Генератор для проверки импульсных блоков питания

Обновлено: 07.07.2024

Усилители бывают разные и пожалуй большая часть моделей питается от промышленной сети 110В (США) или 220В (Россия). Есть промышленные усилители, питающиеся от 24 вольт, а также автомобильные 12 вольтовые.

Рассмотрим оборудование, которое понадобится радиолюбителю в общем случае для ремонта любого усилителя.

Основная масса старых усилителей содержит в своем составе обычный трансформаторный блок питания (см на фото выше) - он прост в ремонте, но имеет некоторые недостатки по сравнению с современными импульсными - это вес (хороший старый усилитель тяжелый) и узкий диапазон питающего напряжения. Хотя в СССР было много моделей акустики с питанием 127/220 В , установка производилась своего рода переключателем.

Оставим сегодня в стороне вопрос о качестве звучания усилителя с импульсным БП на борту, я не меломан , спорить не буду) Я знаю , что есть качественные современные модели, где предприняты определенные схемотехнические решения для уменьшения помех.

С ремонтом трансформаторного блока питания усилителя все просто, а вот для ремонта импульсного блока питания желательно, иметь некоторые приборы, которых нет в арсенале радиолюбителя :

Разделительный трансформатор

Ремонтируемый импульсный блок питания рекомендуется включать через разделительный трансформатор , для обеспечения гальванической развязки от питающей сети - для обеспечения вашей безопасности. Кстати, в промышленных ремонтных цехах СССР были специальные столы с подобным оборудованием) Они также могли быть оснащены ЛАТР.

Разделительный трансформатор и лампа 100Вт на шасси ИБП Разделительный трансформатор и лампа 100Вт на шасси ИБП

Как видно на виджете ниже - цены на разделительные трансформаторы кусаются, а маломощных до 1КВт немного. К счастью, его можно сделать самому, взяв за основу трансформатор от советского телевизора и перемотав обмотки на нужную мощность. Кстати, для ремонта и запуска импульсных БП с минимальной нагрузкой и мотать ничего не надо!

О том как отремонтировать импульсный БП ресивера я рассказывал в этом видео

Лампочка накаливания

При ремонте, импульсный блок питания, а особенно содержащий дорогостоящие и редкие компоненты необходимо подключать через Лампочку Ильича 100Вт. При коротком замыкании, весь ток возьмет на себя лампа, и спецэффектов со сгоревшими компонентами и дымом не будет(

Способ подходит для мощных компьютерных БП и промышленных импульсных БП мощностью до 3КВт .

Важное замечание от Михаила, в импульсных блоках питания где в горячей части применены SMD компоненты, резисторы и т.д. , необходимо использовать лампу мощностью не более 60 Вт.

В связи с широким распространением импульсных блоков питания, в различной технике, требуется в случае поломки, уметь самостоятельно выполнять их ремонт. Все это, начиная от маломощных зарядных для смартфона, со стабилизацией напряжения, блоков питания цифровых приставок, ЖК и LED ТВ и мониторов, до тех же самых мощных компьютерных блоков питания, формата ATX, простейшие случаи ремонта которых, мы уже рассматривали ранее, это все будут импульсные блоки питания.

Фото импульсный блок питания

Также ранее было сказано, что нам для проведения большинства измерений, бывает достаточно обычного цифрового мультиметра. Но здесь есть один важный нюанс: при проверке, например измеряя сопротивление, либо в режиме звуковой прозвонки, мы можем определить только условно не рабочую деталь, по низкому сопротивлению, между ее ножками. Обычно оно составляет где-то от нуля, до 40-50 Ом, либо обрыв, но тогда для этого нужно знать, какое сопротивление должно быть, между ножками у рабочей детали, что не всегда есть возможность проверить. Но в случае проверки работоспособности ШИМ контроллера, этого обычно бывает недостаточно. Нужен либо осциллограф, либо определение его работоспособности, по косвенным признакам.

ПРОБНИК ДЛЯ ПРОВЕРКИ ИМПУЛЬСНЫХ БП

Мультиметр дешёвый DT

Сопротивление между ножками может быть и выше этих пределов, а микросхема на деле, может быть нерабочая. Но недавно столкнулся с таким случаем: разъем шлейфа питания, идущий с блока питания на скалер, сверху имел доступ для измерения только к верхнему, из двух рядов контактов на разъеме, нижний был скрыт корпусом, и доступ к нему имелся только с обратной стороны платы, что сильно затрудняет ремонт. Даже простое измерение напряжения на разъемах, в такой ситуации, бывает затруднено. Требуется второй человек, который согласится держать плату, на разъеме которой, ты будешь проводить измерения напряжения на выводах, с обратной стороны платы, причем часть деталей там, находится под сетевым напряжением, а сама плата находится на весу. Это не всегда возможно, часто люди, которых просишь подержать плату, просто боятся брать ее в руки, особенно если это платы питания, с одной стороны они правильно делают, меры предосторожности с не подготовленным персоналом, всегда должны быть более строгими.

ПРОБНИК ДЛЯ ПРОВЕРКИ ИМПУЛЬСНЫХ БП

ПРОБНИК ДЛЯ ПРОВЕРКИ ИМПУЛЬСНЫХ БП

Что есть, упрощенно говоря, обычный трансформатор? Это две, или более обмоток, на одном сердечнике. Но здесь есть один нюанс, которым мы и воспользуемся, сердечник, как и сами обмотки, в теории могут быть раздельными, и просто находиться рядом, близко друг от друга. Параметры при этом сильно ухудшатся, но для наших целей, этого будет более чем достаточно. Так вот, вокруг каждого трансформатора, или дросселя, со значительным количеством витков, после включения питания схемы, присутствует магнитное поле, и оно тем больше, чем больше витков у обмотки трансформатора, или дросселя. Что же будет, если мы к обмотке трансформатора или дросселя, включенного в сеть устройства, поднесем другой дроссель, например с индуктивностью 470 мкГн, а нам для нашего пробника нужен именно такой, нагруженный светодиодом? Например такой, как на фото ниже:

Пробник для проверки импульсных бп

ПРОБНИК ДЛЯ ПРОВЕРКИ ИМПУЛЬСНЫХ БП

Пробник для проверки импульсных бп

Другими словами, магнитное поле дросселя или трансформатора, будет пронизывать у нас, витки нашего дросселя, и на выводах его появится напряжение, которое можно будет использовать, в нашем случае, для индикации работоспособности схемы блока питания. Подносить пробник разумеется, нужно как можно ближе к проверяемой детали, и дросселем вниз. Как выглядят детали на плате, к которым нужно подносить наш пробник?

Плата монитора

На плате обведены импульсный трансформатор красным, и трансформатор ламп подсветки зеленым. Если схема работает исправно, при поднесении пробника к ним, должен загореться светодиод. Это означает что питание на нашу, образно говоря проверяемую индуктивность, поступает. Разберем на практике. Если выходной транзистор пробит, не будет работать импульсный трансформатор.

Схема импульсного блока питания

Схема импульсного блока питания

На схеме снова выделено красным. Если пробит диод Шоттки, на выходе, после трансформатора, не будет индикации на дросселе фильтра. Но здесь есть один нюанс, если у дросселя на плате, небольшое количество витков, свечение будет либо еле заметным, либо вообще будет отсутствовать. Аналогично, если пробиты, например транзисторные ключи, или диодные сборки, через которые приходит питание на повышающий трансформатор, для ламп подсветки, LCD монитора или телевизора, не будет индикации при проверке на этом трансформаторе.

Фото дроссель для пробника

Фото дроссель для пробника

Стоимость данного дросселя в радиомагазине всего 30 рублей, также иногда они встречаются в блоках питания ATX, обычного светодиода, в стеклянной колбе 5 рублей. В результате мы имеем, простой, дешевый, и очень полезный при ремонтах прибор, который позволяет провести предварительную диагностику, импульсного блока питания, в течение буквально одной минуты. Условно говоря, данным пробником можно проверить, наличие напряжения на всех деталях, представленных на следующем фото.

Дросселя и трансформаторы

Дросселя и трансформаторы

Импульсные источники питания (ИИП, ИБП) имеют множество преимуществ перед традиционными. Но за легкость и компактность надо платить усложненной схемотехникой и неизбежным снижением надежности. Если импульсник вышел из строя, его можно попытаться восстановить. Во многих случаях ремонт неработающего импульсного блока питания можно выполнить самостоятельно.

Коротко об устройстве

Как отремонтировать импульсный блок питания

По сравнению с обычным БП, импульсник имеет достаточно сложную схемотехнику. Сетевое напряжение проходит через фильтр, выпрямляется и сглаживается. Постоянное напряжение поступает на инвертор, где из него транзисторными ключами «нарезаются» импульсы амплитудой около 300 вольт и частотой в несколько килогерц или десятков килогерц. Ключи управляются специальной схемой, выполненной в виде генератора.

Если источник нерегулируемый и нестабилизированный, то генератор просто формирует импульсы определенной частоты. Если нужна стабилизация и регулировка выходного напряжения, это делается способом широтно-импульсной модуляции (PWR, ШИМ). Импульсы следуют с постоянной частотой, а напряжение регулируется путем изменения их длины. Тем же способом можно ограничивать выходной ток, а также выполнить защиту от перегрузки или КЗ. С этой целью предусмотрены цепи регулировки (обратной связи) – постоянные или с возможностью оперативной настройки.

Преобразованные во вторичную обмотку импульсы выпрямляются обычным способом, проходят через сглаживающий фильтр и подаются потребителю. За счет высокой частоты преобразования, габариты импульсного трансформатора невелики. Также невелика емкость (и размеры) сглаживающих конденсаторов в выходном фильтре – за счет этого и получается выигрыш импульсника в массогабаритных показателях.

С чего начать как найти нужную схему

Самый лучший вариант ремонта – если имеется схема на конкретный блок питания. На самом деле все несколько сложнее. Производители не прикладывают к документации на блоки питания принципиальных схем. Приходится их искать в интернете. Проблема в том, что даже известные изготовители не проявляют энтузиазма в выкладывании напоказ своих разработок, а небольшие фирмы из Юго-Восточной Азии вообще не имеют своих сайтов. Приходится собирать по всей сети то, что нашли и выложили энтузиасты. И если для компьютерных блоков питания схему найти относительно просто, то для импульсников, предназначенных, например, для питания LED-лент, дело обстоит сложнее.

Как отремонтировать импульсный блок питания

Так, для блока питания SKS-320 при запросе схемы известная поисковая система выдает только одну адекватную картинку (явно нарисованную добровольцем из Китая). На примере этого устройства далее и будет описан алгоритм поиска неисправности.

Как отремонтировать импульсный блок питания

Для других источников схемы может не найтись вовсе. В таком случае лучший выход – срисовать схему с платы самостоятельно. Это требует определенной квалификации – надо, как минимум, знать, как выглядят электронные компоненты, а также приблизительно представлять ожидаемый результат. Для этого надо знать, по какой схемотехнике выполняются блоки питания. В целях облегчения работы можно на плате пометить маркером дорожки питания и пронумеровать элементы (если они уже не пронумерованы).

Другой путь – найти подобную схему, которая может полностью и не совпасть с реальным блоком, но это лучше, чем ничего.


Импульсный блок питания – подборка схем для самостоятельного изготовления

Основные неисправности импульсного блока питания

Внешние проявления неисправности могут быть такими:

  • посторонний шум, запах дыма, горелой изоляции при включении (на холостом ходу или под нагрузкой);
  • импульсный блок питания при включении не запускается – нет индикации включения, отсутствует выходное напряжение (или все напряжения);
  • отсутствует одно из выходных напряжений (если у БП есть несколько каналов);
  • нестабильное выходное напряжение;
  • повышенное или пониженное напряжение на выходе.

Отдельно надо выделить неисправность, когда не включается вентилятор у блока с принудительным охлаждением. Сама по себе проблема на работоспособность не влияет, но в ближайшем будущем это может привести к перегреву и поломке.

Если наблюдается первая по списку проблема, блок питания надо немедленно обесточить и до устранения неисправности в сеть 220 вольт не включать.

Как можно проверить ИБП

Если есть сомнения, можно проверить работу ИБП. Для этого его надо включить под нагрузкой – некоторые источники на холостом ходу просто не запускаются. В качестве эквивалента можно применить автомобильные лампочки, если блок рассчитан на выходное напряжение 12 вольт, или другие лампочки накаливания, соединяя их последовательно и параллельно для создания требуемой нагрузки. Если подходящих ламп нет, можно составить нагрузку из резисторов необходимого сопротивления и потребной мощности.

Как отремонтировать импульсный блок питания

Для простой проверки работоспособности ток через лампы должен быть хотя бы 5..10% от номинала ИБП. Если источник с принудительным охлаждением, надо нагрузить его так, чтобы ток составил не менее половины максимально допустимого (а лучше – ближе к верхнему пределу). Это нужно, чтобы заставить сработать реле температуры для проверки включения вентилятора.

Методика ремонта блоков питания

Те, кто занимается восстановлением работоспособности электронной техники, знают, что 90+ процентов ремонта сводится к поиску неисправности. Замена найденного вышедшего из строя элемента в большинстве случаев занимает немного времени и не требует особых навыков.

Второй момент – у импульсников одного типа бывают конструктивные слабые места, ведущие к характерным проблемам, но в целом поиск неисправности – процесс творческий, и пошаговую в буквальном смысле инструкцию дать невозможно. Но привести общую методику поиска вполне реально, хотя надо понимать, что она ничего не стоит без достаточной квалификации и наличия приборов. Как минимум, потребуются мультиметр и осциллограф.

Визуально можно лишь определить вздувшиеся и потекшие оксидные конденсаторы. Даже если при осмотре видны обугленные элементы, их замена может ничего не дать – причиной выгорания могут быть другие комплектующие.

Как отремонтировать импульсный блок питания

Вздувшиеся оксидные конденсаторы обнаруживаются визуальным осмотром.

Поиск неисправности

Диагностирование неисправного устройства надо начать с анализа. Для первых прикидок достаточно знания структурной схемы БП и внешнего проявления неисправности.

Как отремонтировать импульсный блок питания

Расположение основных элементов на плате ИИП SKS-320.

Если при включении ИБП совсем не подает признаков жизни (не нагревается, нет индикации напряжения, не слышен едва уловимый писк, нет выходного напряжения) или его выходное напряжение меньше номинального, то первое, что надо проверить – исправность предохранителя (поз.1 на рисунке). Если он в порядке, надо проверить уровень напряжения на конденсаторе С5 (поз. 2, точка 1 на схеме). На нем должно быть около 300 вольт. Если напряжение отсутствует, можно предположить неисправность высоковольтного выпрямителя. Но сначала надо убедиться, что до него доходит

220 вольт. Если нет – надо искать, где оно исчезает.

Дальше надо проверить работу ШИМ контроллера. В данном случае он реализован на микросхеме TL494 (поз.3). Функционал и нумерация ее выводов сведены в таблицу.

выходного транзистора 2

Осциллографом надо проверить, что на выходах 8,11 микросхемы присутствуют противофазные импульсы. Если их нет, надо проверить наличие напряжения питания на выводе 12 (поз.4) TL494.

Как отремонтировать импульсный блок питания

При его отсутствии, надо найти причину потери. Если питание есть, а импульсов нет, надо проверить обвязку микросхемы.

При наличии генерации надо осциллографом убедиться в наличии импульсов на первичной обмотке трансформатора Т1 (точки 3,4 на рисунке). Их амплитуда должна быть около 150 вольт. Если нет – надо проверить исправность конденсаторов делителя С5, С6. Для этого очень полезен ESR-метр.

Как отремонтировать импульсный блок питания

Измерение параметров конденсатора с помощью ESR-метра.

Если у одного или обоих конденсаторов низкое качество изоляции, их надо заменить. Если ESR-метра нет, можно замерить напряжение в точке 2. Там должно быть около 150 вольт – половина от напряжения в точке 1. Если оно значительно отличается, это тоже говорит о неисправности одной или двух емкостей. Если там все в порядке, проверяется исправность транзисторов Q4, Q5 (поз.5), трансформатора Т2 (поз.7), транзисторов Q1, Q2 (поз.6), а также всех диодов в схеме драйвера и выходного каскада инвертора.

Если все в порядке, и импульсы на первичной обмотке есть, а на вторичной отсутствуют, надо проверить трансформатор T1 (поз.8), вызвонив целостность всех обмоток.

Если на вторичной обмотке импульсы присутствуют, надо проверить элементы выпрямителя – сборку вторичного выпрямителя D3 (поз.9). Если она неисправна полностью, то выходного напряжения не будет. Если вышел из строя только один диод – на выходе будет меньшее напряжение.

Также причиной повышенного и пониженного напряжения может быть неисправность цепей обратной связи. На схеме ОС по напряжению выполнена на операционном усилителе U1. На плате нет ничего похожего на ОУ, следовательно, имеется небольшое несоответствие модификации блока питания и найденной схемы. К этому надо быть готовым, а справляться с такой ситуацией надо самостоятельно, разобравшись в особенностях схемотехники. ОС по току организована через дроссель L1 (поз.10) и шунт 680 Ом. Измерением температуры на этом дросселе организована автоматика включения вентилятора, датчик установлен в непосредственной близости к дросселю. Проверить включение кулера при отсутствии соответствующей нагрузки, можно нагревом датчика с помощью, например, фена. Если вентилятор не запускается, надо искать неисправность.


Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Если выходное напряжение нестабильно – пожалуй, это самый сложный случай. Это значит, что присутствует «мерцающая» неисправность, которую отловить нелегко. Можно попробовать следующие действия:

  • осмотреть плату под увеличением на предмет плохих паек и микротрещин;
  • пропаять все соединения заново;
  • деревянной палочкой пошевелить поочередно все элементы, наблюдая за реакцией выходного напряжения;
  • проверить конденсаторы выходного фильтра С15, С16 (поз.11).

Если все напряжения, кроме одного присутствуют, значит в целом ИБП исправен. Надо проверить детали вторичного выпрямителя соответствующего канала (диодную сборку, конденсаторы фильтра и т.д.). Если они исправны, надо вызвонить соответствующую обмотку импульсного трансформатора. У изучаемого блока выходное напряжение одно, но есть канал вспомогательного напряжения (для вентилятора и питания драйвера ключей). По нему также можно судить об исправности блока питания.

Для других ИБП указанный алгоритм поиска также применим с поправкой на конкретную схему. А вообще причиной неисправности может быть абсолютно любой элемент. Вопрос его нахождения лежит в сфере квалификации мастера, его опыта и немного в области удачи.

Устранение неисправности

Найденная неисправная деталь выпаивается и заменяется другой – точно такой же или аналогом. Если это силовой элемент, установленный на радиаторе, надо уделить внимание правильности крепления на теплоотводе - восстановить наличие теплопроводной пасты и, при необходимости, изолирующей пластины (слюдяной или из упругого материала).

Намоточные элементы выходят из строя нечасто, их лучше заменить аналогом из блока-донора. Если донора нет, неисправный узел можно попытаться починить:

  • разобрать дроссель или трансформатор;
  • последовательно смотать обмотки, считая витки;
  • замерить толщину каждого провода штангенциркулем или другим инструментом;
  • подобрать такой же провод по сечению (если взять больший диаметр, обмотка может не уместиться, если меньший – может перегреться при работе);
  • намотать обмотку (или несколько) заново.

При намотке надо соблюдать аккуратность, мотать виток к витку, не допуская образования петель и узелков. Отдельное внимание надо уделить межобмоточной изоляции трансформатора.

Как отремонтировать импульсный блок питания

Трансформатор со смотанной верхней обмоткой (виден слой межобмоточной изоляции).

Если штатные прокладки между обмотками аккуратно снять не удалось, их можно выполнить тонкой фторопластовой лентой. Проблемы могут быть при разборке сердечника. Обычно он склеен из двух половин, и аккуратно разобрать не всегда получается – феррит разлетается на несколько частей.

Как отремонтировать импульсный блок питания

Ферритовый сердечник, расколовшийся на несколько частей.

Ничего страшного – склеенный заново сердечник работает не хуже цельного. Не надо только накладывать толстый слой клея, чтобы избежать немагнитных зазоров и следить, чтобы при разборке не образовалось слишком мелких осколков, которые склеить не получится. Но в целом надо осознавать, что шансы на успешный ремонт импульсного трансформатора невысоки.

Как отремонтировать импульсный блок питания

Когда лучше обратиться в сервис

Если нет минимально необходимого приборного парка, лучше обратиться в специализированную организацию, которая занимается ремонтом импульсных источников питания. Без минимума приборов затея в 99% случаев обречена на провал. Также не стоит надеяться отремонтировать устройство при отсутствии схемы (хоть в каком-либо виде) и при недостаточной квалификации. Нет большого смысла браться за ремонт (да и нести в сервис) и в ситуации, когда часть элементов выгорело. Их можно заменить, но вот изоляционные свойства участка платы, покрытого сажей, будут далеки от заявленных производителем, и новой неисправности долго ждать не придется.

Для наглядности рекомендуем серию тематических видеороликов.

А в целом, ремонт импульсников - дело неблагодарное и не очень рентабельное. Не так они и дорого стоят, чтобы затевать кропотливый поиск неисправности. Но если другого выхода нет или сам процесс доставляет удовольствие, то материалы обзора окажутся полезными.


В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.


Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.


Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.


Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор


Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение напряжения должно быть около 500мВ, а в обратном звониться как разрыв.



Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.


Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Читайте также: