Функциональная схема блока питания компенсационного типа

Обновлено: 06.07.2024

Блок питания (БП) - устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети. Чаще всего блоки питания преобразуют переменное напряжение сети 220 В частотой 50 Гц (для России, в других странах используют иные уровни и частоты) в заданное постоянное напряжение.

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное. В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания. Обычно он представляет собой просто конденсатор большой ёмкости.

Основными элементами, на которых построен блок питания в данном курсовом проекте, являются:

интегральный стабилизатор напряжения;

1. Техническое задание


Напряжение на выходе первого канала электронного блока питания (ЭБП): В.


Напряжение на выходе второго канала ЭБП: В.


Номинальный ток нагрузки первого канала ЭБП: А.


Номинальный ток нагрузки второго канала ЭБП: А.


Нестабильность входного напряжения первого канала ЭБП:


Нестабильность входного напряжения второго канала ЭБП:


Нестабильность выходного напряжения первого канала ЭБП:


Нестабильность выходного напряжения второго канала ЭБП:


Уровень пульсации на выходе первого канала ЭБП: В.


Уровень пульсации на выходе второго канала ЭБП: В.


Максимальная температура окружающей среды: С.


Минимальная температура окружающей среды: С.

Электрическая функциональная схема блока питания


Оценка КПД компенсационных стабилизаторов и габаритной мощности силового трансформатора

Габаритная мощность

Рассчитывается габаритная мощность силового трансформатора.

Задаемся КПД трансформатора порядка 85%:


;


,


Вт;



Вт;


,


Вт.

Расчет мощности, рассеиваемой регулирующими транзисторами

Рассчитывается максимальное входное напряжение подаваемое на вход стабилизатора:



В;



В.

Рассчитывается максимальное падение напряжения на регулирующих элементах:

В;

В.

Рассчитывается максимальная мощность рассеиваемая на регулирующих элементах:

Вт;

Вт.

Регулирующий элемент


Рассчитывается необходимый коэффициент передачи тока регулирующих транзисторов. Для этого задаемся базовым током транзистора в диапазоне 50. 150 мА. Тогда:


А;


А;

, ;

,


Так как < 100, то регулирующий элемент целесообразно выполнить по схеме эмиттерного повторителя.

Максимально - допустимый ток коллектора выбранных транзисторов должен превышать ток нагрузки в 1,5. 2 раза. Предельно - допустимое напряжение на коллекторе также должно быть выше максимального входного напряжения регулирующего элемента как минимум в 1,5 раза.

: VT2:

Ikmax=10 А Ikmax=10 А

Ukmax=90 В Ukmax=40 Вп=1.67 С/Вт Rп=1 C/Вт

Усилитель постоянного тока

Основные требования к УПТ - обеспечение заданного коэффициента усиления по напряжению, а также высокой температурной стабильности этого коэффициента и положения исходной рабочей точки.

Расчет резисторов R2,R3,R4.

Рассчитаем резистор R3.

,

,

Рассчитаем резистор R2.

Резистор R2 рассчитывается из следующего условия :


,

,

Рассчитаем резистор R4.









3.2.1 Расчет резисторов R5,R6,R7.
















Ом,


Ом,


Ом.

транзистор интегральный стабилизатор охладитель

Найдем ток, протекающий через делитель первого и второго каналов:


,


А;


,


А.

Рассчитаем мощность, рассеиваемую каждым резистором делителя (для обоих каналов):


,


Вт;


,


Вт;


,


Вт;


,


Вт;


,


Вт;


,


Вт.

Выбор диодов в схеме.

канал-VD1 Д214Б Uобр=100 В.

канал-VD2 Д214А Uобр=100 В.

Диоды над регулирующими транзисторами:

VD Д219С Uобр=70 В.

Выводы и заключения

В результате выполнения курсового проекта было решено несколько задач:

во-первых, был выбран по требуемой мощности понижающий трансформатор. Он был выбран по методическим указаниям: выбран стержневой трансформатор ТПП305-127/220-50,с током первичной обмотки 0.790 А и током вторичной обмотки 1.53 А.

во-вторых, были выбраны диоды, на которых строятся диодные мосты. Для канала с положительным напряжением выбираем выпрямительный диод Д214А, а для канала с отрицательным напряжением - Д214Б.

в-третьих, были выбраны схемы интегральных стабилизаторов напряжения, которые обеспечивают необходимую стабилизацию входного напряжения. Для канала с положительным напряжением выбираем КРЕН1В, а для канала с отрицательным напряжением - КРЕН2В.

в-четвёртых, были выбраны силовые регулирующие элементы (силовые транзисторы) обеспечивающие рассчитанный коэффициент усиления. Для канала с положительным напряжением выбираем КТ819АМ, а для другого канала выбираем КТ819Г. Также был произведен расчёт и оптимизация конструкции охладителей силовых транзисторов.

Итогом этого курсового проекта можно считать рассчитанную и полученную схему двух канального блока питания управляющего устройства, вырабатывающего следующие напряжения:+6.3 В и -27 В.

Литература

1. Полупроводниковые приборы. Транзисторы средней и большой мощности: Справочник -2-е изд., стереотип.- А.А. Зайцев, А.И. Миркин, В.В. Мокряков и др.: Под ред. А.В. Голомедова. - М.: Радио и связь, КУбК-а 1994. -640 с.: ил.

2. Полупроводниковые приборы: Диоды, тиристоры. - Справочник.-/ В.И. Галкин, А.Л. Булычев, П.М. Лямин.- Мн.: Беларусь, 1994.-347 с.

. Резисторы: (справочник) / Ю.Н. Андреев, А.И. Антонян, Д.М. Иванов и др.; Под ред. И.И. Четверткова.- М.: Энергоиздат, 1981.-352 с., ил.

. Электрические конденсаторы и конденсаторные установки: Справочник / В.П. Берзан, Б.Ю. Геликман, М.Н. Гураевский и др.; Под ред. Г.С. Кучинского.- М. :Энергоатомиздат, 1987.-656с.: ил.

ВВЕДЕНИЕ

Блок питания (БП) - устройство, предназначенное для формирования напряжения, необходимого системе, из напряжения электрической сети. Чаще всего блоки питания преобразуют переменное напряжение сети 220 В частотой 50 Гц (для России, в других странах используют иные уровни и частоты) в заданное постоянное напряжение.

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное. В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания. Обычно он представляет собой просто конденсатор большой ёмкости.

Основными элементами, на которых построен блок питания в данном курсовом проекте, являются:

интегральный стабилизатор напряжения;

1. Техническое задание


Напряжение на выходе первого канала электронного блока питания (ЭБП): В.


Напряжение на выходе второго канала ЭБП: В.


Номинальный ток нагрузки первого канала ЭБП: А.


Номинальный ток нагрузки второго канала ЭБП: А.


Нестабильность входного напряжения первого канала ЭБП:


Нестабильность входного напряжения второго канала ЭБП:


Нестабильность выходного напряжения первого канала ЭБП:


Нестабильность выходного напряжения второго канала ЭБП:


Уровень пульсации на выходе первого канала ЭБП: В.


Уровень пульсации на выходе второго канала ЭБП: В.


Максимальная температура окружающей среды: С.


Минимальная температура окружающей среды: С.

Доброго всем времени суток! Сегодняшний мой пост продолжает рассказ о линейных стабилизаторах напряжения. Расскажу вам о компенсационных стабилизаторах напряжения (или сокращённо КСН).

Компенсационный стабилизатор напряжения, по сути, является устройством, в котором автоматически происходит регулирование выходной величины, то есть он поддерживает напряжение на нагрузке в заданных пределах при изменении входного напряжения и выходного тока. По сравнению с параметрическими компенсационные стабилизаторы отличаются большими выходными токами, меньшими выходными сопротивлениями, большими коэффициентами стабилизации.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Компенсационные стабилизаторы бывают двух типов: параллельными и последовательными. Структурные схемы компенсационных стабилизаторов показаны ниже.

Последовательный КСН.Функциональная схема



Компенсационный стабилизатор напряжения последовательного типа

Параллельный КСН.Функциональная схема



Компенсационный стабилизатор напряжения параллельного типа

Основными элементами всех компенсационных стабилизаторов напряжения являются регулирующий элемент Р; источник опорного (эталонного) напряжения И; элемент сравнения ЭС; усилитель постоянного тока У.

Компенсационный стабилизатор последовательного типа

В стабилизаторах последовательного типа регулирующий элемент включён последовательно с источником входного напряжения U0 и нагрузкой RH. Если по некоторым причинам напряжение на выходе U1 отклонилось от своего номинального значения, то разность опорного и выходного напряжений изменяется. Это напряжение усиливается и воздействует на регулирующий элемент. При этом сопротивление регулирующего элемента автоматически меняется и напряжение U0 распределится между Р и RH таким образом, чтобы компенсировать произошедшие изменения напряжения на нагрузке.

Регулирующий элемент в компенсационных стабилизаторах напряжения выполняется, как правило, на транзисторах. Выбирая которые исходят из значений коэффициента передачи тока h21e, напряжения насыщения между коллектором и эмиттером UКЭнас.

Схемы элементов сравнения и усилители постоянного тока очень часто совмещают и выполняются на обычных усилителях, дифференциальных усилителях или операционных усилителях.

Рассмотрим схему компенсационного стабилизатора напряжения последовательного типа.

Компенсационный стабилизатор напряжения с последовательно включенным транзистором



Схема простого компенсационного стабилизатора напряжения последовательного типа

В этой схеме транзистор VT1 выполняет функции регулирующего элемента, транзистор VT2 является одновременно сравнивающим и усилительным элементом, а стабилитрон VD1 используется в качестве источника опорного напряжения. Напряжение между базой и эмиттером транзистора VT2 равно разности напряжений UОП и UРЕГ. Если по какой-либо причине напряжение на нагрузке возрастает, то увеличивается напряжение UРЕГ, которое приложено в прямом направлении к эмиттерному переходу транзистора VT2. Вследствие этого возрастут эмиттерный и коллекторный токи данного транзистора. Проходя по сопротивлению R1, коллекторный ток транзистора VT2 создаст на нем падение напряжения, которое по своей полярности является обратным для эмиттерного перехода транзистора VT1. Эмиттерный и коллекторные токи этого транзистора уменьшатся, что приведёт к восстановлению номинального напряжения на нагрузке. Точно так же можно проследить изменения токов при уменьшении напряжения на нагрузке.

Ступенчатую регулировку выходного напряжения можно осуществить, используя опорное напряжение, снимаемое с цепочки последовательно включённых стабилитронов. Плавная регулировка обычно производится с помощью делителя напряжения R3, R4, R5, включённого в выходную цепь стабилизатора.

Если пренебречь падением напряжения на эмиттерном переходе транзистора VT2, то выходное напряжение стабилизатора



где R4’ и R4’’ соответственно верхняя и нижняя по схеме часть резистора R4.

Улучшение параметров стабилизатора

Схему простого компенсационного стабилизатора напряжения можно улучшить, заменив резистор R1, который осуществляет питание транзистора VT2, на схему стабилизатора тока. Такой способ питания позволяет существенно повысить стабильность работы усилителя постоянного тока.

В тех случаях, когда требуется высокая температурная стабильность Компенсационного стабилизатора напряжения и малый временной дрейф (особенно при низких выходных напряжениях), применяют схемы дифференциальных усилителей. Для повышения качества выходного напряжения в усилителях постоянного тока стабилизатора применяются операционные усилители, которые обладают большим коэффициентом усиления и малым температурным уходом. Питание операционного усилителя может осуществляться непосредственно от выходного напряжения стабилизатора.

Стабилизатор тока



Схема стабилизатора тока. Подключение выводов: 1 – к коллектору VT1, вывод 2 – к коллектору VT.

Дифференциальный усилитель



Схема дифференциального усилителя. Подключение выводов: 1 – к эмиттеру VT1, 2 – к базе VT1, 3 – к катоду стабилитрона VD1, 4 – к аноду стабилитрона VD1, 5 – к делителю напряжения.

Расчёт последовательного стабилизатора

Пример расчёта простого компенсационного стабилизатора напряжения последовательного типа

Начальные условия: входное напряжение U0 = 24 В, нестабильность входного напряжения ΔU0 = ± 2 В, максимальный ток нагрузки IНmax = 1,5 А, коэффициент стабилизации КСТ ≥ 10 3 . Предусмотреть плавную регулировку выходного напряжения в пределах от UНmin = 12 В до UНmax = 16 В.

1. Определим максимальное напряжение коллектор – эмиттер регулирующего транзистора VT1:


2. Определим максимальную мощность, рассеиваемую на транзисторе VT1:


3. По данным расчёта выбираем транзистор VT1, который удовлетворяет условиям:


Этим условиям удовлетворяет транзистор типа П216В с параметрами: UCEmax = 35 В, IC max = 7,5 А, PC max = 24 Вт, h21e = 30.

4. Для создания опорного напряжения UОП выберем стабилитрон типа Д814А с параметрами UСТ = 8 В, IСТ = 20 мА, rDIF = 6 Ом.

5. Определим максимальное напряжение коллектор – эмиттер усилительного транзистора VT2:


6. Исходя из условия UCE2max < UCE max выбираем в качестве усилительного элемента транзистор типа П416 с h21e = 90 … 250.

7. Полагая, что IK2 ≈ IЕ2 = 10 мА < IC max, найдём сопротивление резистора R2:



8. Учитывая, что IR1 = IC(VT2) + IB(VT1), IB(VT1) = IHmax / (1 + h21e(VT1)) = 1,5/(1 + 30) ≈ 48 mA, определим сопротивление R1:


9. Определим сопротивления резисторов R3, R4, R5. Условимся считать, что если движок потенциометра R4 стоит в крайнем верхнем положении, то выходное напряжение стабилизатора имеет заданное по условию минимальное значение UНmin. В крайнем нижнем положении движка выходное напряжение максимально. Тогда можно записать уравнения




Компенсационный стабилизатор параллельного типа

В схеме параллельного стабилизатора при отклонении напряжения на выходе от номинального выделяется сигнал рассогласования, равный разности опорного и выходного напряжений. Далее он усиливается и воздействуя на регулирующий элемент, включённый параллельно нагрузке. Ток регулирующего элемента IP изменяется, на сопротивлении резистора R1 изменяется падение напряжения, а на напряжение на выходе U1 = U0 – IBXR1 = const остаётся стабильным.

Типовая схема компенсационного стабилизатора напряжения параллельного типа приведена ниже. В качестве гасящего устройства в этих стабилизаторах применяются резисторы (R1 на схеме) или при высоких требованиях с стабильности выходного напряжения стабилизатора применяется стабилизатор тока описанный выше, имеющий большое внутреннее сопротивление.

Компенсационный стабилизатор напряжения с параллельно подключённым транзистором



Схема простого компенсационного стабилизатора напряжения параллельного типа

В основном расчёт элементов компенсационного стабилизатора параллельного типа производится аналогично стабилизатору последовательного типа.

Стабилизаторы параллельного типа имеют невысокий КПД и применяются сравнительно редко, в случае стабилизации повышенных напряжений и токов, а также при переменных нагрузках в отличие от стабилизаторов последовательного типа. Их недостатком является то, что при возможном резком увеличении тока нагрузки (например, при коротком замыкании на выходе) к регулирующему элементу будет прикладываться повышенное напряжение, величина которого может превысить допустимое значение. Это обстоятельство необходимо учитывать при эксплуатации стабилизатора.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.


Для стабилизации величин напряжений и токов применяют стабилизаторы. Они бывают компенсационными и параметрическими. В данной статье мы рассмотрим компенсационные стабилизаторы.

Компенсационный стабилизатор тока

Принципиальная схема простейшего компенсационного стабилизатора тока, которая очень распространена во всяких схемах, приведена ниже:

Схема компенсационного стабилизатора тока

От схемы параметрического стабилизатора ее отличает то, что стабилизирующим элементом тут является совокупность транзистора Т, резистора RЕ и источника опорного напряжения Uоп .

Схема функционирует следующим образом: при подаче внешнего напряжения Uвх в цепи устанавливается заданный ток. На RЕ падает напряжение, которое вместе с Uоп обеспечивает между базой и эмиттером условия для этого тока. Когда же по каким либо причинам ток в нагрузке пытается измениться (например, увеличиться из-за увеличения питающего напряжения Uвх), то увеличивается и падение на RE. Увеличение этого падения, поданное на базу положительным знаком, приведет к уменьшению общего тока, который мог бы увеличиться. Иначе говоря, подача положительного напряжения на базу относительно эмиттера увеличивает сопротивление транзистора. И на этом падение будет увеличиваться (при практически не увеличенном токе), чем и будет компенсироваться прирост питающего напряжения.

Компенсационный стабилизатор напряжения

Наиболее распространенная, но и самая простая схема стабилизатора напряжения приведена ниже:

Наиболее распространенная рабочая схема компенсационного стабилизатора

Разберем работу этой схемы подробнее. Для этого заменим транзистор его ранее рассмотренной эквивалентной схемой, положив в ней h12Б=0, а стабилитрон заменим его динамическим сопротивлением RД. Полученную таким образом схему:

Наиболее распространенная рабочая схема компенсационного стабилизатора1

Несколько упростим, отбросив резистор с проводимостью h22Б, который зашунтирован значительно меньшим сопротивлением Rб. Получим остаточную расчетную схему:

Расчетная схема компенсационного стабилизатора

По принципу суперпозиции отыщем только отношение ∆Uвх / ∆Uн , что входит множителем в выражение для коэффициента стабилизации.

По методу контурных токов имеем

Ток компенсационного стабилизатора

Помножив обе части уравнения на Rн и положив IЕRн=∆Uн имеем

1

Как видим, коэффициент стабилизации тем больше, чем меньше Rл и чем больше Rб. Другие составляющие или же заданные (Rн), или принадлежат транзистору и воздействовать на них не возможно (h11Б, h21Б). Чтобы удовлетворить оба требования, необходимо просто подобрать кремневый стабилитрон с возможно меньшим значением Rд и с возможно меньшим значением его тока.

Ниже приведена более сложная схема:

Схема компенсационного стабилизатора тока 1

За основу тут принята предыдущая схема. Для увеличения Kст коллекторный ток транзистора Т1 проходит через резистор R, а падающее на нем напряжение управляет еще одним транзистором Т2, ток которого соединяется с током Т1. Для устранения возможных паразитических связей на выходе подключен конденсатор С относительно большой емкости.

Более сложные схемы стабилизаторов здесь не рассматриваются, однако все они построены по тому же принципу, который рассмотрен в этой статье.

Компенсационный стабилизатор напряжения (КСН) работает по иному принципу, нежели ПСН. Из названия видно, что КСН чего-то там компенсирует. В общем-то принцип действия КСН основан на изменении сопротивления регулирующего элемента в зависимости от управляющего сигнала. А вот и определение из книжки - КСН относятся к стабилизаторам непрерывного действия и представляют собой устройства автоматического регулирования, которые с заданной точностью поддерживают напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки. КСН бывают последовательного и параллельного типа. Для рывка рассмотрим структурную схему типичного КСН последовательного типа.


Рис. 26.10. - КСН последовательного типа

РЭ - это регулирующий элемент, в качестве которого чаще всего используется транзистор (биполярный или полевой), СУ - схема управления - собственно управляет работой РЭ. Иногда вместо СУ изображают усилитель постоянного тока (УПТ). Его задача - усилить сигнал рассогласования и подать его на РЭ. Д - делитель напряжения, ИОН - источник опорного напряжения. В качестве ИОН применяют схему параметрического стабилизатора. Источник опорного напряжения и делитель объединяют в так называемый измерительный элемент (ИЭ). Из-за включения РЭ последовательно с нагрузкой схема так и называется - последовательная.

Итак, источник опорного напряжения (ИОН) задает опорное напряжение, поступающее на вход СУ. С делителя часть выходного напряжения (соизмеримого с напряжением ИОН) также подается на вход схемы управления (СУ). В результате сравнения выходного напряжения (или его части) с опорным СУ управляет РЭ, сопротивление которого меняется в ту или иную сторону. Сигнал с делителя напряжения подается на схему управления и та, в свою очередь, сравнивая напряжение с ИОН, дает команду РЭ увеличить (уменьшить) сопротивление. В результате на нагрузке напряжение остается постоянным. Кроме того, измерительный элемент выделяет пульсации выпрямленного напряжения, поступающие на РЭ, который достаточно хорошо сглаживает их.

Параллельную схему КСН рассмотрим только в структуре. Ее изображение приведено на рисунке 26.11.


Рис.26.11. - КСН параллельного типа

Принцип действия такого стабилизатора основан на изменении проводимости РЭ (опять же, в соответствии с управляющим сигналом), вызывающее изменение падения напряжения на балластом резисторе. Эта схема хорошо работает при небольшом импульсном изменении тока нагрузки. Её основное достоинство - при импульсном изменении тока нагрузки не происходит изменения тока, потребляемого от сети.

Ну а теперь перейдем к самому главному: к схемам. Очень простая и понятная, так сказать, типичная схема приведена на рисунке 26.12.


Рис.26.12. - Принципиальная схема КСН.

Итак, разберем все детали. Функции РЭ выполняет транзистор VT1. ИОН образован резиком R1 и стабилитроном VD1 (как видим, это параметрический стабилизатор). Делитель, соответственно, состоит из резисторов R2-R4. На транзисторе VT2 собран усилитель постоянного тока (УПТ). ИОН задает для УПТ образцовое напряжение, которое вводится в цепь эмиттера транзистора VT2. На базу транзистора поступает напряжение с делителя. Если изменяется выходное напряжение, а соответственно, и напряжение на базе транзистора VT2, который сравнивая это напряжение с напряжением на эмиттере, задает РЭ такой режим работы, что сопротивление его перехода изменяется, и напряжение на нагрузке остается постоянным. С помощью резика R3 можно регулировать выходное напряжение.

В качестве регулирующего элемента при малом токе нагрузки (не больше 0,1-0,2 А) используются одиночные транзисторы. При больших токах нагрузки ставят составные и так называемые тройные составные транзисторы.

Такая схема обладает защитой от короткого замыкания (КЗ). При КЗ обесточивается стабилитрон VD1 и транзисторы VT1, VT2 закрываются. Правда злоупотреблять этим не следует (т. е. ради интереса замыкать плюс с минусом). Защита от КЗ кратковременная.

На практике один из вариантов такой схемы можно встретить с резистором между коллектором и эмиттером РЭ. Он необходим для нормальной работы стабилизатора при отрицательных температурах. Иногда пишут, что резистор, шунтирующий переход коллектор-эмиттер РЭ, служит для запуска стабилизатора. Ну в принципе, наверное, понятно, что для смены полярности необходимо поменять тип транзисторов, направление включения стабилитрона и, соответственно, полярность включения кондеров (на схеме не показаны).

Итак, практическая схема вышеописанного стабилизатора приведена ниже:


Эта схема блока питания и, как видно, отличие состоит лишь в конденсаторах и резисторе R1. Резистороом R4 подстраивают выходное напряжение. Подбирая стабилитрон VD1 можно изменять выходное напряжение ( при изменении входного, соответственно). При этом надо менять сопротивление резистора R1. Две черточки на его корпусе обозначают мощность, т. е. 2 Вт. При больших токах нагрузки резистор R1 греется. Естественно, транзистор VT1 необходимо установить на радиатор, площадью хотя бы 50 см 2 .

Одной из разновидностей схем такого рода является так называемая схема с "холодным" коллектором. Её отличием является то, что регулирующий транзистор включается в цепь общего провода, а не "горячего". А это значит, что изолировать транзистор от радиатора или радиатор от корпуса устройства не надо, чего не скажешь о схемах на рисунках 26.12 и 26.13. В этих схемах транзисторы сгорят, если забыли изолировать коллектор .


Рис. 26.14 - КСН с "холодным" коллектором

Как видно, практически никаких отличий от предыдущей схемы. В качестве регулирующего использован составной транзистор КТ827А. Его можно легко заменить двумя - КТ815 и КТ819. Недостаток схемы - меньший ток нагрузки, нежели у схемы на рисунке 26.13. Да к тому же для такого стабилизатора необходим отдельный выпрямитель Другими словами, если нужно несколько стабилизаторов, то для каждого придется забабахать свой выпрямитель. Зато все регулирующие транзисторы можно поставить на один теплоотвод, не изолируя их.

Другие схемы не только по этой теме будут постепенно накапливаться в отдельном разделе; назовем его "каталог схем".

Рассмотрим несколько схем с применением интегральных стабилизаторов. На рис. ниже показаны типовые схемы включения стабилизаторов.


Рис. 26.15. - Типовая схема включения КР142ЕН5


Рис. 26.16. - Типовая схема включения КР142ЕН12

На рисунке 26.15 показана схема с фиксированным выходным напряжением, на рис. 26.16 - с регулируемым. Конденсаторы С1, С2 включены для повышения устойчивости стабилизаторов (0,33 мкФ÷1 мкФ).

Для стабилизатора по схеме на рис. 26.15 (с фиксированным выходным напряжением) имеется возможность увеличения в некоторых пределах выходного напряжения (но не более, чем до Uвх - 10%). Для этого в схему вводится стабилитрон, как показано на рис. ниже:


Рис. 26.17 - Увеличение выходного напряжения

Выходное напряжение повышается на величину напряжения стабилизации стабилитрона Uст. Можно также примерно подобное сотворить со схемой на рис. 26.16, но это крайне нежелательно, т.к. через резистор R2 будет течь ток Iпот, потребляемый цепями управления стабилизатора, который зависит от тока нагрузки. Это приведет к увеличению выходного сопротивления стабилизатора. Выходное напряжение стабилизатора в этом случае определяется по формуле:

Для увеличения выходного тока, а, следовательно, мощности в схему стабилизатора втыкают транзистор, примерно так, как показано на рисунке 26.18


Рис. 26.18 - Увеличение мощности стабилизатора

Вместе с внутренним выходным транзистором интегрального стабилизатора транзистор VT1 образует комплементарный составной транзистор. Недостаток такого способа состоит в том, что схема ограничения тока и цепь защиты выходного транзистора стабилизатора фактически не используется. Некоторые фирмы выпускают микросхемы, содержащие, по существу, только цепи управления стабилизатором напряжения и предназначенные для подключения к мощному транзистору по схеме, сходной с приведенной на рис. 26.19. Так, например, фирма Maxim Integrated Products производит ИМС типа МАХ687, к которой подключается pnp-транзистор с малым напряжением насыщения коллектор-эмиттер. При фиксированном выходном напряжении 3,3 В этот стабилизатор допускает при токе нагрузки 1А минимальную разность входного и выходного напряжений 0,14 В. Фирма Analog Devices выпускает в миниатюрном корпусе SO-8 микросхему регулятора ADP3310, которая совместно с мощным полевым транзистором способна отдать в нагрузку ток до 10 А. Минимальная разность напряжений вход-выход составляет в этом случае порядка 0,5 В (существенно зависит от параметров регулирующего МОП-транзистора). Для токовой защиты включается внешний резистор.

Для стабилизации тока можно применить следующую схему:


Рис. 26.19 - Схема стабилизации тока

Сопротивление резистора R1 определяется по формуле:

На резисторе R1 падает напряжение, равное номинальному выходному напряжению стабилизатора. Это составляет для КР142ЕН5 около 5 В, что приводит к большим потерям энергии в резисторе. Поэтому в такой схеме целесообразно использовать ИМС регулируемого стабилизатора, например, КР142ЕН12, у которого, при указанной схеме включения, это напряжение составит 1,2 В.

Номенклатура двухполярных стабилизаторов напряжения сравнительно бедна, поэтому для построения стабилизатора с выходным напряжением, например, ±5 В можно использовать схему, приведенную на рис. 26.20. Поскольку потенциал неинвертирующего входа ОУ (DA2) нулевой, то и потенциал инвертирующего входа этого усилителя также должен быть равен нулю. При работе ОУ DA2 в линейном режиме и равенстве сопротивлений резисторов в делителе это может быть только в случае равенства по абсолютной величине разнополярных напряжений на выходе схемы. В простейшем случае, если ток выхода отрицательной полярности не превосходит допустимого выходного тока ОУ DA2, транзистор VT1 может быть исключен из схемы, а выход ОУ DA2 должен быть непосредственно соединен с отрицательным выходом стабилизатора.

Читайте также: