайте также: