Что такое обратноходовый импульсный блок питания

Обновлено: 07.07.2024

Сердце всех импульсных источников питания - это преобразователь напряжения. Существует достаточно много разновидностей и топологий построения преобразователей. Каждая топология имеет свои особенности, недостатки и преимущества.

Сегодня расскажем про топологию обратноходового преобразователя.

Импульсный преобразователь напряжения – это преобразователь, в котором управляющий элемент (чаще всего транзистор) работает в импульсном режиме, постоянно замыкается и размыкается. За счёт этого ток через него передаётся порциями.

Обратноходовой преобразователь (от англ. flyback converter ) - одна из разновидностей и построения преобразователя напряжения.

Немного истории

Импульсные источники питания начали развиваться параллельно трансформаторным с 40-х годов прошлого века. Но производство ИИП приостановилось, потому что оно было дорогим, а сами источники получались сложными и громоздкими.

Под конец XX века с развитием транзисторов и интегральных схем, импульсная схемотехника воскресла. В 2020 году каждый житель планеты пользуется устройствами на импульсной схемотехнике. Это обыкновенные зарядки для телефонов всех мастей, телевизоры, компьютеры, светодиодные лампочки, источники бесперебойного питания. список можно продолжать бесконечно.

Как это работает

Одно из преимуществ обратноходового преобразователя в его простоте. Типовая схема преобразователя состоит из:

электронного ключа (обычно это транзистор);

Работу Flyback преобразователя можно описать так: транзистор непрерывно закрывается и открывается. Пока транзистор открыт, течет ток и дроссель накапливает энергию. Когда транзистор закрывается, дроссель передает энергию на конденсатор и нагрузку.

Происходит это в 2 этапа.

1 этап

Транзистор замкнут, ток протекает через первичную обмотку, энергия запасается в виде магнитного поля.

2 этап

Транзистор размыкается, в первичной обмотке ток перестает течь, но запасённая в магнитном поле дросселя энергия создаёт ток на вторичной обмотке. Диод открывается, в конденсаторе накапливается энергия (для того, чтобы питать нагрузку на этапе 1 и питается нагрузка).

Преимущества обратноходового преобразователя

Из-за простоты конструкции и сравнительно небольшом количестве электронных компонентов источники питания на обратноходовом преобразователе надёжные и не дорогие.

нечувствительны к короткому замыканию на выходе;

имеют возможность регулирования выходного напряжения в широких приделах;

исключают передачу помех из сети на нагрузку.

Недостаток тоже есть - это ограничение по мощности, до 200Вт. Более мощные источники питания целесообразно делать по другой топологии, иначе неизбежно упадет эффективность.

Компания Бастион выпускает источники бесперебойного питания для охранно-пожарных систем по топологии Flyback . За 29 лет клиенты убедились в надёжности наших ИБП и обратноходовых преобразователей.

Обратноходовой преобразователь-01

Обратноходовой преобразователь это конструкция импульсного источника питания, которая используется более 70 лет и продолжает развиваться в наши дни.

Универсальные обратноходовые источники питания: архитектура и эксплуатация

Такие источники питания, называемые также преобразователями энергии, имеют две различные рабочие фазы, в которых мощность со стороны входа передается на выход только тогда, когда коммутатор первичной стороны выключен, и его ток равен нулю или близок к нему.

Перечень компонентов ядра обратноходовой конструкции довольно короток и недорог: входной конденсатор, MOSFET ключа первичной стороны, выпрямительный диод на выходе (на вторичной стороне) и выходной конденсатор. Кроме того, есть сам обратно-ходовой трансформатор; (конечно, как и в любом проекте, окончательная схема будет более сложной).

Конструкция обратноходового преобразователя была разработана в 1930-х и 1940-х годах и существенно усовершенствована в 1950-х годах с появлением коммерческого телевидения. В некотором смысле, она предшествовала нашей современной концепции нелинейных источников питания.

Первоначальным назначением обратно-ходового преобразователя было создание высокого напряжения, необходимого для питания кинескопа и других электровакуумных приборов, выполнявших функции «активной» электроники до появления транзисторов и микросхем.

В результате усовершенствований, стимулируемых огромным объемом рынка телевизоров, преобразователь был оптимизирован для низкой стоимости, высокой надежности, безопасности и технологичности. Обратноходовая конструкция и ее характеристики хорошо подходят для источников питания низкой и средней мощности в диапазоне от 100 до 250 Вт.

Основы обратноходовых преобразователей

Отношение числа витков обмоток трансформатора выполняет две роли: устанавливает уровень выходного напряжения относительно входного и обеспечивает гальваническую изоляцию. При использовании дополнительных обмоток обратноходовая конструкция может одновременно поддерживать несколько выходов.

Обратноходовой преобразователь-1

В основном цикле обратного хода замыкание ключа первичной стороны увеличивает ток и магнитный поток в первичной обмотке трансформатора/дросселя, поскольку к первичной стороне подключен источник питания (Рисунок 1). Напряжение в обмотке вторичной стороны отрицательно из-за встречной ориентации первичной и вторичной обмоток. Следовательно, диод смещен в обратном направлении и блокирует протекание тока, а конденсатор вторичной стороны отдает ток в нагрузку во время рабочей фазы.

В следующей фазе цикла ключ разомкнут (Рисунок 2), поэтому ток первичной стороны спадает до нуля и магнитный поток прерывается. Теперь напряжение вторичной стороны становится положительным, диод открывается, и ток из вторичной обмотки трансформатора идет в конденсатор, пополняя его заряд.

Обратноходовой преобразователь-2

В обратноходовой схеме выходной конденсатор аналогичен ведру, которое либо наполняется (перезаряжается), либо опорожняется (питает нагрузку), но никогда не наполняется и опорожняется одновременно.

Образующиеся в результате пульсации выходного напряжения должны фильтроваться конденсатором, заряд которого никогда не должен падать до нуля. Название «обратноходовой» происходит из-за резких прерываний циклов коммутации MOSFET, которые выглядят как внезапное изменение направления тока (Рисунок 3).

Обратноходовой преобразователь-3

Стабилизация выходного напряжения осуществляется за счет изменения коэффициента заполнения импульсов, управляющих ключом первичной стороны. В некоторых конструкциях дополнительно регулируется частота переключения (более быстрое переключение позволяет точнее отслеживать разницу между желаемым и фактическим выходным напряжением). Эта обратная связь с требуемой изоляцией между входом и выходом реализуется либо, как показано на Рисунке 4а, с помощью специальной обмотки трансформатора (традиционный и исторически первый подход), либо с помощью опто-изолятора (Рисунок 46).

Режимы работы

При DCM отсутствуют потери обратного восстановления в выходном выпрямителе, так как в каждом цикле коммутации его ток спадает до нуля. Требуемое значение индуктивности первичной стороны невелико и позволяет уменьшить размеры трансформатора. Теоретически, конструкции DCM присуща более высокая устойчивость, поскольку в правой полуплоскости ее передаточной функции нет нуля. Однако в режиме прерывистой проводимости выходной ток имеет очень большие пульсации, что, соответственно, требует больших фильтров.

В отличие от DCM, CCM имеет небольшие пульсации и среднеквадратичные токи. Эти более низкие токи уменьшают потери проводимости и переключения, а меньшие пиковые токи позволяют использовать компоненты фильтров меньших размеров. Однако недостатком ССМ является наличие нуля в правой полуплоскости передаточной функции, что ограничит полосу пропускания контура регулирования и ухудшит его динамический отклик. ССМ также требует большей индуктивности дросселя и, следовательно, магнитного компонента большего размера.

Усовершенствование обратноходового преобразователя

Как и в случае любой конструкции источника питания, некоторые изменения и улучшения могут превратить хороший источник в очень хороший. В DCM существует мертвое время или «резонансный звон», когда ни диод, ни MOSFET не проводят ток. Этот звон возникает вследствие взаимодействия между первичной индуктивностью трансформатора и паразитной емкостью коммутационного узла. В квазирезонансной схеме пиковый ток и частота переключения регулируются таким образом, чтобы MOSFET включался в первом «провале» этих резонансных колебаний и минимизировал потери.

Современные микросхемы контроллеров сводят к минимуму многие неизбежные проблемы разработки законченных обратнохо-довых источников питания, улучшая при этом их характеристики. Например, выпускаемый Analog Devices контроллер обратноходового преобразователя LT8316 при входном напряжении от 20 до 600 В может непосредственно отдавать в нагрузку мощность до 100 Вт (Рисунок 5), поддерживая широкий диапазон выходных напряжений.

Рекомендации, данные в техническом описании, упрощают выбор обратноходового трансформатора, предоставляя таблицу распространенных пар входных/выходных напряжений и токов с соответствующими именами поставщиков и доступными моделями стандартных трансформаторов. В результате разработать хорошую обратнохо-довую схему стало намного проще.

Заключение


При выборе топологии источника питания или преобразователя существует множество разумных вариантов, каждый из которых
обладает уникальным набором функций, а также положительными и отрицательными характеристиками. Они должны быть сопоставлены с приоритетами системы, их техническими характеристиками и финансовыми затратами.

Обратноходовая топология является реальным конкурентом в приложениях мощностью до нескольких сотен ватт при напряжениях от единиц вольт до киловольт, и она особенно привлекательна, когда требуется несколько выходных постоянных напряжений и изоляция входа/выхода.

Обратноходовый преобразователь напряжения является развитием идеи инвертирующей топологии.

В нем используется тот эффект, что в катушке индуктивности накапливается энергия. Если приложить напряжение к катушке индуктивности, то сила тока через катушку будет возрастать, магнитное поле усиливаться, энергия накапливаться. Однако отдавать энергию дроссель может через другую обмотку, если он (дроссель) имеет несколько обмоток. Изображенное на схеме устройство L4, L5 правильнее называть именно дросселем с несколькими обмотками, а не трансформатором.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Когда ключ замкнут, происходит накопление энергии в магнитом поле катушки индуктивности. Ток идет по контуру S1. В это время нагрузка питается напряжением, сформированным на выходном конденсаторе C2.

Когда ключ размыкается, ток начинает течь по контуру S2. При этом ток течет уже по другой обмотке, а сила тока получается такой, чтобы индукция (интенсивность магнитного поля) осталась такой же, какая она была при протекании тока S1. То есть сила тока S2 будет равна силе тока S1, поделенной на коэффициент трансформации. Ток S2 заряжает выходной конденсатор C2.

Блок управления D1 меняет время, в течение которого ключ остается открытым в зависимости от напряжения на конденсаторе C2. То есть микросхема D1 осуществляет широтно-импульсную модуляцию.

Конденсатор C1 нужен для того, чтобы уменьшить пульсации тока во входной цепи, отбирать из нее не импульсный, а средний ток.

Преимущества, недостатки, применимость

Но за эти преимущества приходится платить наличием индуктивности связи между обмотками, то есть наличием дополнительных скачков напряжения на силовом ключе, превосходящих расчетные значения. Причем, чем больше ток нагрузки, тем больше будут эти скачки. Именно эти скачки, приводящие к пробою силового ключа, являются основным фактором, ограничивающим максимальную мощность этой схемы.

Обратноходовая схема является самой простой в реализации из всех топологий, содержит минимум деталей, имеет минимальную стоимость.

Проектирование обратноходового преобразователя

Разберем процесс проектирования и расчета обратноходового преобразователя. В конце статьи мы разместили форму, в которую можно забить необходимые параметры источника, провести расчет онлайн и получить номиналы всех элементов.

Если нам необходима гальваническая развязка выходной и входной цепей, то в цепи обратной связи по напряжению применяется оптрон. Если же такая развязка не требуется, то минусовую шину выходной цепи соединяют с общим проводом входной, оптрон исключают, а резистор R9 соединяют непосредственно с R11.

Ключевым недостатком оптронов является большой разброс их параметров. Коэффициент передачи тока у них даже в рамках одной партии может быть от 0.3 до 10. Но в рассматриваемой топологии это не так критично, как в прямоходовой, так как здесь применяется другая схема коррекции. Разброс параметров оптрона можно компенсировать подбором резистора R9 без пересчета всех других элементов схемы. Схема рассчитывается исходя из коэффициента передачи тока оптрона, равного 1, а потом подбирается R9.

В качестве ШИМ - контроллера мы используем любимую микросхему 1156ЕУ3.

В наших схемах в качестве силового ключа используются мощный биполярный транзистор или мощный полевой транзистор. Подробнее о работе биполярного транзистора и полевого транзистора в качестве силового ключа. Также на схемах показано два подхода к ограничению тока: считывающий резистор и токовый трансформатор. Считывающий резистор показан на схеме с полевым транзистором, а токовый трансформатор - на схеме с биполярным. Однако применять можно и наоборот, считывающий резистор с биполярным, а токовый трансформатор с полевым транзистором.

(1) Можно ли рассчитать обратноходовый преобразователь, у которого на выходе будет мостовой выпрямитель на 250 В, а также умножитель на 4 или 3 с выходным напряжением 700 В (ток около 5-7 мА) - для питания ЭЛТ осциллографа? Точнее - для 250 В выпрямитель на одном диоде, а 700 В на умножителе. (2) А почему Вы ничего не говорите про демпфирующую цепь, включаемую параллельно Читать ответ.

Прямоходовый однотактный импульсный преобразователь напряжения, источн.
Как сконструировать прямоходовый импульсный преобразователь. В каких ситуациях о.

Повышающий импульсный преобразователь напряжения, источник питания. Ко.
Как сконструировать повышающий импульсный преобразователь. Как выбрать частоту р.

Пушпульный импульсный преобразователь напряжения. Выбор ключа - биполя.
Как сконструировать пуш-пульный импульсный источник питания. Как выбрать мощные .

Понижающий импульсный преобразователь напряжения, источник питания. Пр.
Понижение напряжения постоянного тока. Как работает понижающий преобразователь н.

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Битлз или Роулинг Стоунз? Майкл Джордан или Леброн Джеймс? Бифштекс глубокой или средней прожарки? Прямоходовой или обратноходовой преобразователь? Это лишь некоторые из вечных вопросов, по которым люди спорят на протяжении многих лет, энергично отстаивают свое мнение и не находят единственно верного ответа. Но, по правде говоря, в каждом из этих примеров оба варианта ответа имеют свои преимущества, а потому, правильным ответом может быть и тот и другой.

В этой статье мы сосредоточимся на прямоходовых и обратноходовых преобразователях. Мы обсудим характеристики прямоходовой топологий с активным ограничением и обратноходовой схемы, работающей в режиме непрерывных токов (continuous conduction mode), продемонстрируем преимущества и недостатки каждой из них на примере двух источников питания. В частности, мы рассмотрим PoE-источники питания (Power over Ethernet) мощностью 51 Вт, которые соответствуют стандарту IEEE 802.3bt и предназначены для телекоммуникационных приложений.

В новом стандарте максимальная мощность была увеличена до 71 Вт, благодаря чему прямоходовая топология стала более привлекательной, чем она была ранее, когда максимальная мощность составляла 25,5 Вт. В то же время появляются новые типоразмеры и технологии сердечников трансформаторов, что приводит к увеличению мощности и эффективности обратноходовых преобразователей. В результате этих улучшений, а также благодаря развитию силовых полупроводниковых ключей, требуется по-новому взглянуть на вопрос: какой же преобразователь лучше: прямоходовой или обратноходовой?

Анализ принципов работы и особенностей прямоходовых и обратноходовых преобразователей выходит за рамки данной статьи. Тем не менее, выполняемый в статье краткий обзор каждой топологии, помогает выделить сходства и различия, а также сильные и слабые стороны обоих типов преобразователей.

Прямоходовой преобразователь с активным ограничением

Типовая схема прямоходового преобразователя с активным ограничением показана на рисунке 1. Для простоты на схеме представлены только силовые ключи, трансформатор, выходной фильтр и контроллер. Вспомогательные компоненты, например, относящиеся к обвязке контроллера, не показаны для большей наглядности.

Прямоходовой преобразователь с активным ограничением

Рис. 1. Прямоходовой преобразователь с активным ограничением

Контроллер управляет двумя силовыми МОП-транзисторами QPRI и QCLAMP, расположенными на первичной стороне. Ключи коммутируются поочередно с высокой частотой (100 кГц). Когда один силовой транзистор включен, другой должен быть выключен. Отношение части периода, в течение которого QPRI включен (QCLAMP выключен), к полному периоду коммутации называется рабочим циклом или коэффициентом заполнения D. Рабочий цикл определяет плотность следования импульсов напряжения в первичной обмотке трансформатора VPRI. Благодаря магнитной связи между обмотками эти импульсы передаются на вторичную сторону преобразователя. Напряжение на вторичной обмотке VSEC масштабируется в соответствии с коэффициентом трансформации (N), определяемым соотношением числа витков в обмотках.

Напряжение на вторичной стороне выпрямляется с помощью синхронного выпрямителя, состоящего из силовых МОП-транзисторов QFWD и QFREE. Выпрямленное напряжение поступает на выходной фильтр, образованный индуктивностью LOUT и конденсатором COUT. Этот низкочастотный LC-фильтр необходим для преобразования последовательности импульсов в постоянное напряжение на выходе источника питания. Выходное напряжение оказывается пропорциональным величине рабочего цикла D и коэффициенту трансформации N. Импульсы напряжения на вторичной обмотке (VSEC) также часто используются для управления силовыми МОП-транзисторами, которые выполняют функцию выпрямительных диодов. Такая схема называется схемой синхронного выпрямления (Synchronous Rectifcation , SR). Она обеспечивает более высокую эффективность, по сравнению с обычными диодами.

Обратноходовая топология

Типовая схема обратноходового преобразователя показана на рис. 2. Контроллер управляет силовым МОП-транзистором, расположенным на первичной стороне (QPRI), и МОП-транзистором синхронного выпрямителя на вторичной стороне (QSYNC). Включение транзисторов происходит поочередно. Как и в случае с прямоходовым преобразователем, силовой ключ QPRI коммутируется с высокой частотой и изменяемым рабочим циклом D. Напряжение на первичной обмотке трансформатора VPRI передается на вторичную сторону VSEC. В отличие от рассмотренной ранее прямоходовой схемы, накопление энергии происходит непосредственно в трансформаторе в интервалах, когда включен транзистор QPRI. Затем, когда QPRI выключается, включается QSYNC, и накопленная энергия передается в нагрузку.

Обратноходовой преобразователь с синхронным выпрямлением

Рис. 2. Обратноходовой преобразователь с синхронным выпрямлением

Таким образом, транзистор QSYNC отвечает за выпрямление переменного импульсного напряжения на вторичной обмотке. Для включения и выключения QSYNC необходим сигнал управления, формируемый контроллером, который расположен на первичной стороне. Для гальванической развязки этого сигнала используется дополнительный маломощный трансформатор.

Схема фильтрации в обратноходовой топологии также отличается от схемы, применяемой в прямоходовых преобразователях. В качестве индуктивности выходного LC-фильтра выступает вторичная обмотка трансформатора. Результирующее постоянное напряжение VOUT1 на выходе источника питания оказывается пропорциональным значению D и коэффициенту трансформации N. В дополнение к основному LC-фильтру, образованному вторичной обмоткой и конденсатором COUT1, часто используют опциональный LC-фильтр, содержащий индуктивность LOUT2 и емкость COUT2. Этот низкочастотный фильтр еще больше ослабляет уровень пульсаций напряжения VOUT2 на выходе источника питания.

Сравнение преобразователей

Сравнение количества компонентов и качества выходной фильтрации

Пожалуй, проще всего сравнивать прямоходовую и обратноходовую топологии по числу используемых компонентов. Этот пункт достаточно важен, особенно с учетом влияния, которое он оказывает на габариты и стоимость источника питания. На рис. 3 показана упрощенная схема традиционного обратноходового преобразователя. Транзистор QSYNC, используемый в схеме на рис. 2, был заменен обычным диодом. Дополнительный фильтр LC-фильтр был исключен.

Упрощенная схема традиционного обратноходового преобразователя (с выпрямительными диодами)

Рис. 3. Упрощенная схема традиционного обратноходового преобразователя (с выпрямительными диодами)

Аналогичным образом можем получить упрощенную схему традиционного прямоходового преобразователя, в котором транзисторы синхронного выпрямителя также заменены на диоды (рис. 4). Как видно из таблицы 1, обратноходовой преобразователь является очевидным победителем по количеству используемых компонентов. По этой причине общепринятым является мнение, согласно которому обратноходовой преобразователь всегда проще и дешевле.

Упрощенная схема традиционного прямоходового преобразователя (с выпрямительными диодами)

Рис. 4. Упрощенная схема традиционного прямоходового преобразователя (с выпрямительными диодами)

Таблица 1. Перечень компонентов, используемых в прямоходовом и обратноходовом преобразователях (в порядке уменьшения стоимости)

Компоненты в порядке уменьшения стоимости

Прямоходовой

Обратноходовой

Традиционный

Современный

Традиционный

Современный

Тем не менее, современные прямоходовые и обратноходовые источники питания для телекоммуникационных приложений часто используют схемы синхронного выпрямления, как это показано на рисунках 1 и 2, а также двухступенчатый выходной фильтр в обратноходовых преобразователях. В результате, как видно из Таблицы 1, это сокращает разрыв по количеству компонентов и сложности реализации между двумя топологиями, что делает спорным утверждение о том, что обратноходовой преобразователь всегда проще и дешевле.

Практически повсеместное использование синхронного выпрямления обусловлено несколькими основными факторами:

  • постоянным снижением стоимости силовых МОП-транзисторов и контроллеров, поддерживающих функцию синхронного выпрямления;
  • уменьшением выходного напряжения и повышением выходной мощности современных источников питания.

Очевидно, что попытка использовать обычный диодный выпрямитель в преобразователях с выходным напряжением 3,3 В и током 20 А вряд ли окажется успешной. Выпрямление тока 20 А, даже с диодом Шоттки, приведет к потере приблизительно 10 Вт мощности, если прямое падение напряжения на диоде составляет 0,5 В. Выделяемое на диодах тепло будет чрезвычайно сложно отвести, не говоря уже о снижении эффективности источника питания. Это сильно контрастирует с показателями синхронного выпрямителя на МОП-транзисторах, который может без проблем иметь сопротивление около 2,5 мОм. В таком случае полевой транзистор рассеивает всего лишь около (20 А) 2 х 2,5 мОм = 1 Вт. Отвести от силового ключа мощность 1 Вт, выделяемую в виде тепла, уже намного проще. Как правило, для охлаждения диода придется использовать большой и дорогой радиатор, в то время как для охлаждения МОП-транзистора будет достаточно теплоотвода, обеспечиваемого печатной платой определенного размера.

В прямоходовых преобразователях для управления МОП-транзисторами синхронного выпрямителя в простейшем случае можно подключить выводы вторичной обмотки к затворам транзисторов, как это показано на рис/ 1. Этот метод часто называется синхронным выпрямлением с самостоятельным управлением (Self-Driven Synchronous Rectifcation, SDSR). Если напряжение на вторичной обмотке оказывается слишком высоким, то может потребоваться дополнительная схема сдвига уровней или схема ограничения, которые призваны не допустить превышения максимального напряжения на затворах МОП-транзисторов. Поскольку эти схемы относительно просты и используют недорогие компоненты, то они не учитываются в таблице 1.

В отличие от прямоходовых преобразователей, обратноходовые преобразователи по каким-то эзотерическим причинам плохо работают со схемой синхронного выпрямления с самостоятельным управлением SDSR. В результате, как уже было сказано выше, для управления МОП-транзистором синхронного выпрямителя, расположенного на вторичной стороне, требуется дополнительный сигнальный трансформатор для передачи сигнала управления затвором. Использование новых миниатюрных трансформаторов серии LPD8035V от Coilcraft с рейтингом напряжения 1500 Vrms позволяет безболезненно решить проблему стоимости и габаритов.

Еще одной причиной сокращения разрыва по количеству используемых компонентов между двумя топологиями источников питания является добавление второго LC-фильтра в обратноходовых преобразователях. Часто можно встретить утверждение о том, что обратноходовые преобразователи являются более шумными, чем прямоходовые из-за значительных пульсаций тока во вторичных обмотках. Это означает, что если вы используете одноступенчатый LC-фильтр в обратноходовом преобразователе, то вам потребуется гораздо большая индуктивность и конденсатор, чтобы получить такой же уровень пульсаций выходного напряжения, как и у прямоходового преобразователя. На практике для решения указанной проблемы можно применять несколько подходов:

  • использовать силовой трансформатор с большой индуктивностью;
  • использовать большой выходной конденсатор;
  • использовать двухступенчатый LC-фильтр.

Первые два варианта обычно оказываются более дорогими. При использовании двухступенчатого LC-фильтра, каждый из компонентов может выбираться исходя из оптимизации конкретного параметра схемы (низкого тока пульсации, низких потерь в сердечнике и т. д.). В результате, такой подход обеспечивает тот же уровень пульсаций напряжения при меньших габаритах и стоимости.

По указанным выше причинам современные прямоходовые и обратноходовые преобразователи мало отличаются по количеству используемых компонентов, габаритам и общей стоимости, в отличие от традиционных прямоходовых и обратноходовых источников питания. В таблице 2 показаны результаты практического сравнения габаритов и стоимости современного обратноходового преобразователя (рис. 5 сверху) и современного прямоходового преобразователя (рис. 5 снизу). Оба источника питания имеют выходное напряжение 12 В и мощность 51 Вт. Они построены на базе контроллера LT4295 PD от Analog Devices. Фотографии печатных плат представлены на рис. 5, а упрощенные принципиальные схемы на рисунках 1 и 2. Как видно из таблицы 2, обратноходовой преобразователь по-прежнему остается более компактным и менее дорогим, но разница уже не столь значительная.

Читайте также: