Из чего состоит процессор смартфона

Обновлено: 07.07.2024

Краткий экскурс об устройстве процессоров современных смартфонов

Процессор или же чипсет, иначе говоря система на чипе (SoC), неотъемлемая часть любого устройства, будь то робот пылесос или умные колонки. В этой статье мы более подробно разберем, что такое система на чипе, но при этом постараемся рассказать так, чтобы было понятно любому рядовому пользователю.

На рынке мобильных устройств существует десятки различных процессоров. И это не привычные процессоры, которые устанавливаются в ПК. SoC или же система на чипе содержит в себе память, различные блоки обработки, модемы и многое другое и все это распаяно на одной небольшой плате.

Система на чипе — сердце вашего смартфона

Подобная схема объединения важных компонентов на одной печатной плате значительно помогает в удешевление производства смартфона, а также способствует наилучшему энергопотреблению. К процессору (SoC) впоследствии подключаются остальные компоненты смартфона.

Приведу небольшой список модулей, которые установлены в системе на кристалле.

  • Центральный процессор (ЦП) — «сердце» SoC. Выполняет основные инструкции и алгоритмы операционной системы и приложений
  • Графический процессор (GPU) — выполняет задачи, связанные с графикой, отрисовка графической оболочки операционной системы, пользовательский интерфейс в приложениях, а также обрабатывают 2D и 3D графику.
  • Блок обработки изображений (ISP) — преобразует данные полученные с камеры смартфона в фотографии и видео.
  • Цифровой сигнальный процессор (DSP) — выполняет более сложные математические функции, чем центральный процессор. Производит распаковку музыкальных файлов и анализ данных датчика гироскопа.
  • Блок нейронной обработки (NPU) — широко применяемый модуль, используемый в смартфонах среднего и высшего сегмента. Служит для аппаратного ускорения работы алгоритмов нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта.
  • Видеокодер / декодер — обеспечивает энергоэффективное преобразование видеофайлов и форматов.
  • Модемы — преобразует беспроводные сигналы в данные, понятные вашему телефону. Компоненты включают модемы сотовой связи, WiFi и Bluetooth.

Также важно знать, что система на чипе, как и любой другой чип производится по определенному техпроцессу. Техпроцесс — это технологический процесс изготовления полупроводниковых материалов. Совершенствование технологии позволяет улучшить характеристики полупроводников (размеры, энергопотребление, рабочие частоты, стоимость) .

На сегодняшний день, мобильные процессоры построенные на архитектуре ARM, выполнены по 7-нм техпроцессу, но уже сейчас ведется освоение производства полупроводников по 5-нм техпроцессу.

Кто производит мобильные процессоры

На сегодняшний день главным производителем мобильных процессоров является Qualcomm. Следом идет Mediatek и Samsung, а также Huawei, которые в скором времени из-за санкций США прекратят разработку и производство фирменных процессоров Kirin.

Итак, Qualcomm выпускает мобильные процессоры для флагманов, среднячков и бюджетных смартфонов. Флагманские процессоры представляют линейку Snapdragon 8xx. Процессоры среднего сегмента входят в 600-ю и 700-ю серию. Некоторые из этих чипов могут иметь постфикс с 5G или с буквой “G”, первое обозначение означает поддержку сетей пятого поколения, буква “G” в название чипа означает что он заточен под игры. Процессоры начального уровня относятся к 400-й серии.


Samsung также производит чипсеты для различных сегментов. Флагманская серия относится к 900-й серии, последний процессор Exynos 990, он установлен в Galaxy S20/ Note 20. В бюджетных смартфонах устанавливают процессоры с номером Exynos 7904 и Exynos 9610

Помимо вышеперечисленных процессоров существуют чипы от всем известной компании Mediatek. Их решения чаще всего можно встретить в бюджетных и среднебюджетных смартфонах, например в OPPO Reno 3. Mediatek производит платформы с именем Helio, существует основная линейка “P”, линейка нацеленная на игры под индексом “G”, а совсем недавно были представлены процессоры под именем Dimensity с поддержкой 5G .

Процессор — за что он отвечает и для чего нужен

Центральный процессор или же система на чипе в простонародье называют просто процессором. Он разработан и спроектирован так, чтобы выполнять гибкий круг задач. Процессор в первую очередь отвечает за работу системы Android и приложений внутри ОС.

Кроме того, он отвечает за синхронную работу других чипов на печатной плате. ЦП на борту для обработки данных имеет блоки прогнозирования, регистров и исполнительных блоков. Грубо говоря они отвечают за просчет сложных математических алгоритмов. Регистры содержат биты данных или указатели на память, часто в 64-битных форматах данных.


Мобильные процессоры сейчас по большей части построены на архитектуре ARM, эта платформа сейчас занимает огромный рынок и семимильными шагами вытесняет архитектуру x86. Всеми известная компания Apple уже вовсю начинает переход на своих знаменитых компьютерах Mac и ультрабуков MacBook на собственные процессоры Apple Silicone, которые в свою очередь основаны на ARM архитектуре.

Процессоры на архитектуре ARM на данный момент выпускаются либо с восемью ядрами, из которых чаще всего два производительных и шесть энергоэффективных ядер, предназначенных для повседневных задач. Например в Snapdragon 865 используется схема 1+3+4, из которых первое ядро Cortex-A77 на частоте 2.84 ГГц, три ядра Cortex-A77 на частоте 2.42 ГГц и четыре ядра Cortex-A55 на частоте 1.8 ГГц. В обновленной версии Snapdragon 865+ инженерам удалось достигнуть 3,4 ГГц на старшем ядре.

Графика и все что с ней связано

За графику и отрисовки графического интерфейса в свою очередь отвечает графический ускоритель (графический процессор). В смартфонах по понятным причинам он не такой же, как в привычных ПК.

Графический адаптер служит для тех задач, под которые центральный процессор либо не предназначен, либо для для тех, где ГП справится в разы быстрее. Например, в параллельных задачах, в то время как ЦП подходит для последовательных, ГП способен обработать огромное количество информации выводимое на экран смартфона.


На данный момент существует два основных графических процессора — это Mali от ARM и Adreno от Qualcomm. Также существует ГП PowerVR от Imagination Technologies , который до недавнего времени устанавливался в смартфоны и планшеты от Apple.

Чем лучше процессор тем лучше фотографии

Ни для кого не секрет, что качество фотографии зависит не только от сенсора, линз и софта, но и от мощности процессора и блока обработки изображения. Вспомним Google Pixel 4, этот смартфон получил всего одну камеру, но при этом за счет флагманского процессора и фирменного гугловского процессора обработки фото, качество фотографий до сих пор на голову выше чем у многих смартфонов.

Google-Pixel-4

В последних смартфонах Huawei (Mate 30 Pro, P40 Pro) работающие на процессорах Kirin 990 являются лучшими фотофлагманами за счет доработанного блока ISP, который позволил улучшить шумоподавление в фото и видео. Это стало возможным благодаря технологии 3D-фильтрацией (BM3D) , обычно она используется в цифровых фотоаппаратах, исходя из этого становится понятно почему флагманы Huawei лучше по части фото чем все конкуренты.

Для чего нужны блоки нейронной обработки

Блоки нейронной обработки уже вовсю внедряют в системы на чипах. Нейронные процессоры служат для обработки математических алгоритмов, расчетов и служат для работы нейронный сетей. NPU разработаны так, чтобы выполнять задачи связанные нейронными сетями намного быстрее чем классический ЦП. Они используют собственную память, не обращаясь в оперативную, для того чтобы ускорить выполнение работы.

Huawei дразнит Mate 20X, огромным игровым смартфоном с улучшенным охлаждением

Во-первых, нейронные сети в смартфонах используются для обучения операционной системы, ОС учится запоминая поведение (использование смартфона) пользователя. Смартфон учится, запоминая ваше поведение, какие приложения вы используете, как часто вы запускаете ту или иную программу. Во-вторых, машинное обучение используется для достижения лучшего качества фотографии. Это еще одна причина по которой флагманы Huawei стали так круто фотографировать, все благодаря прокаченному NPU в Kirin 990.

Заключение

Относительно недавно тема процессоров, их производителей и сроков выхода новых моделей была интересна узкой группе гиков. Сейчас гораздо большее количество людей знает, чем Qualcomm лучше MediaTek, какой конкретно чип подходит для тех или иных задач и когда не стоит смотреть на количество ядер или частоту.

Это же сопровождается большим количеством мифов, неточностей и недосказанностей. В этом материале мы расскажем все, что вам нужно знать о системах-на-кристалле, которые большая часть пользователей привыкла называть просто «процессорами»; научим определять их возможности точнее чем «Qualcomm лучше MediaTek»; и рассмотрим на примерах самые популярные чипы.

Развеивая мифы

Qualcomm Snapdragon 845 – это процессор? A Apple A11? Нет, это микросхемы, состоящие из нескольких элементов, включая тот самый микрочип, о которым мы привыкли говорить, рассуждая о компьютерных процессорах, таких как Intel i7-7700 и других.


Реальные размеры типичной системы на кристалле

Названные выше чипы и другие известные вам названия (Kirin 970 или Helio P60) – это системы на кристалле, однокристальные системы или системы на чипе (от англ. system on a chip). В английском используется аббревиатура SoC.

Тем не менее понятие «процессор» так плотно вошло в употребление, что даже специализированные СМИ, точно знающие значения этих терминов, используют их, ведь так понятнее потребителям. Правильнее же говорить чип или система с дальнейшим указанием ее названия.

Состав чипа

Профессиональный инженер видит в типичном чипе сотни элементов, но нам важно разбирать лишь основные его составляющие, особенно, если мы говорим о мобильной системе:

Процессорный модуль, состоящий из нескольких ядер. Их тип и производительность во многом определяют возможности системы. Именно этот единственный элемент стоит называть процессором

Графический модуль, определяющий возможности устройства в играх и других задачах с обработкой графики. Можно встретить сокращения GPU (Graphical Processing Unit) или VPS (Visual Processing Sybsystem)

Сотовый модем влияет на возможности устройства в вопросах связи: интернета и телефонии

Аудиочип отвечает за качество звучания устройства


Условная схема типичной системы на кристалле на примере Qualcomm Snapdragon 801

Здесь можно было бы затронуть модуль DSP (digital signal processor), обрабатывающий цифровые сигналы, процессор данных изображений (ISP) и процессор безопасности (secure processing unit), контроллеры памяти, регулятор напряжения и еще более мелкие элементы, но чаще всего производители даже не упоминают их в «материалах для всех»,а знание таких подробностей не сделает ваш выбор конкретного чипа осознаннее.

Характеристики чипа

Мы добрались до самого интересного раздела — как научиться определять возможности системы и сравнивать ее с остальными. Вам нужно хотя бы в основе разбирать типы комплектующих, чтобы корректно их сопоставлять между собой. Хотя игроков на рынке систем на кристалле не так уж и много, так что если вы заинтересуетесь, разберетесь за один присест.

В процессе написания этого материала мы столкнулись с тем, что определение архитектуры отличается и при этом довольно спокойно принимается в самых разных значениях.

Условно говоря, архитектура — это способность чипа исполнять определенный машинный код. Это методы взаимодействия аппаратных составляющих и софта. На рынке компьютеров преобладает архитектура x86 авторства Intel, а в мобильном мире — ARM.

ARM – это и архитектура, построенная на платформе RISC, и название компании, которая ее лицензирует. Последняя предоставляет сторонним производителям возможность самостоятельно создавать чипы.

На ARM работают, грубо говоря, все современные смартфоны или планшеты.

Актуальной версией архитектуры считается ARMv8.4-A. Этот факт вряд ли будет упоминаться в описаниях чипов, но запомнить его стоит.

Напоследок стоит отметить, что переход с ARMv7 на ARMv8 обозначил смену архитектуры с 32-битной на 64-битную. Говоря простым языком, с того момента как произошла смена, чипы смартфонов научились работать с числами, имеющими не 32, а 64 разряда. Это не только увеличило их производительность, но и позволило использовать в связке с ними бóльшие объемы оперативной памяти.

2. Количество ядер

Все-таки об архитектурах речь заходит не так часто, как о ядрах. В эпоху компьютеров многие судили по их количеству о том, насколько мощный ПК. Теперь почти все знают, что это не главное.


10-ядерная система на примере чипа MediaTek: 2 ядра Cortex-A72 для самых сложных задач, 4 Cortex-A53 с частотой 2.0 ГГц для оптимального соотношения производительность/энергоэффективность и 4 энергоэффективных Cortext-A53

В случае с SoC значение имеет тип каждого отдельного ядра. Производители часто объединяют в одном модуле несколько производительных ядер, которые будут использоваться для производительных задач, в частности, ресурсоемких игр, и некое число энергоэффективных ядер. Последние уменьшат энергопотребление в тех ситуациях, когда пользователь работает с простыми программами. Такой принцип называется big.LITTLE.

3. Тактовая частота

Этот пункт также часто вызывает недоразумения. Частота всегда указывается в герцах. Средний показатель современного чипа: 1.5-2.2 ГГц.

ГГц — расшифровывается как «гигагерц». Гига — миллиард, герц — один цикл в секунду. Частота чипа — это то, сколько операций (или тактов) он способен выполнить в секунду.

Но стоит понимать, что более высокая частота (2,4 ГГц) среднепроизводительного чипа хуже чем средняя частота (1,8 ГГц) производительной системы, если речь идет о сложных задачах.

4. Кэш (сверхоперативная память)

Это миниатюрный модуль, предоставляющий процессору некий объем памяти. Он дает возможность не обращаться каждый раз к оперативной памяти (которая работает медленнее, чем чип) и таким образом увеличить скорость исполнения простых программ.

5. Технологический процесс

Технологический процесс полупроводникового производства определяется разрешающей способностью оборудования для производства. Проще объяснить будет довольно сложно, но если упростить - это разрешение электронного пучка, используемого в литографии.

Флагманские чипы 2018 года выполнены по 10нм процессу, однако уже в конца года ожидается ряд чипов, построенных по 7нм.


Индустрия слегка отстает от некогда заданного графика, но будущее сулит невероятные прорывы

Уменьшение разрешающей способности дает возможность уместить ту же систему на физическом кристалле меньшего размера или, соответственно, большую систему на кристалле такого же размера.

Топовые производители

Как мы уже знаем, почти все процессоры построены на архитектуре ARM. Но компания абсолютно лояльно относится ко всем остальным и предлагает им широкие возможности в плане создания собственных решений. Те же Apple и Samsung не просто создают на базе ARM собственные чипы, но даже уникальные версии ядер.


В лидерах по производству однокристальных систем такие компании как Apple (серия Apple A), Qualcomm (Snapdragon), MediaTek (Helio), Samsung (Exynos), Huawei (Kirin).

Некоторое время назад в мобильных устройствах можно было встретить чипы Intel. Этот тот редкий случай, когда вместо архитектуры ARM использовалась x86. Правда, подобное положение вещей создавало проблемы для производителей смартфонов, ведь другая архитектура предусматривает иные принципы работы с софтом, и поэтому часто даже очень оптимизированные игры и программы хуже работали на таких системах. В свое время в пользу Intel свой выбор сделала компания Asus, представившая линейку из трех смартфонов Asus Zenfone 4, 5 и 6, а потом и Zenfone 2 на Intel Atom. На этом эксперимент был окончен, а сейчас Zenfone комплектуется чипами Snapdragon.

Отдельно стоит отметить компанию Nvidia, которая лишь экспериментирует на мобильном рынке, но не пытается с кем-то конкурировать. Nvidia Tegra использовался в минимальном количестве устройств, а сейчас на нем работает портативная консоль Nintendo Switch, и неизвестно, есть ли у компании дальнейшие планы в этом направлении.

Кое-какие шаги в этом направлении предпринимает и китайская Xiaomi. Зимой прошлого года она показала первое поколение Surge S1. Многие ждали продолжения в этом году и ожидали, что он предстанет в Xiaomi Mi A2, но компания пока хранит молчание.


Если Xiaomi не бросит начатое, то нас ждет еще один конкурентоспособный игрок на рынке

О составляющих на примерах

Теперь, когда мы разобрали, что из себя представляет типичная система на кристалле, из чего она состоит и чем характеризуется, можем рассказать о тех же вещах, но уже называя конкретные имена.

Первым делом речь всегда заходит о ядрах. В случае с процессорами ARM это почти всегда Cortex. Например, в топовом на 2018 год Kirin 970 используются самые производительные ядра ARM Cortex-73. Всего их 4, несмотря на то что система восьмиядерная. Еще 4 ядра — это Cortex-A53, более энергоэффективные. Это тот самый принцип big.LITTLE, когда система включает в себя несколько ядер для разных задач.


Хоть ARM и является повсеместной архитектурой, компания дает возможность сторонним производителям максимально кастомизировать свои чипы. Так, Qualcomm в топовых чипах предлагает собственные решения (основанные на тех же Cortex) — Kryo. У флагманского Snapdragon 845, например, стоит 8 ядер Kryo 385. В данном случае используются одни и те же ядра с разной частотой: для требовательных задач до 2,8 ГГц, а в простых — до 1,8 ГГц.

Со следующими названиями графических ускорителей вы также наверняка знакомы. Qualcomm использует собственную разработку Adreno, у Apple стоят решения от PowerVR, а у всех остальных ARM Mali – разработка той же компании, которой принадлежит архитектура. Возможности каждого ускорителя можно определить количеством ядер, но намного важнее смотреть на поддерживаемые технологии: OpenGL ES 3.2, DirectX 12 и так далее.

В скобочках с уточнением техпроцесса часто указывается название компании, которая производит чипы (Samsung или TSMC).

Названия сетевых модемов вам вряд ли что-то скажут, поэтому всегда смотрите на максимальные показатели скорости, достижимые при их использовании в устройствах.

Тенденции

Тик-так

Большинству интересующихся сферой информационных технологий известно понятие «Тик-так». Это стратегия производства микропроцессоров компании Intel, которая распределена на 2 стадии: «Тик» - уменьшение технологического процесса; «Так» - оптимизация текущего поколения. У топовых производителей мобильных чипов есть аналогичные подходы, которые не так давно были нарушены. Это связано с тем, что изначально каждая стадия должна занимать год, но из-за физических ограничений, связанных с невозможностью так быстро уменьшать техпроцесс, компании работают с одной технологией чуть дольше. К слову, первые 7нм чипы должны показать в конце 2018 года, а вот когда ждать следующего обновления неизвестно.


Вот так это выглядит у Intel, но мобильная индустрия уже впереди

Искусственный интеллект

Эту тему также эксплуатируют почти все производители.

У Huawei есть NPU (neural processing unit) для задач, связанных с работой нейронных сетей, искусственного интеллекта и так далее. У A11, который имеет приставку Bionic в названии, за это отвечает Neural Engine. А вот у Qualcomm пока нет выделенного решения. За ИИ в чипах компании отвечает сигнальный процессор Hexagon.

В скором времени стоит ожидать появления отдельных модулей даже в среднебюджетных и недорогих чипах. Пока этим может похвастаться лишь Helio P60.

Модем

Здесь речь идет уже больше не о чипах, а о производителях устройств, которые успеют использовать их раньше остальных, застолбив за собой звание первых со связью нового поколения.

Новое поколение связи не только обеспечит большую скорость данных, но и даст возможность использовать режим «device-to-device», минуя сервера. Что касается чипов, то они постепенно начнут появляться сначала в дорогих устройствах, со временем становясь решением для всех.

Резюмируя


В отличие от микропроцессоров, устанавливаемых в компьютеры и ноутбуки, системы на кристалле (SoC) состоят из множества элементов и представляют из себя целые устройства, размещенные, тем не менее, на одной интегральной схеме.

Основные элементы любой такой схемы: процессорный модуль из нескольких ядер, графический процессор, модем, аудиочип и цифровой сигнальный процессор. Достаточно знать только их, чтобы составить впечатление о производительности чипа.

Все современные мобильные системы построены на архитектуре ARM, но сторонние производители добавляют в них собственные элементы, начиная с ядер и заканчивая графическими ускорителями. Двигателями отрасли являются Qualcomm, MediaTek, Huawei, Samsung и Apple.

В конце этого года мы ожидаем появления первых систем, построенных по 7нм техпроцессу, увеличения роли модулей для работы с искусственным интеллектом и перехода на связь нового поколения (5G).

Каждый смартфон состоит из множества сложных компонентов и вы не всегда будете думать о них перед выбором модели аппарата. Но, тем не менее, важно знать какие аппаратные средства помогают вашему смартфону функционировать.

В этой статье мы разберем основные части того, что стало одним из самых важных электронных устройств на рынке. Рассмотрим из чего состоит смартфон и для чего нужен тот или иной компонент. Сейчас существует множество различных моделей смартфонов, разных конструкций, с разными характеристиками, временем автономной работы и так далее. Но если вы разбираетесь в аппаратной начинке смартфона, то выбрать нужную модель будет намного проще.


Из чего состоит смартфон

1. Дисплей


Один из самых очевидных компонентов смартфона - это его экран. Все что вы видите на экране обрабатывается и контролируется внутренними компонентами. Сейчас существуют две технологии изготовления дисплеев:

  • Жидкокристаллические экраны, они изготовляются по технологии IPS или TFT;
  • Светодиодные экраны, изготовленные по технологии AMOLED или Super AMOLED.

Жидкокристаллический дисплей использует подсветку для получения изображения. Белый свет проходит сквозь фильтры и благодаря возможности управления свойствами кристаллов вы можете видеть разные цвета. Свет не создается самим экраном, он создается источником света за ним.

Светодиодный экран работает по-другому. Каждый пиксель, который вы видите на экране - это отдельный светодиод. Здесь сам экран создает яркие и красочные цвета. Преимущество Super AMOLED по сравнению с IPS в том, что когда пиксель выключен вы будете видеть черный цвет, он не использует батарею. Поэтому смартфоны с AMOLED более эффективны для автономной работы. Но экраны AMOLED дороже чем IPS, поэтому смартфон с таким дисплеем будет стоить значительно дороже.

2. Аккумулятор


В смартфонах обычно используются литий-ионные аккумуляторы, они могут быть съемными или не съемными. Благодаря этой технологии вам не понадобиться калибровка или тестирование аккумулятора, как при использовании батарей на основе никеля. Тем не менее у этих аккумуляторов есть множество своих проблем.

3. System-on-a-Chip (SoC)


SoC или материнская плата с процессором - это самый важный компонент вашего смартфона. Некоторые пользователи могут думать, что это процессор устройства, но это нечто большее. SoC включает в себя не только процессор, но и графический процессор, LTE-модем, контроллер экрана, беспроводные адаптеры и другие блоки кремния, которые заставляют телефон работать.

Существуют смартфоны, использующие SoC от Qualcomm, MediaTek, Samsung, собственные чипы компании Krirn, Apple, но все они используют одну и ту же архитектуру - ARM. ARM не только производит процессоры, но и лицензирует их архитектуру для других компаний, поэтому все могут использовать одну технологию для создания современных и мощных SoC.

Некоторые компании выпускают свои архитектурные линейки, которые совместимы с ARM и могут использоваться в смартфонах. Примером могут служить наборы микросхем Apple, работающие на процессорах Cyclone или процессоры Qualcomm Kryo. SoC - это основные компоненты из чего состоит смартфон.

4. Внутренняя и оперативная память


Ни один смартфон не сможет работать без оперативной памяти и системного хранилища. Большинство устройств используют оперативную память LPDDR3 или LPDDR4, а некоторые высококлассные модели поставляются с LPDDR4X. Сочетание LP означает Low Power, напряжение питания этих микросхем снижено, а это делает их более эффективными в плане потребления энергии.

LPDDR4 более эффективен чем LPDDR3, а LPDDR4X эффективнее и экономичнее обоих. Также есть еще более аффективная память - LPDDR5.

Что касается внутреннего хранилища, то здесь применяется флеш память от 32 до 256 Гб. Требования пользователей постоянно растут и в соответствии с ними будут расти объемы. Когда вы включите телефон, то увидите что размер накопителя меньше чем заявлен. Например, сказано что накопитель на 64 Гб, а для записи доступно 53-55 Гб. Эта память занята операционной системой и приложениями.

5. Модемы


Каждый из производителей пытается выпустить самый быстрый LTE-чип. На данный момент самый быстрый 9-LTE чип, но его нет смысла брать, если ваша сотовая сеть не поддерживает такую скорость.

6. Камера


У всех смартфонов есть фронтальная и передняя камеры. Камеры состоят из трех основных частей:

  • Сенсор - обнаруживает свет;
  • Линза - концентрирует изображение;
  • Процессор изображений.

Количество мегапикселей камеры смартфона по-прежнему остаются очень важным критерием, но теперь это имеет намного меньшее значение. Сейчас основным ограничивающим фактором становится сенсор камеры, а также его чувствительность когда через него проходит свет.

Сенсор может вести себя по-разному в каждом смартфоне, поэтому фото или видео будет иметь разный контраст, оттенки, насыщенность по сравнению с другими смартфонами. Поскольку смартфоны имеют небольшой размер сенсора, они, как правило, плохо работают в условиях слабого освещения.

7. Датчики

В большинство современных смартфонов встроено пять основных датчиков которые позволят использовать смартфон более удобно. Вот они:

  • Акселерометр - используется приложениями для определения ориентации устройства и его движений. Например, позволяет использовать встряхивание смартфона для переключения музыки;
  • Гироскоп - работает с акселерометром, чтобы обнаружить вращения вашего телефона. Полезно для игр в гонки;
  • Цифровой компас - помогает найти Север для нормальной ориентации на картах;
  • Датчик освещенности - этот датчик позволяет автоматически устанавливать яркость экрана в зависимости от окружающего света и помогает увеличить время автономной работы.
  • Датчик приближения - во время разговора если устройство приближается к вашему уху, этот датчик автоматически блокирует экран чтобы предотвратить нежелательные касания.

Это были все основные элементы смартфона, в различных моделях могут быть и другие датчики, например, датчик пульса, давления и температуры, но они встречаются намного реже.

Выводы

Мы рассмотрели из чего состоит смартфон. Теперь, когда у вас больше информации о сложных компонентах, из которых состоит каждый смартфон, вы можете выбирать вашу будущую покупку сравнивая характеристики различных компонентов. Так вы выберите лучшее устройство, которое будет полностью отвечать вашим потребностям.

Процессоры в мобильных гаджетах — какие бывают и что лучше

На рынке десктопных процессоров все достаточно понятно — здесь лидерство делят компании Intel и AMD. Если же говорить о мобильных процессорах, то тут все несколько сложнее. Каждый из брендов предлагает свои модели, причем некоторые из них эксклюзивно стоят только в конкретных гаджетах. Мы расскажем о ведущих производителях мобильных процессоров и рассмотрим их ассортимент.

В чем разница между мобильными и десктопными процессорами?

Если не вдаваться в многочисленные технические особенности, то главным отличием можно назвать архитектуру.

Архитектура — это совокупность принципов построения, общая схема расположения элементов на кристалле и схема взаимодействия ПО с чипом.

В десктопных моделях используется архитектура x86/x64, однако инженерам так и не удалось добиться требуемой энергоэффективности, несмотря на все попытки. Процессоры потребляли слишком много энергии из-за необходимости дополнительных преобразований, поэтому не подходили для мобильной техники. В итоге разработчики предложили использовать новую архитектуру RISC (reduced instruction set computer) вместо существующей CISC (complex instruction set computing).


В CISC-архитектуре каждая команда имеет свой формат и длину, из-за чего процессору требуется больше времени и ресурсов на обработку. В RISC-архитектуре команды имеют не только общую длину, но и формат. Благодаря этому процессоры на RISC более энергоэффективны, быстрее обрабатывают команды и требуют меньшего объема ОЗУ, что делает их практически идеальным кандидатом для мобильной электроники.


Развитием RISC занялась компания ARM Limited, которая представила усовершенствованную архитектуру под названием ARM. Стоит отметить, что эта компания не только создает собственные вариации процессоров, но и предоставляет лицензии на свои разработки. В итоге на базе предоставленных ARM ядер крупные бренды создают авторские топологии и фирменные процессоры, о которых мы и поговорим далее.

Apple

Разрабатывать процессоры с собственной топологией компания Apple начала лишь в 2010 году, презентовав свой первый iPad. Модель процессора A4 построена на ядре ARM Cortex-A8 и стала началом всей линейки, которая продолжается до сегодняшнего дня. Кстати, в смартфонах первого поколения до iPhone 4 в Apple использовали микропроцессоры от Samsung.

С 2010 года Apple выпустили более 15 моделей в линейке, каждая последующая была усовершенствованием предыдущей и, как правило, устанавливалась в новой модели iPhone или iPad.


Модель Число транзисторов Число ядер Техпроцесс Устройства
A4 ? 1 45 нм iPadi, Phone 4, iPod touch 4G
A5 ? 2 45 и 32 нм iPad 2, iPhone 4S, iPod Touch 5G, iPad Mini.
A5X ? 2 45 нм iPad 3
A6 ? 2 32 нм iPhone 5, iPhone 5c
A6X ? 2 32 нм iPad 4-generation
A7 ≈ 1 млрд 2 28 нм iPhone 5S, iPad Air, iPad mini, iPad mini 3
A8 ≈ 2 млрд 2 20 нм iPhone 6 и 6 Plus, iPod touch 6G, iPad mini 4, HomePod
A8X ≈ 3 млрд 3 20 нм iPad Air 2
A9 ≈ 2 млрд 2 14 и 16 нм iPhone 6S и 6S Plus, iPhone SE, iPad 5
A9X ? 2 16 нм iPad Pro
A10 3,28 млрд 4 16 нм iPhone 7 (Plus), iPad 6, iPad 7, iPod Touch 7
A10X ≈ 4 млрд 6 10 нм iPad Pro (10,5; 12,9)
A11 4,3 млрд 6 10 нм iPhone 8 (Plus), iPhone X
A12 6,9 млрд 6 7 нм iPhone XS, iPhone XS Max, iPhone XR
A12X ≈ 10 млрд 8 7 нм iPad Pro (2018)
A12Z ≈ 10 млрд 8 7 нм iPad Pro (2020)
A13 8,5 млрд 6 7 нм iPhone 11 (все), iPhone SE 2, iPad 9th Gen.
A14 11,8 млрд 6 5 нм iPad Air (4th Gen), iPhone 12 (все)
A15 13 млрд 6 5 нм iPad mini (6th Gen). iPhone 13 (все)

Компания Apple была одной из первых, кто понял все преимущества RISC-архитектуры в мобильном сегменте. В паре с ОС собственной разработки инженерам удавалось выпускать одни из самых мощных моделей, которые на 50–100 % обгоняли по производительности топовые продукты других брендов.

В среднем с каждым новым поколением процессоров Apple удавалось наращивать производительность от 1,3 вплоть до 2 раз.


Более того, в определенных тестах процессоры серии A не уступают в производительности десктопным моделям, показывая схожие или даже лучшие результаты. Мощнейшим прорывом можно назвать Apple M1 — это система на кристалле ARM-архитектуры, которая используется уже не только в iPad Pro, но и в последних MacBook.


За графику в мобильных процессорах до A11 отвечали ускорители от PowerVR, а, начиная с A11, инженеры Apple ставили собственное GPU, но используя лицензированное ПО.

Компанию Apple без преувеличения можно назвать одним из лидеров в области мобильных процессоров. Многолетний опыт и подгонка «железа» под операционную систему позволяют получать высочайшие результаты. Однако процессоры от Apple устанавливаются исключительно в технику этого бренда.

Qualcomm

Конкуренцию «купертиновцам» составляют инженеры из компании Qualcomm — одной из крупнейших фирм по разработке и исследованию беспроводных средств связи и систем на кристалле. В частности, компания известна процессорами линейки Snapdragon. Производство первых SoC фирма начала в 2007 году, предоставляя процессоры для HTC, Acer, Asus, LG, Huawei и других брендов. В период с 2007 по 2012 годы были созданы четыре поколения моделей S1–S4 по техпроцессу 28 нм и больше.

В поколениях до S4 архитектуру разрабатывали на базе собственных ядер, которые являются модифицированными версиями ARM-Cortex.


С 2013 года компания представила пять основных линеек своих процессоров, нацеленных на разные классы устройств:

Какие бывают процессоры для смартфонов?

Жаркие споры уже много лет разводят по обе стороны баррикад почитателей AMD и Intel. Но эта тема уже избита донельзя, да и нам более интересно разобраться в процессорах мобильных устройств. А тут конкуренция не в пример больше, поэтому запасайтесь попкорном и свободным временем: сегодня мы поговорим обо всем, что касается процессоров в смартфонах.

Терминология и основные понятия

От теории никуда не денешься. Прежде всего здесь я хочу отметить, что понятия “процессор” и “чипсет” не являются синонимичными. Есть такая прекрасная английская аббревиатура SoC. Она расшифровывается как “System on Chip”. И большинство процессоров на сегодняшний день представлены ее производной интегрированной частью. Внимательно: всего лишь частью! Кроме процессора, в таких решениях также есть радиомодули, аудиоплаты, видеоплаты. Всякого рода датчики, как никак, тоже присутствуют. В общем, безумный микс разнообразного железа. И процессору в таком случае уделяется только одиночная позиция.

Зачем создавались чипсеты?

Разработка интегрированных решений была чистой воды необходимостью. Инженеры при своих работах опирались на несколько целей-следствий, среди которых было повышение универсальности и одновременное понижение энергетического потребления. Сборка устройств из отдельных блоков приводила к конфликту между компонентами и большим затратам питания. Зато с внедрением интегрированных решений инженеры смогли переложить груз ответственности (за стоимость разработки) на производителей SoC’ов. Да и мы обязаны ученым, ведь в итоге именно их деятельности мы получаем сейчас готовые универсальные решения, которые используем в повседневной жизни.

Как устроены чипсеты?

Есть одна замечательная мудрость, которая гласит о том, что внешность обманчива. Думали, что это относится только к людям? Как бы не так! Эта мудрость как никогда актуальна для чипсетов. Ведь внешне это устройство выглядит подобно процессорам, которые уже давным-давно устарели. Что, в принципе, и формирует мнение у подавляющего количества пользователей. И мнение не самое лучшее. Чаще всего можно услышать “Внутри такое-же старье, как и снаружи”. А вот и нет!

Внутри чипсета (в зависимости от модели мобильного аппарата) может быть разное число независимых процессоров. Очевидно, что каждый из них отвечает за выполнение своих, определенных операций и отличен от решений, установленных в других моделях мобильных устройств. Это – не аксиома, потому как в некоторых, казалось бы, конкурентных смартфонах находятся одни и те же решения. Но факт есть факт: каждый процессор выполняет свои операции.

Так снаружи выглядит чипсет NVIDIA Tegra

Например, это может быть кодирование и декодирование видео, воспроизведение аудиофайлов. Графический сопроцессор чаще всего отвечает за обработку изображений. Понятно, что он взаимодействует непосредственно с камерой. Хотя камера по факту не является единственным компонентом, с которым связан “график”. Отдельно стоит упомянуть модуль LTE-связи. Сейчас в большинстве случае он также интегрирован, а вот раньше таким занималась только компания Qualcomm, в то время как остальные фирмы устанавливали процессор отдельно, проигрывая в энергопотреблении.

Что представляет собой технологический стандарт?

Технологический стандарт процессора есть не что иное, как ширина его токопроводящих дорожек. На сегодняшний день по-прежнему принято считать его нормой 32 нанометра, хотя многие производители не просто стремятся, а уже выпускают более продвинутые решения. Представим, что у двух моделей процессоров все остальные параметры аналогичны. Тогда шустрее будет работать то устройство, у которого технологический стандарт ниже. Еще одним важным моментом является то, что уменьшенная ширина дорожек позволяет добиться улучшенной энергетической эффективности. Дело в том, что коэффициент потери тока (ведь его избыток превращается в тепло) при этом уменьшается. А вкупе с другими хорошими показателями и параметрами технологический стандарт может заставить смартфон работать безупречно быстро!

Если есть возможность, обязательно уточняйтете этот параметр. Если все остальные параметры сравниваемых моделей равны, то чем меньше ширина токопередающих дорожек, тем шустрее будет работать процессор. С другой стороны, только им сыт не будешь. Поэтому один только ТС не является панацеей. 32 нанометра — это, конечно, хорошо. Но лучше, чтобы показатель был как можно меньше. Сама по себе уменьшенная ширина дорожек позволяет добиться улучшенной энергетической эффективности. Дело в том, что коэффициент потери тока (ведь его избыток превращается в тепло) при этом уменьшается. А вкупе с другими хорошими показателями и параметрами технологический стандарт может заставить смартфон работать безупречно быстро!

Как на работу процессора влияет количество ядер и их частота?

Количество ядер не всегда решает. Как, впрочем, и их частота. Если не учитывать другие параметры, то можно сказать, что низкая частота позволит смартфону дольше держать батарею. Однако низкочастотные процессоры хуже справляются с обработкой данных в любых задачах: что в ежедневных, что в игровых. Высокая частота решает эту проблему, но взамен ядра потребляют больше энергии от аккумулятора. Кроме того, своеобразным побочным эффектом является интенсивное нагревание устройства. Разработчики сейчас отчаянно пытаются купировать подобные недостатки.

Например, при помощи установки сопроцессоров, которые будут заниматься решением нетребовательных задач (один из них — работа с беспроводными сетями). И хотя это — не единственное направление оптимизации, оптимальным решением все же станет покупка смартфона с частотным разделением ядер. Пусть часть из них работает на малой, часть - на большой. Тогда это позволяет смартфону менять стратегию работы. В обычных приложениях будут действовать низкочастотные ядра, дабы экономить заряд. А вот уже во время требовательных задач подключатся ядра «посильнее»;

Сколько необходимо "оперативки" и какая должна быть ОС?

Не будем забывать, что некоторые компании любят выпускать собственные прошивки, которые базируются на Андроидовском ядре. Принято считать, что чем выше версия ОС, тем меньше она забагована и тем больше функциональных возможностей она предоставляет. В 90% случаев так и есть. В остальных же 10% разработчики вплотную занимаются вопросами исправления своих же косяков, после чего выпускают исправленную прошивку. Это я говорю к тому, что прошивки старых версий могут содержать ограничительные элементы или просто баги, которые не дадут процессору работать во всю его мощь. Из-за неправильной оптимизации той или иной прошивки он может банально перегреваться, хотя на верхних версиях той же прошивки такого эффекта не будет. Всегда отдавайте предпочтение стабильной версии ОС, как и стабильной версии прошивки.

Что касается оперативки, то тут все еще проще. Сегодня минимально комфортным уровнем для бюджетных решений является 1 ГБ. Но с учетом того, что часть этого объема заберет операционка, то лучше делать выбор в пользу 2 ГБ. Оптимальная величина — того выше. На практике 2 гигабайта RAM позволят запустить одновременно нетребовательную игру, соцсеть и браузер одновременно. Чтобы ощутить всю прелесть игр с большой буквы «И», оперативки потребуется больше. Ведь если процессор отвечает за обработку объектов, то в «опере» они сохраняются на время игровой сессии.

Небольшой анализ процессорных разработок компаний

Сейчас в бюджетных моделях смартфонов зачастую можно встретить решения от MediaTek. Довольно дешевые, но способные неплохо справляться с повседневными задачами. В играх средней требовательности они не будут стабильно выдавать 60 FPS. Даже если изначально это будет так, уже минут через 10 вы заметите просадку кадров из-за нагрева. Множество пользователей негативно высказываются о «произведениях» компании, но не будем забывать, что в большинстве своем они представляют бюджетные решения. Поэтому я считаю, что отзывы несправедливы. На самом деле, творения MediaTek способны справляться с подавляющим большинство задач, особенно если учитывать, что их эффективность прямо пропорциональна сумме, которую мы готовы заплатить за такие решения.

Более дорогие, но и более производительные решения предоставляет Qualcomm. Они, в общем-то, универсальны. Захотел — поиграл. Захотел — просто пользуешься хорошей производительностью при повседневных задачах. Сейчас MediaTek старается угнаться за Qualcomm, дабы подмять под себя и часть предтопового сегмента. И результаты уже есть! Посмотрим, удастся ли компании сместить своих конкурентов.

Третью сторону представляет собственная разработка Samsung — линейка Exynos. Если вспомнить, что ее представитель установлен в SGS 6, то характеристика напрашивается сама собой.

Наиболее приемлемые игровые решения выпускаются в виде NVIDIA Tegra. Устройства под их управлением востребованы довольно ограниченной аудиторией — геймерами. Однако покупать такой аппарат стоит только в том случае, когда вы — действительно заядлый игрок и бонусом хотите получать эксклюзивы наподобие Borderlands для Андроид. Покупать подобные устройства для обыкновенного пользования просто непрактично.

Intel Atom выпускает свои решения не только для персональных компьютеров, ноутбуков и нетбуков. Компания встраивает свои процессоры в смартфоны марки ASUS. Позиционирует их она едва ли не как супер-пупер-энергоэффективные. Однако я с высоты своего опыта не могу согласиться с таким оптимизмом маркетологов Intel. Я имел дело и с несколькими моделями ASUS и хочу сказать одно: процессоры производительны, но батареи им даже при экране в 5 дюймов значительно не хватает.

Битва портативных титанов

Если мы будем говорить о том, чипсеты какой компании лучше, то давайте сначала уясним вполне очевидные истины. Я бы даже назвал их фактами. Qualcomm – один из старейших представителей соответствующей технической области. Вспомните хотя бы мои слова об LTE-модемах. Ввод в эксплуатацию передовых технологий, многочисленные и, что немаловажно, реализованные патенты, соответствие предтоповым конфигурациям – все это делает добрую услугу компании.

Чем отличается (и в хорошем, и плохом смысле) MediaTek? Это – динамично развивающийся производитель, который, тем не менее, “отрабатывает”, преимущественно, по азиатскому рынку. Многие фирмы Поднебесной, которые сейчас выпускают разносегментные смартфоны (то бишь и топовые модели, и бюджетники), ориентируются на начинку от MediaTek. Преимущества очевидны: это меньшая по сравнению с решениями Qualcomm стоимость.

Согласно статистике, MediaTek за 15-ый год серьезно сократила отставание от Qualcomm

Приходится ли расплачиваться виртуальными попугаями AnTuTu за это? Безусловно! Другое дело, в каких случаях мы это делаем. Хочу заверить вас, что при выборе аппарата за цену, попадающую в диапазон от 10 до 20 (в исключительных случаях до 30) тысяч рублей, колоссальных различий вы между процессорами двух компаний не найдете. Особенно учитывая то, что ближе к “тридцатке” в игру вступает Samsung со своими чипсетами Exynos. Сейчас за такую сумму можно найти, например, SGS 6.

Важно приобретать аппараты с железом от Qualcomm в тех случаях, когда общие их конфигурации либо предтоповые, либо абсолютно топовые. Опять же таки, это разговор о цене в 40-50 тысяч и выше, что заставляет нас рассматривать альтернативные варианты. С одной стороны, это Samsung и их Exynos, а с другой Qualcomm поджимают “яблоки” с Apple AX.

Отдельный вопрос связан с видеоускорителями. Давайте не будем забывать о том, что временами дело упирается в оптимизацию, насколько бы мощным ни было железо устройства. И поскольку Qualcomm Snapdragon в связке с Adreno более перспективен для игр, нежели MediaTek и Mali, тут решение вопроса становится вполне очевидным. Корявая оптимизация игры или полное ее отсутствие может один раз и навсегда отбить желание приобретать устройство, работающее на базе последней названной аппаратной связки.

Что в перспективе? Будет ли MediaTek совершенствоваться, работая больше над оптимизацией работы, нежели над созданием избыточной мощности? Думаю, что да. И если это будет действительно так, то такая многоходовочка гарантированно заставит Qualcomm либо предлагать что-то новое и по-настоящему ценное для пользователей, либо снижать цену на свои произведения искусства. И в первом, и во втором случае мы, рядовые пользователи, выигрываем.

38 виртуальных попугаев

Люди желают быть уверены в том, что купили хороший аппарат, который их не подведет. И так сложилось, что пользователи начали доверять программе AnTuTu, которая предназначена для “объективной оценки” смартфона. Вроде как цифры не станут врать, такая здесь логика. Вот и измеряет AnTuTu производительность устройств в неких баллах, на которые мы и посмотрим. Другое дело, что абсолютно объективными тесты и их результаты назвать нельзя, потому как напрямую о производительности устройства программа не может рассказать.

А как работают подобные приложения? Они проводят замеры. Причем львиная их доля посвящена максимальному сбору данных о чипсете и процессоре, как его подсистеме. Тестируется и 3D-производительность графического ускорителя. Но, исходя из обыкновенной логики, нетрудно убедиться в том, что та же самая AnTuTu покажет необъективный результат. Дело в том, что во время замеров частота процессора остается величиной постоянной. Оно и понятно: ведь выполняется монотонная, если можно так сказать, задача. Но ведь мы активно используем смартфоны: сидим в соцсетях, открываем браузер, играем в игры. В каждом из этих случаев частота процессора динамически изменяется, чтобы приспособиться к соответствующему уровню нагрузки.

Было бы хорошо, если бы хоть один синтетический тест использовал низкие частоты для того, чтобы оценить производительность аппарата при решении повседневных задач. Но пока что этого не было изобретено. Еще один фактор, который может оказывать влияние на производительность – это прошивка. Один и тот же аппарат при разных установленных прошивках может демонстрировать довольно отличные друг от друга результаты.

Результат моего Xiaomi Redmi 3S в AnTuTu

Как я думаю, есть смысл проводить замер попугайчиков в AnTuTu примерно через недельку использования аппарата. Купили смартфон, распаковали, установили все, что нужно и начинаем пользоваться. За это время устройство обрастет подавляющим большинством ранее используемых утилит, включая клиенты соцсетей и прочие программы. В отдельных случаях можно расширять срок “неприкосновенности” до 2-4 недель. Думаю, что через месяц демонстрируемый результат будет наиболее хорошо отображать общую картину происходящего.

Некоторые пользователи после таких моих слов могут подумать, что результаты синтетических тестов ничего не значат, раз они не являются абсолютно объективными. Нет, не совсем так. Принимать эти результаты во внимание следует, лишней информации все равно не бывает. Другое дело, что их не стоит приводить как единственный показатель производительности и верить в это. Смартфон, который выдает маловато попугаев, может и не очень хорошо справляться с играми, зато при решении повседневных задач покажет простоту и эффективность. Возможен и обратный вариант.

Заключение и критерии выбора смартфона по процессору

Итак, вот и подошел наш гайд к концу. Я постарался предоставить максимум развернутой информации, а сейчас мы попытаемся выделить факты, на которые следует опираться пользователям при покупке смартфона:

1. Если есть возможность, покупайте многоядерный процессор с частотным разделением ядер . Это поможет сэкономить заряд смартфона, так как низкочастотные ядра будут решать нетребовательные задачи, а высокочастотные подключатся уже к играм и другим более “прожорливым” приложениям.

2. Если есть возможность, обязательно уточняйте у продавца технологический стандарт . 32 нанометра - неплохой вариант, но тут чем меньше, тем лучше. Естественно, не забываем о других важных параметрах.

3. Версия операционной системы и прошивки . Инновацией Андроид сейчас является 7.0, но большинство устройств использует 6-ку и 5-ку. Даже думать забудьте о 4.Х: это уже прошлый век. Работайте со стабильной ОС и версией прошивки, в которых меньше всего системных ошибок. Это позволит процессору раскрыться во всей его красе.

4. Оперативная память . Тут действует правило “больше - лучше”. Минимально комфортный уровень для бюджетника находится на отметке 1 ГБ, но я никогда бы такое не купил. На мой взгляд, даже рядовой пользователь, желающий открыть несколько пару-тройку приложений одновременно, должен делать выбор в пользу 2 гигабайт.

5. Марки . В бюджетном сегменте уверенное лидерство сохраняет MediaTek. В то же время, она уже занимается выпуском решений для предтоповых конфигураций. Тем не менее, в этом сегменте пока что большой процент продаж принадлежит Qualcomm. И я бы отдал свой голос именно разработкам этой компании. Неплохие результаты показывает Samsung со своими внутренними процессорами линейки Exynos. О том, чем плохи и хороши Intel и NVIDIA Tegra рассказано выше. К слову, неплохой вариант - это решения HiSilicon, которая является дочерней компанией Huawei. Такие процессоры демонстрируют хорошую производительность, а бонусом идет завидная энергоэффективность.

Читайте также: