Где происходит хранение и обработка информации процессор носитель память дисковод

Обновлено: 04.07.2024

Человек может хранить в уме информацию, которая требуется ему постоянно. Ты помнишь свой адрес, номер телефона, как зовут твоих родных и близких, друзей. Такую память можно назвать оперативной .

Но есть информация, которую трудно запомнить. Её человек записывает в записную книжку, ищет в справочнике, словаре, энциклопедии. Это внешняя память. Её можно назвать долговременной.

Оперативная память — предназначена для временного хранения информации, т. е. на момент, когда компьютер работает (после выключения компьютера информация удаляется из оперативной памяти).

Долговременная память (внешняя) — для долгого хранения информации (при выключении компьютера информация не удаляется).

В \(1826\) году Жозеф Нисефор Ньепс сделал первую в мире фотографию и называлась она «Вид из окна». Позже в \(1838\) году была сделана фотография, на которой были запечатлены люди.

В \(1888\) году в Париже был продемонстрирован первый в мире фильм — «Сцены в саду Раундхэй», длительность которого составила \(1,66\) секунды. Позже в \(1895\) году братьями Люмьер был снят первый фильм, показанный зрителям на большом экране. Назывался этот фильм «Выход рабочих с фабрики» и его длительность была \(42\) секунды.

Благодаря этим изобретениям у человечества появилась возможность сохранять для будущих поколений лица людей, явления природы, значимые исторические события и т.д.

Звуковую информацию люди научились сохранять намного раньше, чем фото и видео информацию, используя для этого ноты. С помощью нот из поколения в поколение передаются музыкальные произведения великих композиторов.

В середине прошлого столетия в Японии было налажено производство магнитофонов. До сих пор магнитофоны применяются для записи и воспроизведения звуковой информации.

Информация на компьютере может быть разной: текст, изображения, звук, видео и т.п. Для хранения этой информации используются специальные носители.

Носитель информации — это объект, предназначенный для хранения информации.

На первых компьютерах использовали бумажные носители — перфоленту и перфокарту.

Объём перфокарты составлял \(80\) байт. Для сравнения, одна книга в \(300\) страниц и \(2000\) символов на каждой странице имеет информационный объём (600\) \(000\) байтов, или \(586\) Кб. Сейчас перфокарты практически не используются.

В \(XIX\) веке была изобретена магнитная запись (на стальной проволоке диаметром \(1\) мм).

Ферромагнитная лента использовалась как носитель для ЭВМ первого и второго поколения. Её объём был \(500\) Кб. Появилась возможность записи звуковой и видеоинформации.

В начале \(1960\)-х годов в употребление входят магнитные диски.

Жёсткий диск состоит из нескольких пластин надетых на одну ось.

Информационная ёмкость современных жёстких дисков измеряется в Гигабайтах и Терабайтах.

Компакт-диск (англ. Compact Disc) — оптический носитель информации в виде пластикового диска с отверстием в центре, процесс записи и считывания информации с которого осуществляется при помощи лазера.

Взаимосвязь процессов хранения, обработки и передачи информации, виды информационных носителей, способы обработки информации, виды источников и приемников информации, каналы связи, их виды и способы защиты от шума, единица измерения скорости передачи информации, пропускная способность канала связи

Процессы хранения, обработки и передачи информации являются основными информационными процессами. В разных сочетаниях они присутствуют в получении, поиске, защите, кодировании и других информационных процессах. Рассмотрим хранение, обработку и передачу информации на примере действий школьника, которые он выполняет с информацией при решении задачи.

Опишем информационную деятельность школьника по решению задачи в виде последовательности информационных процессов. Условие задачи (информация) хранится в учебнике. Посредством глаз происходит передача информации из учебника в собственную память школьника, в которой информация хранится. В процессе решения задачи мозг школьника выполняет обработку информации. Полученный результат хранится в памяти школьника. Передача результата — новой информации — происходит с помощью руки школьника посредством записи в тетради. Результат решения задачи хранится в тетради школьника.

Таким образом (рис. 9), можно выделить процессы хранения информации (в памяти человека, на бумаге, диске, аудио- или видеокассете и т. п.), передачи информации (с помощью органов чувств, речи и двигательной системы человека) и обработки информации (в клетках головного мозга человека).

Информационные процессы взаимосвязаны. Например, обработка и передача информации невозможны без ее хранения, а для сохранения обработанной информации ее необходимо передать. Рассмотрим каждый информационный процесс более подробно.


Хранение информации является информационным процессом, в ходе которого информация остается неизменной во времени и пространстве.

Хранение информации не может осуществляться без физического носителя.

Носитель информации - физическая среда, непосредственно хранящая информацию.

Носителем информации, или информационным носителем, может быть:

■ материальный предмет (камень, доска, бумага, магнитные и оптические диски);

■ вещество в различных состояниях (жидкость, газ, твердое тело);

■ волна различной природы (акустическая, электромагнитная, гравитационная).

В примере о школьнике были рассмотрены такие носители информации, как бумага учебника и тетради (материальный предмет), биологическая память человека (вещество). При получении школьником визуальной информации носителем информации являлся отраженный от бумаги свет (волна).

Выделяют два вида информационных носителей: внутренние и внешние. Внутренние носители (например, биологическая память человека) обладают быстротой и оперативностью воспроиз ведения хранимой информации. Внешние носители (например, бумага, магнитные и оптические диски) более надежны, могут хранить большие объемы информации. Их используют для долговременного хранения информации.

Обработка информации является информационным процессом, в ходе которого информация изменяется содержательно или по форме.

Обработку информации осуществляет исполнитель по определенным правилам. Исполнителем может быть человек, коллектив* животное, машина.

Обрабатываемая информация хранится во внутренней памяти исполнителя. В результате обработки информации исполнителем из исходной информации получается содержательно новая информация или информация, представленная в другой форме (рис. 10).


Вернемся к рассмотренному примеру о школьнике, решившем задачу. Школьник, который являлся исполнителем, получил исходную информацию в виде условия задачи, обработал информацию в соответствии с определенными правилами (например, правилами решения математических задач) и получил новую информацию в виде искомого результата. В процессе обработки информация хранилась в памяти школьника, которая является внутренней памятью человека.

■ математических вычислений, логических рассуждений (например, решение задачи);

■ исправления или добавления информации (например, исправление орфографических ошибок);

■ изменения формы представления информации (например, замена текста графическим изображением);

■ кодирования информации (например, перевод текста с одного языка на другой);

■ упорядочения, структурирования информации (например, сортировка фамилий по алфавиту).

Вид обрабатываемой информации может быть различным, и правила обработки могут быть разными. Автоматизировать процесс обработки можно лишь в том случае, когда информация представлена специальным образом, а правила обработки четко определены.

Передача информации является информационным процессом, в ходе которого информация переносится с одного информационного носителя на другой.

Процесс передачи информации, как ее хранение и обработка, также невозможен без носителя информации. В примере о школьнике в тот момент, когда он читает условие задачи, информация передается с бумаги (с внешнего информационного носителя) в биологическую память школьника (на внутренний информационный носитель). Причем процесс передачи информации происходит с помощью отраженного от бумаги света — волны, которая является носителем информации.

Процесс передачи информации происходит между источником информации, который ее передает, и приемником информации, который ее принимает. Например, книга является источником информации для читающего ее человека, а читающий книгу человек — приемником информации. Передача информации от источника к приемнику осуществляется по каналу связи (рис.11). Каналом связи могут быть воздух, вода, металлические и оптоволоконные провода.


Между источником и приемником информации может существовать обратная связь . В ответ на полученную информацию приемник может передавать информацию источнику. Если источник является одновременно и приемником информации, а приемник является источником, то такой процесс передачи информации называется обменом информацией.

В качестве примера рассмотрим устный ответ ученика учите лю на уроке. В этом случае источником информации являете! ученик, а приемником информации — учитель. Источник и приемник информации имеют носители информации — биологиче скую память. В процессе ответа ученика учителю происходи1: передача информации из памяти ученика в память учителя Каналом связи между учеником и учителем является воздух а процесс передачи информации осуществляется с помощью носителя информации— акустической волны. Если учитель ш только слушает, но и корректирует ответ ученика, а ученик учитывает замечания учителя, то между учителем и учеником происходит обмен информацией.

Информация передается по каналу связи с определенной скоростью, которая измеряется количеством передаваемой информации за единицу времени (бит/с). Реальная скорость передач* информации не может быть больше максимально возможно* скорости передачи информации по данному каналу связи, которая называется пропускной способностью канала связи и зависит от его физических свойств.

Скорость передачи информации — количество информации, передаваемое за единицу времени.

Пропускная способность канала связи — максимально возможная скорость передачи информации по данному каналу связи.


Кодирование и декодирование может осуществляться как живым существом (например, человеком, животным), так и техни ческим устройством (например, компьютером, электронным переводчиком).

В процессе передачи информации возможны искажения или потери информации под воздействием помех, которые называются шумом. Шум возникает из-за плохого качества каналов связи или их незащищенности. Существуют разные способы защиты от шума, например техническая защита каналов связи или многократная передача информации.

Например, из-за шума улицы, доносящегося из открытого окна, ученик может не расслышать часть передаваемой учителем звуковой информации. Для того чтобы ученик услышал объяснение учителя без искажений, можно заранее закрыть окно или попросить учителя повторить сказанное.

Сигнал может быть непрерывным или дискретным. Непрерывный сигнал плавно меняет свои параметры во времени. Примером непрерывного сигнала являются изменения атмосферного давления, температуры воздуха, высоты Солнца над горизонтом. Дискретный сигнал скачкообразно меняет свои параметры и принимает конечное число значений в конечном числе моментов времени. Сигналы, представленные в виде отдельных знаков, являются дискретными. Например, сигналы азбуки Морзе, сигналы, служащие для передачи текстовой и числовой информации, — это дискретные сигналы. Поскольку каждому отдельному значению дискретного сигнала можно поставить в соответствие определенное число, то дискретные сигналы иногда называют цифровыми.

Сигналы одного вида могут быть преобразованы в сигналы другого вида. Например, график функции (непрерывный сиг нал) может быть представлен в виде таблицы отдельных значений (дискретный сигнал). И наоборот, зная значения функции для разных значений аргументов, можно построить график функции по точкам. Звучащую музыку, которая передается непрерывным сигналом, можно представить в виде дискретной нотной записи. И наоборот, по дискретным нотам можно сыграть непрерывное музыкальное произведение. Во многих случаях преобразования одного вида сигнала в другой могут приводить к потере части информации.

Существуют технические устройства, которые работают с непрерывными сигналами (например, ртутный термометр, микрофон, магнитофон), и технические устройства, работающие с дискретными сигналами (например, проигрыватель для компакт-дисков, цифровой фотоаппарат, сотовый телефон). Компьютер может работать как с непрерывными, так и дискретными сигналами.

Наше время часто называют информационным веком. Однако информация была критически важна для рода человеческого на протяжении всего его существования. Человек никогда не был самым быстрым, самым сильным и выносливым животным. Своим положением в пищевой цепи мы обязаны двум вещам: социальности и способности передавать информацию более чем через одно поколение.



То, как информация хранилась и распространялась сквозь века, продолжает оставаться буквально вопросом жизни и смерти: от выживания племени и сохранения рецептов традиционной медицины до выживания вида и обработки сложных климатических моделей.

Посмотрите на инфографику (кликабельна для просмотра в полной версии). Она отображает эволюцию устройств хранения данных, и масштабы действительно впечатляют. Однако эта картинка далека от совершенства — она охватывает каких-то несколько десятилетий истории человечества, уже живущего в информационном обществе. А между тем данные накапливались, транслировались и хранились с того момента, откуда нам известна история человечества. Сперва это была обычная человеческая память, а в недалёком будущем мы уже ждём хранения данных в голографических слоях и квантовых системах. На Хабре уже неоднократно писали про историю магнитных накопителей, перфокарты и диски размером с дом. Но ещё ни разу не было проделано путешествие в самое начало, когда не было железных технологий и понятия данных, но были биологические и социальные системы, которые научились накапливать, сохранять, транслировать информацию. Попробуем сегодня прокрутить всю историю в рамках одного поста.



Источник изображения: Flickr

До изобретения письменности

До того, как появилось то, что можно без сомнения назвать письменностью, основным способом сохранить важные факты была устная традиция. В такой форме передавались социальные обычаи, важные исторические события, личный опыт или творчество рассказчика. Эту форму сложно переоценить, она продолжала процветать вплоть до средних веков, далеко после появления письменности. Несмотря на неоспоримую культурную ценность, устная форма — эталон неточности и искажений. Представьте себе игру в «испорченный телефон», в которую люди играют на протяжении нескольких столетий. Ящерицы превращаются в драконов, люди обретают песьи головы, а достоверную информацию о быте и нравах целых народностей невозможно отличить от мифов и легенд.



Боян

От клинописи до печатного станка

Для большинства историков рождении цивилизации с большой буквы неотрывно связано с появлением письменности. Согласно распространенным теориям, цивилизация в современном ее понимании появляется в результате создания излишков пищи, разделения труда и появления торговли. В долине Тигра и Евфрата произошло именно это: плодородные поля дали почву торговле, а коммерция, в отличии от эпоса, требует точности. Было это примерно в 2700 г. до нашей эры, то есть 4700 лет назад. Львиная доля шумерских табличек с клинописью заполнены бесконечным рядом торговых транзакций. Не все, конечно, так банально, например, расшифровка шумерской клинописи сохранила для нас старейшую на данный момент литературную работу — «Эпос о Гильгамеше».



Глиняная табличка с клинописью

Клинопись, определенно, была отличным изобретением. Глиняные таблички неплохо сохранились, что уж говорить о клинописи, выбитой на камне. Но у клинописи есть однозначный минус — скорость, и физический (не в мегабайтах) вес итоговых «документов». Представьте, что вам нужно срочно написать и доставить несколько счетов в соседний город. С глиняными табличками такая работа может стать в буквальном смысле неподъемной.

Во многих странах, от Египта до Греции, человечество искало способы быстро, удобно и надежно фиксировать информацию. Все больше люди приходили к той или иной вариации тонких листов органического происхождения и контрастных «чернил». Это решало проблему с со скоростью и, так сказать, «емкостью» на килограмм веса. Благодаря пергаменту, папирусу и, в конечном счете, бумаге человечество получило свою первую информационную сеть: почту.

Однако, с новыми преимуществами пришли новые проблемы: все, что написано на материалах органического происхождения имеет свойство разлагаться, выцветать, да и просто гореть. В эпоху от темных веков вплоть до изобретения печатного пресса большим и важным делом было копирование книг: буквальное переписывание набело, буква за буквой. Если представить сложность и трудоемкость этого процесса, легко понять, почему чтение и письмо оставались привилегией очень узкой прослойки монашества и знатных людей. Однако в середине пятнадцатого века произошло то, что можно назвать Первой Информационной Революцией.

От Гутенберга до лампы

Попытки упростить и ускорить набор текста с помощью комплектов заранее отлитых словоформ или букв и ручного пресса предпринимали еще в Китае в 11 веке. Почему же мы мало знаем об этом и привыкли считать родиной печати Европу? Распространению наборной печати в Китае помешала их собственная сложная письменность. Производство литер для полноценной печати на китайском было слишком трудоемким.

Благодаря Гутенбергу же, у книг появилось понятие экземпляра. Библия Гутенберга была отпечатана 180 раз. 180 копий текста, и каждая копия повышает вероятность, что пожары, наводнения, ленивые переписчики, голодные грызуны не будут помехой для будущих поколений читателей.



Печатный станок Гутенберга

Ручной пресс и ручной подбор литер, однако, не являются, конечно, оптимальным по скорости и трудозатратам процессом. С каждым столетием человеческое общество стремилось не только найти способ сохранить информацию, но и распространить ее как можно более широкому кругу лиц. С развитием технологий, эволюционировала как печать, так и производство копий.

Ротационная печатная машина была изобретена в конце девятнадцатого века, и ее вариации используются вплоть до сегодняшнего дня. Эти махины, с непрерывно вращающимися валами, на которых закреплены печатные формы, были квинтэссенцией индустриального подхода и символизировали очень важный этап в информационном развитии человечества: информация стала массовой, благодаря газетам, листовкам и подешевевшим книгам.

Массовость, однако, не всегда идет на пользу конкретному кусочку информации. Основной носитель, бумага и чернила, все так же подвержены износу, ветхости, утере. Библиотеки, полные книг по всем возможным областям человеческих знаний, становились все более объемны, занимая огромные пространства и требуя все больше ресурсов для своего обслуживания, каталогизации и поиска.

Очередной сдвиг парадигмы в сфере хранения информации произошел после изобретения фотопроцесса. Нескольким инженерам пришла в голову светлая мысль, что миниатюрные фотокопии технических документов, статей и даже книг могут продлить исходникам жизнь и сократить необходимое для их хранения место. Получившиеся в результате подобного мыслительного процесса микрофильмы (миниатюрные фотографии и оборудование для их просмотра) вошли в обиход в финансовых, технических и научных кругах в 20-х годах двадцатого века. У микрофильма много плюсов — этот процесс сочетает в себе легкость копирования и долговечность. Казалось, что развитие способов хранения информации достигло своего апогея.



Микроплёнка, используется до сих пор

От перфокарт и магнитных лент к современным ЦОДам

Инженерные умы пытались придумать универсальный метод обработки и хранения информации еще с 17-го века. Блез Паскаль, в частности, заметил, что если вести вычисления в двоичной системе счисления, то математические закономерности позволяют привести решения задач в такой вид, который делает возможным создание универсальной вычислительной машины. Его мечта о такой машине осталась лишь красивой теорией, однако, спустя века, в середине 20-го века, идеи Паскаля воплотились в железе и породили новую информационную революцию. Некоторые считают, что она все еще продолжается.

То, что сейчас принято называть «аналоговыми» методами хранения информации, подразумевает, что для звука, текста, изображений и видео использовались свои технологии фиксации и воспроизведения. Компьютерная память же универсальна — все, что может быть записано, выражается с помощью нулей и единиц и воспроизводится с помощью специализированных алгоритмов. Самый первый способ хранения цифровой информации не отличался ни удобством, ни компактностью, ни надежностью. Это были перфокарты, простые картонки с дырками в специально отведенных местах. Гигабайт такой «памяти» мог весить до 20 тонн. В такой ситуации сложно было говорить о грамотной систематизации или резервном копировании.


Перфокарта

Компьютерная индустрия развивалась стремительно и быстро проникала во все возможные области человеческой деятельности. В 50-х годах инженеры «позаимствовали» запись данных на магнитную ленту у аналоговой аудио и видеозаписи. Стримеры с кассетами объемом до 80 Мб использовались для хранения и резервного копирования данных вплоть до 90-х годов. Это был неплохой способ с относительно продолжительным сроком хранения (до 50 лет) и небольшим размером носителя? Кроме того, удобство их использования и стандартизация форматов хранения данных ввела понятие резервного копирования в бытовой обиход.



Один из первых жёстких дисков IBM, 5 МБ

У магнитных лент и систем, связанных с ними, есть один серьезный недостаток — это последовательный доступ к данным. То есть, чем дальше запись находится от начала ленты, тем больше времени потребуется для того, чтобы ее прочитать.

В 70-х годах 20-го века был произведен первый «жесткий диск» (HDD) в том формате, в котором он знаком нам сегодня — комплект из нескольких дисков с намагничивающимся материалом и головками для чтения/записи. Вариации этой технологии используются и сегодня, постепенно уступая в популярности твердотельным накопителям (SSD). Начиная с этого момента, в течении всего компьютерного бума 80-х формируются основные парадигмы хранения, защиты и резервного копирования информации. Благодаря массовому распространению бытовых и офисных компьютеров, не обладающих большим объемом памяти и вычислительной мощности, укрепилась модель «клиент-сервер». По началу «сервера» были по большей части локальными, своими для каждой организации, института или фирмы. Не было какой-то системы, правил, информация дублировалась в основном на дискеты или магнитные ленты.

Появление интернета, однако, подстегнуло развитие систем хранения и обработки данных. В 90-х годах, на заре «пузыря доткомов» начали появляться первые дата-центры, или ЦОД-ы (центры обработки данных). Требования к надежности и доступности цифровых ресурсов росли, вместе с ними росла сложность их обеспечения. Из специальных комнат в глубине предприятия или института дата-центры превратились в отдельные здания со своей хитрой инфраструктурой. В то же время, у ЦОД-ов кристаллизовалась своего рода анатомия: сами компьютеры (серверы), системы связи с интернет-провайдерами и все, что касается инженерных коммуникаций (охлаждение, системы пожаротушения и физического доступа в помещения).

Чем ближе к сегодняшнему дню, тем больше мы зависим от данных, хранящихся где-то в «облаках» ЦОД-ов. Банковские системы, электронная почта, онлайн-энциклопедии и поисковые движки — все это стало новым стандартом жизни, можно сказать, физическим продолжением нашей собственной памяти. То, как мы работаем, отдыхаем и даже лечимся, всему этому можно навредить простой утерей или даже временным отключением от сети. В двухтысячных годах были разработаны стандарты надежности дата центров, от 1-го до 4-го уровня.

Тогда же из космической и медицинской отраслей начали активно проникать технологии резервирования. Конечно, копировать и размножать информацию с тем, чтобы защитить ее в случае уничтожения оригинала люди умели давно, но именно дублирование не только носителей данных, но и различных инженерных систем, а также необходимость предусматривать точки отказала и возможных человеческих ошибок отличает серьезные ЦОДы. Например, ЦОД, принадлежащий к Tier I будет лишь ограниченную избыточность хранения данных. В требования к Tier II уже прописано резервирование источников питания и наличие защиты от элементарных человеческих ошибок, а Tier III предусматривает резервирование всех инженерных систем и защиту от несанкционированного проникновения. Наконец, высший уровень надежности ЦОДа, четвертый, требует дополнительное дублирование всех резервных систем и полное отсутствие точек отказа. Кратность резервирования (сколько именно резервных элементов приходится на каждый основной) обычно обозначается буквой M. Со временем требования к кратности резервирования только росли.

Построить ЦОД уровня надежности TIER-III, — это проект, с которым справится только исключительно квалифицированная компания. Такой уровень надежности и доступности означает, что, как инженерные коммуникации, так и системы связи дублированы, и дата-центр имеет право на простой только в количестве около 90 минут в год.

У нас в Safedata такой опыт есть: в январе 2014 года в рамках сотрудничества с Российским Научным Центром «Курчатовский Институт» нами был введен в эксплуатацию второй дата-центр SAFEDATA — Москва-II, который также отвечает требованиям уровня TIER 3 стандарта TIA-942, ранее же (2007-2010) мы построили дата-центр Москва-I, который отвечает требованиям уровня TIER 3 стандарта TIA-942 и относится к категории центров хранения и обработки данных с защищенной сетевой инфраструктурой.

Мы видим, что в IT происходит еще одна смена парадигмы, и связана она с data science. Обработка и хранение больших объемов данных становятся актуальны как никогда. В каком-то смысле, любой бизнес должен быть готов стать немного учеными: вы собираете огромное количество данных о ваших клиентах, обрабатываете их и получаете для себя новую перспективу. Для реализации таких проектов потребуется аренда большого количества мощных серверных машин и эксплуатация будет не самой дешевой. Либо, возможно, ваша внутренняя ИТ-система настолько сложна, что на поддержание ее уходит слишком много ресурсов компании.

В любом случае, для каких бы целей вам не понадобились значительные вычислительные мощности, у нас есть услуга «Виртуального ЦОДа». Инфраструктура как сервис — не новое направление, однако мы выгодно отличаемся целостным подходом, начиная от специфически ИТ-шных проблем, вроде переноса корпоративных ресурсов в «Виртуальный ЦОД», до юридических, таких как консультация по актуальному законодательству РФ в сфере защиты данных.

Развитие информационных технологий похоже на беспощадно несущийся вперед поезд, не все успевают запрыгнуть в вагон когда им предоставляется возможность. Где-то до сих пор используют бумажные документы, в старых архивах хранятся сотни не оцифрованных микрофильмов, государственные органы могут до сих пор использовать дискеты. Прогресс никогда не бывает линейно-равномерным. Никто не знает, сколько важных вещей мы в результате навсегда потеряли и какое количество часов было потрачено из-за до сих пор не вполне оптимальных процессов. Зато мы в Safedata знаем, как не допустить пустых трат и невосполнимых потерь конкретно в вашем случае.

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Информатика. 7 класса. Босова Л.Л. Оглавление

2.1.1. Компьютер

Одним из важных объектов, изучаемых на уроках информатики, является компьютер, получивший своё название по основной функции — проведению вычислений (англ, computer — вычислитель).

Современный компьютер — универсальное электронное программно управляемое устройство для работы с информацией.

Универсальным устройством компьютер называется потому, что он может применяться для многих целей — обрабатывать, хранить и передавать самую разнообразную информацию, использоваться человеком в разных видах деятельности.

Современные компьютеры могут обрабатывать разные виды информации: числа, текст, изображения, звуки. Информация любого вида представляется в компьютере в виде двоичного кода — последовательностей нулей и единиц. Некоторые способы двоичного кодирования представлены на рис. 2.1.


Информацию, предназначенную для обработки на компьютере и представленную в виде двоичного кода, принято называть двоичными данными или просто данными. Одним из основных достоинств двоичных данных является то, что их копируют, хранят и передают с использованием одних и тех же универсальных методов, независимо от вида исходной информации.

Способы двоичного кодирования текстов, звуков (голоса, музыки), изображений (фотографий, иллюстраций), последовательностей изображений (кино и видео), а также трёхмерных объектов были придуманы в 80-х годах прошлого века. Позже мы рассмотрим способы двоичного кодирования числовой, текстовой, графической и звуковой информации более подробно. Теперь же главное — знать, что последовательностям 1 и 0 в компьютерном представлении соответствуют электрические сигналы — «включено» и «выключено». Компьютер называется электронным устройством, потому что он состоит из множества электронных компонентов, обрабатывающих эти сигналы.

Обработку данных компьютер проводит в соответствии с программой — последовательностью команд, которые необходимо выполнить над данными для решения поставленной задачи. Как и данные, программы представляются в компьютере в виде двоичного кода. Программно управляемым устройством компьютер называется потому, что его работа осуществляется под управлением установленных на нём программ. Это программный принцип работы компьютера.

Современные компьютеры бывают самыми разными: от мощных компьютерных систем, занимающих целые залы и обеспечивающих одновременную работу многих пользователей, до мини-компьютеров, помещающихся на ладони (рис. 2.2).


Сегодня самым распространённым видом компьютеров является персональный компьютер (ПК) — компьютер, предназначенный для работы одного человека.

2.1.2. Устройства компьютера и их функции

Любой компьютер состоит из процессора, памяти, устройств ввода и вывода информации. Функции, выполняемые этими устройствами, в некотором смысле подобны функциям мыслящего человека (рис. 2.3). Но даже столь очевидное сходство не позволяет нам отождествлять человека с машиной хотя бы потому, что человек управляет своими действиями сам, а работа компьютера подчинена заложенной в него программе.


Процессор компьютера

Центральным устройством компьютера является процессор. Он организует приём данных, считывание из оперативной памяти очередной команды, её анализ и выполнение, а также отправку результатов работы на требуемое устройство. Основными характеристиками процессора являются его тактовая частота и разрядность.

Процессор обрабатывает поступающие к нему электрические сигналы (импульсы). Промежуток времени между двумя последовательными электрическими импульсами называется тактом. На выполнение процессором каждой операции выделяется определённое количество тактов.

Тактовая частота процессора равна количеству тактов обработки данных, которые процессор производит за 1 секунду. Тактовая частота измеряется в мегагерцах (МГц) — миллионах тактов в секунду. Чем больше тактовая частота, тем быстрее работает компьютер. Тактовая частота современных процессоров уже превышает 1000 МГц = 1 ГГц (гигагерц).

Разрядность процессора — это максимальная длина двоичного кода, который может обрабатываться или передаваться одновременно. Разрядность процессоров современных компьютеров достигает 64.

Память компьютера

Память компьютера предназначена для записи (приёма), хранения и выдачи данных. Представим её в виде листа в клетку. Тогда каждая клетка этого листа будет изображать бит памяти — наименьший элемент памяти компьютера. В каждой такой «клетке» может храниться одно из двух значений: 0 или 1. Один символ двухсимвольного алфавита, как известно, несёт один бит информации. Таким образом, в одном бите памяти содержится один бит информации.

Различают внутреннюю и внешнюю память.

Внутренняя память компьютера

Внутренней называется память, встроенная в компьютер и непосредственно управляемая процессором. Во внутренней памяти хранятся исполняемые в данный момент программы и оперативно необходимые для этого данные. Внутренняя память компьютера позволяет передавать процессору и принимать от него данные примерно с такой же скоростью, с какой процессор их обрабатывает. Поэтому внутренняя память иначе называется оперативной (быстрой). Объём оперативной памяти современных компьютеров измеряется в гигабайтах.

Электрические импульсы, в форме которых информация сохраняется в оперативной памяти, существуют только тогда, когда компьютер включён. После выключения компьютера вся информация, содержащаяся в оперативной памяти, теряется.

К внутренней памяти компьютера относится также ПЗУ — постоянное запоминающее устройтво. В нём хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. После выключения компьютера информация в ПЗУ сохраняется.

Внешняя память компьютера

Для долговременного хранения программ и данных предназначена внешняя (долговременная) память. Внешняя память позволяет сохранять огромные объёмы информации. Информация во внешней памяти после выключения компьютера сохраняется. Различают носители информации — магнитные и оптические диски, энергонезависимые электронные диски (карты флеш-памяти и флеш-диски) и накопители (дисководы) — устройства, обеспечивающие запись данных на носители и считывание данных с носителей. Жёсткий диск — устройство, совмещающее в себе накопитель (дисковод) и носитель (непосредственно диск).

При запуске пользователем некоторой программы, хранящейся во внешней памяти, она загружается в оперативную память и после этого начинает выполняться.

Устройства ввода и вывода информации

Различные устройства компьютера связаны между собой каналами передачи информации (рис. 2.4).


Самое главное

Современный компьютер — универсальное электронное программно управляемое устройство для работы с информацией.

Любой компьютер состоит из процессора, памяти, устройств ввода и вывода информации. Функции, выполняемые этими устройствами, в некотором смысле подобны функциям мыслящего человека.

Вопросы

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Какими слайдами вы могли бы дополнить презентацию.

Читайте также: