Что означает r1 на плате блока питания

Обновлено: 07.07.2024

_________________
[ Всё дело не столько в вашей глупости, сколько в моей гениальности ] [ Правильно заданный вопрос содержит в себе половину ответа ]
Могу не отвечать пару месяцев, не беспокойтесь.

Добрый день. Помогите разобраться что обозначают буквы на плате. А именно A 5V V E. Вероятнее всего А - аudio, 5V=+5вольт, V - video. Тогда Е - земля.

Буквам соответствуют провода:
Желтый(тонкий) - А
Черный(тонкий) - 5V
Красный(толстый) - V
Серый(толстый) - E
Запутался в подключении платы питания/модулятора к основной плате игровой приставки по типу "денди". Конкретный экземпляр BS 380 AS, какой либо вразумительной схемы найти не удалось. Все что "гуглятся гуглом" от других моделей. Уже имел опыт с новодельными приставками, без проблем удается определить все 4 контакта (кто есть кто) подпаяться напрямую и проверить работоспособность основной платы. В данном случае зашел в тупик.

На всех подобный приставках, эти 4 контакта должны соответствовать: плюс, минус, аудио, видео.
Короче либо туплю на ровном месте, либо не на ровном, но мозг уже сломан, помогите разобраться что значит контакт "Е".
И какой контакт чему соответствует.
Спасибо.

Не всегда центральный контакт разъёма питания, является плюсовым выводом.

И судя по топологии на последнем фото, у вас как раз данный контакт является МИНУСОМ питания.
То есть те стрелочки, где у вас написано +9V, на самом деле являются общим проводом.
А та стрелочка, что у вас подписана GND, является плюсом питания.

ЗЫ, это конечно если у вас там именно "плюсы" указанны, на стрелках (и 7805 стоит, а не 7905, в шине 5 вольт)

_________________
Семь бед, один Reset.

Короче либо туплю на ровном месте, либо не на ровном, но мозг уже сломан, помогите разобраться что значит контакт "Е".
И какой контакт чему соответствует.Спасибо. E - по-видимому, "earth", то есть "земля". Во всяком случае, судя по фото оно так: точка E соединена с большим полигоном, скорее всего, общего провода.

_________________
Кто замазался в МЯВЕ, как отмываться будете?
"Йухан, Тор! Вы - на бой!" (Reverse)

Да, знаю, там первый пин общий (79хх)
Я к тому, что как пример попадались с отрицательным чипом, в питалове.

Кстати, посмотрел на блок питания, что в комплекте с этой приставкой идёт.
Таки да, там там центральный вывод разъёма - МИНУС питания.

_________________
Семь бед, один Reset.

Плюс снаружи бывает, когда требуется коммутация БП - батарея в разъёме, чтобы коммутировать именно плюс. Но могут по традиции наружный плюс делать и там, где этого нет.

_________________
Кто замазался в МЯВЕ, как отмываться будете?
"Йухан, Тор! Вы - на бой!" (Reverse)

В блоках питания помимо использования обыкновенных резисторов используются два типа специализированных резисторов - Варистор и Термистор.
Также, кроме обыкновенных конденсаторов используются специализированные помехоподавляющие конденсаторы: конденсаторы типа Y и конденсаторы типа X (их еще называют конденсаторы класса защиты X/Y)

В качестве примера приведем кусок реальной схемы до выпрямительного мостика, хочется повторится – схема реальная, хотя впечатление такое, что этот шедевр - сборище пассивных элементов защиты от ВЧ помех со страниц какого то учебника по борьбе с помехами.

Рис. Пример реального участка схемы блока питания - фильтра от ВЧ помех.

Варистор


Варистор – полупроводниковый резистор, сопротивление которого изменяется при изменении приложенного напряжения. Основная задача варистора в блоках питания – защита цепей от перенапряжения.

Рис. Принцип работы варистора в блоках питания, увеличение скорости срабатывания предохранителя или защита от импульсных бросков напряжения.

Варистор включается параллельно входному напряжению 220В, и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал. В случае возникновения выброса по напряжению, сопротивление варистора резко падает и шунтирует защищаемые цепи, ток в этом состоянии может достигать нескольких тысяч ампер. Несмотря на свою эффективность варистор в блоках питания АТХ довольно редкий гость, чаще его можно увидеть в сетевых фильтрах или в некомпьютерных блоках питания.


Рис. Для увеличения скорости срабатывания защиты, предохранитель и варистор объеденяют вместе.


Обозначение варистора на плате.




VZ (Принтер) MV (Источник бесперебойного питания) ZNR (Блок питания АТХ)



MOV (Источник бесперебойного питания) Z (Блок питания светодиодного прожектора) DNR
фото отсутствует фото отсутствует фото отсутствует
RU RV VAR
фото отсутствует
VDR


Обозначение варистора на схеме.

Рис. Условное обозначение варистора на схеме


Особенности применения варисторов.

  • Варисторы являются безинерционным элементом. Полностью восстанавливает свои свойства мгновенно, в результате чего чрезвычайно эффективен при борьбе с импульсными выбросами напряжения.
  • Количество импульсов прикладываемых к варистору ограничено, фактически это значит, что со временем варистор теряет свои свойства.

Терморезистор


Терморезистор – полупроводниковый резистор, сопротивление которого изменяется при изменении температуры.
Различают два вида терморезисторов
Термистор (NTC-термистор) - сопротивление терморезистора с повышением температуры уменьшается.
Позистор (PTC-позистор) - сопротивление терморезистора с повышением температуры увеличивается
Применение терморезисторов в блоках питания

Рис. Принцип работы NTC-термистора в блоках питания, мягкий пуск.
Основная задача термистора в блоках питания - ограничение пускового тока. При включении блока питания термистор имеет температуру окружающей среды и сопротивление в несколько Ом. Конденсатор выпрямителя в момент включения представляет из себя короткозамкнутую нагрузку, в цепи происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока через термистор, последний разогревается и его сопротивление падает почти до десятых долей Ома, и далее он не влияет на работу устройства. Происходит так называемый мягкий пуск.


Обозначение термистора на плате.




TH THR TR



RTH RT PTC


Обозначение термистора на схеме.

Рис. Условное обозначение терморезистора на схеме

На практике может встречаться комбинация состоящая, из двух или более приведенных обозначений.

Рис. Пример комбинации при обозначении терморезистора


Особенности применения термисторов.

  • Термисторы являются инерционным элементом. Полностью восстанавливает свои свойства только через 5-10 мин. Фактически при кратковременном отключении питания, при повторном пуске термистор не работает как элемент защиты.
  • Выводы термистора являются радиаторами, необходимо оставлять выводы как можно длиннее.
  • Температура термистора в состоянии сопротивления близкого к нулю может доходить до 250 градусов, нежелательно устанавливать корпус термистора в непосредственной близости от других элементов.

Помехоподавляющие конденсаторы

Помехоподавляющие конденсаторы делятся на два типа X и Y, для подавления синфазной и противофазной составляющей помехи. Каждый тип для своего типа помехи.


Как практик, могу сказать, название помехи не играет большой роли на принцип борьбы с помехой. Как теоретик, лично я, всегда путаю термины синфазной и противофазной помехи между собой, поэтому дальше обе помехи мы будем разделять по принципу возникновения.

Конденсатор X типа


Конденсатор X типа – конденсатор для подавления помехи возникающей между фазой и нулем (не путать с заземлением). Задача Х конденсатора не пропускать помеху из внешней сети в блок питания, а так же не выпускать помеху созданную блоком питания во внешнюю сеть.

Рис. Принцип работы Х конденсатора.


Обозначение X конденсатора на плате.



Cx С


Обозначение X конденсатора на схеме.

Обосначается как обычный конденсатор, с суффиксом x, например Cx

Рис. Обозначение Х конденсатора на схеме .


Особенности применения Х конденсаторов.

  • Конденсатор невозгораемый при любых условиях
  • Неисправность конденсатора не приведет к поражению электрическим током.
  • Емкость Х конденсатора, чем больше - тем лучше.
  • X2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 2.5кВ.
  • Какая бы не была емкость Х конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Конденсатор Y типа


Конденсатор Y типа – конденсатор для подавления помехи возникающей между

  • фазой и землей (не путать с нулем)
  • нулем и землей.

Рис. Принцип работы Y конденсатора.


Обозначение Y конденсатора на плате.

Нет изображения Нет изображения
CY С


Обозначение Y конденсатора на схеме.

Обозначается как обычный конденсатор, с суффиксом Y, например Cy рядом с номиналом может стоять напряжение.

Рис. Обозначение Y конденсатора на схеме .


Особенности применения Y конденсаторов.

  • Конденсатор в случае пробоя уходит в обрыв
  • Неисправность конденсатора может привести к поражению электрическим током.
  • Емкость Y конденсатора, чем меньше - тем лучше.
  • Y2 конденсатор с рабочим напряжением 250В, выдерживают импульс до 5кВ.
  • Y конденсатор можно применять вместо X конденсатора, наоборот нет.
  • Какая бы не была емкость Y конденсатора, полностью помеху убрать невозможно, можно только ее уменьшить.

Быстродействующие диоды.

В блоках питания используются два типа выпрямительных диодов – общего назначения и импульсные. Импульсные диоды можно отнести к быстродействующим.

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Обозначение радиоэлементов на схемах

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Обозначение радиоэлементов на схемах

Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Обозначение радиоэлементов на схемах

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Обозначение радиоэлементов на схемах

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Обозначение радиоэлементов на схемах

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Обозначение радиоэлементов на схемах

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Обозначение радиоэлементов на схемах

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Обозначение радиоэлементов на схемах

Как же обозначаются остальные радиоэлементы?

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

Обозначение радиоэлементов на схемах

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Конденсаторы

Обозначение радиоэлементов на схемах

a) общее обозначение конденсатора

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

Акустика

Обозначение радиоэлементов на схемах

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

Обозначение радиоэлементов на схемах

б) общее обозначение диода

г) двусторонний стабилитрон

д) двунаправленный диод

ж) туннельный диод

з) обращенный диод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

Измерители электрических величин

Обозначение радиоэлементов на схемах

Катушки индуктивности

Обозначение радиоэлементов на схемах

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

Обозначение радиоэлементов на схемах

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

Обозначение радиоэлементов на схемах

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

Электромагнитное реле с разными группами контактов

Обозначение радиоэлементов на схемах

Предохранители

Обозначение радиоэлементов на схемах

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

Тиристоры

Биполярный транзистор

Однопереходный транзистор

Обозначение радиоэлементов на схемах

Полевой транзистор с управляющим PN-переходом

Обозначение радиоэлементов на схемах

Моп-транзисторы

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

IGBT-транзисторы

Обозначение радиоэлементов на схемах

Фото-радиоэлементы

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Оптоэлектронные приборы

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Обозначение радиоэлементов на схемах

Симисторная оптопара (статья про симистор)

Кварцевый резонатор

Обозначение радиоэлементов на схемах

Датчик Холла

Обозначение радиоэлементов на схемах

Микросхема

Обозначение радиоэлементов на схемах

Операционный усилитель (ОУ)

Обозначение радиоэлементов на схемах

Семисегментый индикатор

Различные лампы

Обозначение радиоэлементов на схемах

а) лампа накаливания

б) неоновая лампа

в) люминесцентная лампа

Соединение с корпусом (массой)

Обозначение радиоэлементов на схемах

Земля

Распиновка разъемов блока питания: какая линия за что отвечает

Подключение проводов блока питания при сборке ПК — одна из самых серьезных задач, с которой сталкиваются начинающие пользователи. Все слышали фразу «с электричеством шутки плохи», и нужно понимать, что в случае неправильного подключения проводов можно запросто повредить дорогие комплектующие. Чтобы этого не случилось, нужно знать распиновку разъемов БП, максимальную нагрузку на каждый разъем и положение ключей, которые не дают подключить провода неправильно. В этой статье вы найдете всю информацию на эту тему.

Стандарты блоков питания для ПК и их разъемов развиваются уже почти 40 лет — со времен выхода первых компьютеров IBM PC. За это время сменилось несколько стандартов AT и ATX. Казалось бы, все возможные разъемы уже придуманы и ничего нового не требуется, но осенью этого года ожидается выход видеокарт Nvidia GeForce RTX 3000-й серии, который принесет с собой новый, 12-контактный разъем питания. Производители уже стали добавлять в комплекты проводов новых БП коннектор 12-Pin Micro-Fit 3.0. Будет неудивительно, если этот разъем питания дополнит новые стандарты ATX.


Перед тем, как перейти к описанию и распиновке всех разъемов в современном БП, хотелось бы напомнить, что основные напряжения, которые нам встретятся, это +3.3 В, +5 В и +12 В. Сейчас основное напряжение, которое требуется и процессору, и видеокарте — это +12 В. В свою очередь, +5 В нужно накопителям, а +3.3 В используется все реже.

И если взглянуть на табличку, которая есть на боку каждого БП, мы увидим выдаваемые им напряжения, токи и мощность по каждому из каналов.


Разъем Molex

Начнем с самого древнего разъема, который почти без изменений дошел до наших времен, появившись у первых «персоналок». Это всем известный 4-контактный разъем, называемый Molex.



Сегодня сфера применения этого разъема сузилась до питания корпусных вентиляторов, передних панелей корпусов ПК, разветвителей и переходников питания видеокарт и накопителей. Например, переходников питания видеокарты «Molex — PCI-E 6 pin». Несмотря на то, что разъем выдает до 11 А на контакт, а значит, может дать видеокарте, в теории, 132 ватта мощности, использовать его стоит крайне осторожно.

Надо учитывать, что толщина проводов может не соответствовать такой мощности, а сами контакты могут быть разболтанными, с неплотной посадкой. В результате это чревато нагревом проводов, контактов и расплавлению изоляции.

Если вам обязательно требуется такой переходник, выбирайте модель с двумя разъемами Molex.


Обязательно проверяйте качество контактов переходника и вставляйте его надежно, до упора. Для защиты от неправильного подключения в разъеме предусмотрены два скоса.

Внимание! Несмотря на то, что скосы не дают воткнуть разъем другой стороной, при определенном усилии и разболтанных гнездах есть вероятность воткнуть разъем, развернутый на 180 градусов, что приведет к выходу из строя оборудования.

24-контактный разъем питания материнской платы

Этот разъем появился в спецификациях ATX12V 2.0 в 2004 году и заменил устаревший 20-контактный разъем. Он может обеспечить довольно серьезные мощности для питания процессора, видеокарты и материнской платы: по линии +3.3 В — 145.2 Вт, по линии +5 В — 275 Вт и 264 Вт по линии +12 В (при использовании контактов Molex Plus HCS).

Примечание. Контакты Molex сертифицированы на ток 6 А. Molex HCS — до 9 А. А Molex Plus HCS — до 11 А.



Разъемы питания процессора

Энергопотребление процессоров неуклонно росло последние 20 лет, что потребовало дополнительных разъемов питания для них. И в спецификациях ATX12V был введен дополнительный 4-контактный разъем питания процессора +12 В.




Сегодня даже на бюджетных материнских платах мы встречаем именно этот разъем, который теоретически может подать на питание процессора мощность до 576 Вт.


Разъем питания 3.5" дисководов



Еще один разъем, уже практически не встречающийся на новых БП. Ранее использовался для питания дисководов 3.5" и некоторых карт расширения.

Разъем питания SATA



Стандартный разъем для питания HDD, DVD и 2.5" SSD-приводов. Надежный и удобный разъем, воткнуть который другой стороной не получится из-за расположения специальных выступов. Ток, потребляемый HDD и SSD, довольно небольшой и беспокоиться о нагреве таких разъемов не стоит.

Разъемы дополнительного питания видеокарт

В начале нулевых годов резко выросло энергопотребление видеокарт, что потребовало для них специальных разъемов питания, принятых в спецификациях ATX12V 2.x.

Спецификация PCI Express x16 Graphics 150W-ATX Specification 1.0 была принята рабочей группой PCI-SIG в 2004 году. Она представила 6-контактный разъем, который может давать видеокарте 75 Вт мощности. И еще 75 Вт берутся со слота PCI-E x16. Получившиеся в сумме 150 ватт достаточны для питания видеокарт среднего уровня, например, GeForce GTX 1650 SUPER.




Производители видеокарт обычно стараются разгрузить питание по слоту PCI-E x16 и обеспечить запас питания для разгона, поэтому видеокарты с потреблением 120 ватт и выше, например, GeForce GTX 1660 SUPER, все чаще оснащаются восьмипиновым разъемом питания.

Вставить неправильно разъемы этого типа не получится: скосы на пинах расположены в строго определенном порядке. Но нужно подключать питание до упора — до защелкивания предохранительного язычка.

Выводы

Как вы могли заметить, все разъемы на современных БП разработаны так, чтобы исключить неправильное подключение. Также они обеспечивают избыточную надежность по нагрузке питания, что достигается увеличением числа контактов.

Но при сборке ПК не помешает помнить распиновки всех разъемов и максимальную силу тока, которую может выдержать разъем. Если пренебречь этими знаниями, можно рано или поздно повредить комплектующие. С подобным в период «крипто-лихорадки» 2017-2018 года столкнулись майнеры, у которых массово горели дешевые переходники питания видеокарт «Molex — PCI-E 6 pin».

Читайте также: