Из какого металла изготавливают радиаторы для аэрогенной системы охлаждения процессора

Обновлено: 06.07.2024

Существует на свете такая порода людей, которым всегда мало того, чего для всех других, казалось бы, хватает с лихвой. Им всегда надо большего. Да так, что бы кровь кипела, потому что давно зависимый от адреналина организм, требует все новых и новых острых ощущений. Экстремалы. Что им нужно? Конечно же скорость, где бы и в каком бы виде она ни была: диких мотоциклетных гонках, быстрых автомобилях, в горах, прыжках с парашютом или в виртуальном мире скоростей процессорной техники. Да уж, наш технотронный мир породил новые ощущения, ощущения от гонки процессоров, гонки самых быстрых вычислений, которые способны понять лишь считающие себя избранными. Разгон компьютеров в экстремальных условиях стал уже той субкультурой, которая поглотила в себя многих…

Современный процессор — это еще тот номер. Он и без всякого экстремального разгона греется как паяльник, которым запросто можно было бы запаять дырявый бак автомобиля. И чтобы прилично поднять планку его производительности, требуются уже совершенно иные условия, новые типы борьбы с тепловыделением — экстремальное охлаждение. Инновации коснулись и этой области техники. Тут уж в силах помочь лишь особые системы охлаждения. Вернее, это уже не охлаждение в простом понимании этого слова, это режим тотальной заморозки. Обеспечение температур, близких к температурам воздуха Антарктики, или же космического холода .

В мире существует всего несколько фирм, специализирующихся на выпуске специальных систем экстремального охлаждения для компьютеров. Монтируются такие установки в специальные корпуса и стоят немало. Однако, что деньги для тех, кто привык брать от жизни все, бороться за каждый лишний мегагерц и за каждый градус. И немалая сумма, выложенная за самую эффективную в мире установку охлаждения центрального процессора, этим людям не кажется излишней. Что можно сотворить с процессором с помощью этой установки — это уже, наверное, тема индивидуального, сокровенного захватывающего повествования.

Самыми мощными средствами охлаждения для компьютеров на сегодняшний день являются, так называемые, криосистемы. Криосистемы могут опустить температуру процессорного ядра до -40 градусов Цельсия, а то даже и еще ниже. Криогенные установки стоят дорого — сотни и тысячи долларов. Поставляются уже встроенными в специальные корпуса, либо в виде собранного на заказ готового компьютера. Имея такое охлаждение, можно повышать частоту и напряжение питания процессора до максимально возможного предела, не заботясь о перегреве ядра. Такие установки котируются в немногочисленных тестовых лабораториях, и, конечно же, от криосистемы не отказался бы каждый истинный компьютерный фанат.

Конструктивные особенности криосистем

Криогенная система охлаждения (под криогенными системами здесь и далее автор понимает обычные холодильные машины. Что ж, его право, не будем настаивать, хоть это и не совсем верно с точки зрения физики — прим. ред.) на компьютере, на первый взгляд, кажется чем-то чрезвычайным, некой чудовищной машиной, чья конструкция была создана, как минимум, где-то в холодных далях чужой звездной системы. Название-то какое — криогенное охлаждение. Однако за броскими словами на самом деле скрывается самая тривиальная установка, сотни миллионов которых неизменно трудятся практически в каждом нашем доме, не зависимо от того, являются ли их владельцы обладателями ПК или слыхом о таких не слышали. Загляните за заднюю стенку своего домашнего холодильника, и вы наверняка увидите то, что является его сердцем и сердцем любой компьютерной криосистемы — мирно урчащий "горшок" холодильного агрегата. Широко применяются холодильные агрегаты и в другом бытовом, промышленном и лабораторном оборудовании.

Принцип действия криосистемы хорошо известен, и отработан уже более чем за сотню лет (рис.1). Компрессор нагнетает сжиженный газ — хладагент, фреон или его заменитель, в испарительную камеру.

Подаваемый под давлением через дроссель (представляющий собой капиллярную трубку) сжиженный газ интенсивно испаряется и охлаждает камеру. Тот же компрессор вытягивает охлаждающий газ с другой стороны камеры и сжижает его в специальном конденсаторе. При сжижении, превращаясь в жидкость, газ нагревается, поэтому для конденсатора желательно дополнительное охлаждение. Хладагент вновь подается в испарительную камеру, где он опять выступает в роли охлаждающего вещества. Хладагент постоянно циркулирует в замкнутой системе, проходя фазы жидкость/газ, забирая тепло в испарительной камере и отводя его через конденсатор наружу.

Конструктивно, небольшой холодильный агрегат монтируется в корпус компьютера в нижней или верхней его части. Туда же помещается небольшой конденсатор, снабженный собственным вентилятором. Охлаждающая испарительная камера, она же кулер процессора, по меркам бытовых холодильных машин выглядит совершенно миниатюрной, да и все детали в этой системе, в общем-то, не очень большие, следовательно, хладагента тоже немного, и с ттаким его объемом справляются даже маленькие компрессоры. Компрессор всегда производит какой-то шум, однако от маленького агрегата он невелик, и ощутимые звук и вибрация появляется лишь в момент запуска цикла. То же можно сказать и о тихом низкооборотном вентиляторе конденсатора. В компьютерных корпусах могут применятся холодильные агрегаты, рассчитанные на питание постоянным током 12 В. Но это не значит, что компрессор разработан специально для блока питания ПК. Просто взят обычный компрессор от автомобильного холодильника, рассчитанного на бортовую сеть автомобиля, в которой тоже 12 В.

Как уже говорилось, такая система способна обеспечить процессору отрицательную температуру по шкале Цельсия. Поэтому в конструкции компьютерной криосистемы обязательным элементом является не только сама холодильная машина, но еще, как бы это ни дико звучало, нагреватель. Большие и резкие перепады температур приводят к проблемам, которые никогда не могу проявиться при охлаждении воздухом или даже водой комнатной температуры. Влага из окружающей среды (которая всегда есть в воздухе) интенсивно конденсируется на элементах, чья температура ниже температуры воздуха и иногда даже, поскольку температура этих элементов часто оказывается не только ниже температуры окружающей среды, но и ниже нуля, спокойно меняет свое агрегатное состояние еще раз, то есть превращается в лед. И даже если не превращается в лед, то все равно остается на этих элементах в виде воды. Поэтому, если не принять мер, то корпус процессора, окружающие его участки материнской платы, и даже обратная ее сторона постепенно покроются толстой шубой из намерзшего инея (вы это видели — загляните в морозильную камеру), или тонким слоем чистейшей дистиллированной воды Чем это грозит, нетрудно догадаться. Влага является проводником электричества, следовательно, вода на материнской плате и процессоре запросто может вывести из строя множество дорогих железок.

Самый эффективный способ борьбы с конденсацией — это нагрев. Поэтому криосистемы снабжаются не только охладителем, но и элементами нагрева. Испаритель охлаждает ядро процессора, а нагреватель греет его корпус по периметру и часто обратную сторону материнской платы. Получается, что при охлаждении ядра даже до очень низких температур корпус процессора и окружающие его элементы остаются теплыми, препятствуя, таким образом, конденсации на них угрожающей электронике коротким замыканием влаги. Кроме того, процессор помещается в специальный изолирующий футляр. Трубки, подходящие к испарителю, заключаются в теплоизоляцию. Для лучшей гидроизоляции применяются специальные герметики.

Примечательно то, что КПД холодильных установок выше единицы. То есть, количество поглощенной тепловой энергии больше, чем затраченной электрической. Нет, речь идет не о вечном двигателе, и с законом сохранения энергии здесь все в порядке. Дело в том, что холодильная компрессорная установка не вырабатывает энергию сама, а просто работает тепловым насосом — перекачивает уже существующую энергию с одного места в другое, и тепло от испарителя транспортируется к конденсатору, где и выделяется. Энергию компрессор, разумеется, потребляет, причем зачастую немалую — скажем, сотню ватт.

Криогенные компрессорные установки для компьютеров выпускает не так уж много фирм. Среди них нужно отметить VapoChill от Asetek и криоустановку KryoTech Super G2. Обе они оборудованы холодильными компрессорными агрегатами, вмонтированными в поставляемый вместе с установками ATX корпус.

Криогенные системы VapoChill отличаются стильным дизайном, разнообразием цветовых решений, поставляются для разных типов процессоров с агрегатами, рассчитанными на разную мощность. Холодильный компрессор в корпусе VapoChill устанавливается сверху (рис.2), там для него отведен специальный вместительный отсек, куда помещается также радиатор и его вентилятор.

Корпус с криоустановкой оборудован системой термоконтроля и всеми атрибутами приличного компьютерного корпуса. Вентиляционные прорези и окошко индикатора температуры выполнено в приятных плавных линиях, как и формы всего корпуса VapoChill. Лицевую панель дополняют три стандартные 5,25’ отсека и один отсек для флоппи. Внутри есть еще пять 5,25’ отсеков. Несмотря громоздкое внутреннее оборудование и немалые размеры, корпуса VapoChill выглядят довольно легко и элегантно (рис.3).

Верхняя часть корпуса VapoChill изолирована от остальной его части обычного АТХ формата стальной перегородкой. Здесь установлен горшкообразный компрессор, трубчатый радиатор конденсатора и его вентилятор (рис.4).

Кругом достаточно места для хорошей вентиляции пространства вокруг компрессора. Верхнее расположение тяжелого компрессора высоко смещает центр тяжести всего корпуса и делает его менее устойчивым, тем более, что внизу никаких дополнительных опор для придания устойчивости не предусмотрено. В нижнюю часть корпуса, где установлена материнская плата и все остальное оборудование компьютера в обычном порядке, опускается двунаправленный трубопровод в толстой теплоизоляции. Главный охлаждающий элемент CPU, испаритель, заключен в специальный футляр довольно сложной конструкции, в который также вмонтирован плоский нагревательный элемент. Все это надежно изолируется от окружающего пространства с помощью внешнего кожуха (рис.5).

В то время как медная вставка радиатора охлаждает ядро процессора до низких температур, нагреватель обогревает корпус процессора, препятствуя конденсации внутри влаги. Общая плотная изоляция направлена на защиту охлаждающего блока от проникновения атмосферной влаги. На материнской плате криоблок VapoChill выглядит довольно компактно (рис.6). Разные модификации криогенных установок VapoChill могут понижать температуру незагруженного процессора до -25…-40 градусов Цельсия.

Другой известной установкой для охлаждения компьютеров является криосистема KryoTech Super G2. В ней реализован тот же принцип охлаждения — с помощью стандартного холодильного компрессора. В отличие от описанной выше установки VapoChill, теперь холодильный агрегат крепится внизу, что придает хорошую остойчивость этому довольно высокому корпусу.

KryoTech Super G2 также поставляется уже вмонтированной в собственный корпус. Внизу установки — отсек для холодильного агрегата (рис.7), вверху — пространство стандартного АТХ корпуса. Корпус укомплектован четырьмя 5,25’ внешними отсеками, двумя наружными отсеками для 3,5’ устройств, блоком питания на 350W. Есть несколько посадочных мест для дополнительных вентиляторов.

В нижнем отсеке стоит компрессор, радиатор конденсатора и тихоходный вентилятор увеличенного диаметра. Там же, с выходом на переднюю панель, стоит жидкокристаллический индикатор системы встроенного температурного контроля. Изолированная шина для хладагента идет снизу по задней стенке корпуса, соединясь с испарительным блоком охладителя CPU. Охлаждающий блок для CPU изготавливается только для процессоров AMD (рис.8). Он, как и положено, закрыт изолирующим футляром и оборудован встроенным нагревателем по периферии корпуса процессора. Заявлена максимально низкая температура охлаждения радиатора испарителя -40 градусов Цельсия.

Про конденасцию влаги мы уже писали. Эта проблема, хотя и решается частично путем нагревателей и изоляции, все же присутствует, и от нее никуда не деться. Даже в описанных криосистемах вероятность выхода комплектующих из строя из-за влаги все же есть.

У холодильных систем есть и другие недостатки. Для того, что бы холодильный компрессор вошел в свой рабочий режим, требуется некоторое время. Поэтому криоустановку лучше включать за некоторое время перед запуском процессора.
Если какой-то элемент цикла выйдет со строя, то перестанет работать вся система охлаждения ядра, и процессор перегреется и, если ваша плата не оборудована системой защиты от перегрева, сгорит, так как сам радиатор надежно изолирован от окружающего воздуха и рассеивания тепла в окружающую среду практически нет. К счастью, для Pentium 4 эта проблема вовсе неактуальна, да и качественные платы для Socket A уже давно оснащаются системами контроля температуры, реагиру\ющими на ее повышение практически мгновенно А вот если выйдет со строя система обогрева корпуса процессора, то процессор обмерзнет и, в конце концов, что-то все-таки сгорит. Систем контроля уровня влажности в материнские платы и процессоры, к сожалению, не встраивают.

Также к недостаткам таких систем можно отнести большие габариты и немалый вес, шум, ну и, само собой — очень уж высокую стоимость.

Охлаждение CPU на основе элементов Пельтье

Кулеры на основе элемента Пельтье также могут охлаждать радиатор CPU ниже температуры окружающего воздуха и даже ниже нуля. Эффект Пельтье относится к разряду термоэлектрических явлений, он был впервые открыт французом Жаном-Шарлем Пельтье в 1834 году. Когда Жаном-Шарлем Пельтье пропустил постоянный ток через полоску висмута, подключенную с помощью двух медных проводников, то он заметил, что соединение, где ток идет от меди к висмуту нагревается, другое соединение — висмут-медь, через которое ток шел в обратном направлении, охлаждалось. Позже выяснилось, что этот эффект в значительной степени усиливается, если вместо металлов использовать соединения из разнородных полупроводников. На том и основаны конструкции современных элементов Пельтье.

Конструктивно охладитель на основе эффекта Пельтье состоит из последовательного соединения множества чередующихся полупроводниковых элементов n и p-типов. При прохождении постоянного тока через такое соединение одна половина p-n контактов будет нагреваться, другая наоборот — охлаждаться. Полупроводниковые элементы ориентированы так, чтобы нагревающиеся контакты выходили на одну сторону, охлаждающиеся — на другую. Получается пластинка, покрытая с обеих сторон материалом из керамики.

Если подать на пластинку из элементов Пельтье достаточно сильный ток, то одна ее сторона нагреется, а другая охладится, а разность температур между ними может достигать нескольких десятков градусов. Холодную сторону кладут на ядро CPU, на горячую же устанавливают радиатор с воздушным или водяным охлаждением. Получается конструкция очень похожая на обычный воздушный кулер или систему водяного охлаждения. Тонкую, всего несколько миллиметров толщиной пластинку Пельтье, здесь сразу можно и не заметить. Однако эффект от охлаждения сильно возрастает, так как теперь температуру со стороны ядра можно опустить ниже температуры окружающего воздуха и даже ниже нуля, чего никак не достичь при обычных системах воздушного или водяного охлаждения.

Для достижения нужного эффекта через него нужно пропускать ток большой величины — более 10 А. КПД элемента Пельтье достаточно низок. Значительная часть затраченной энергии не приносит никакой пользы, а лишь выделяется в виде дополнительного тепла с горячей стороны элемента. Таким образом, суммарное количество тепла, выделяемого на радиаторе элемента Пельтье, будет раза в два больше, чем, если бы он не использовался вообще.Соедовательно, радиатор потребует куда мощную систему отвода тепла. Спасает лишь то, что радиатор на элементе Пельтье может выдерживать температуры гораздо выше, чем если бы это был просто радиатор на ядре процессора. Элемент Пельтье не выходит из строя при 100 градусах.

Воздушные кулеры, дополненные элементом Пельтье очень легко устанавливаются, не требуя корпусов специальной конструкции. Да и на вид они мало чем отличаются от своих простых воздушных собратьев. Однако для них требуется либо дополнительный блок питания, либо БП компьютера должен быть рассчитан на большую мощность, что бы ее могло хватить и на немалые аппетиты термоэлектрического охладителя.

Системы охлаждения CPU, использующие в своей конструкции элемент Пельтье выпускаются разными фирмами. Это может быть просто очень тонкая термоэлектрическая пластинка элемента Пельтье, которая вкладывается между радиатором обычного воздушного кулера достаточной мощности или ватерблоком (рис.9, 10), не требуя никаких дополнительных приспособлений.

В качестве примера более завершенной конструкции можно привести систему совместной разработки Thermaltake и ActiveCool — SubZero™ 4G (рис.11). Эта установка состоит из массивного радиатора с мощным вентилятором, в подошву которого встроен термоэлектрический модуль Пельтье. Крепится радиатор SubZero™ 4G как обычный процессорный кулер.

Вместе с ним в комплекте идет PCI-карта, содержащая систему терморегуляции и управления вентиляторами (рис.12), в ней же встроен дополнительный блок питания для модуля Пельтье, также снабженный собственным вентилятором. БП SubZero™ 4G довольно плоский, и запросто вмещается в PCI-слот материнской платы, не мешая установке других плат расширения.

К недостаткам элементов Пельтье, прежде всего, следует отнести их низкий КПД и высокое энергопотребление. Радиатор на элементе Пельтье нагревается гораздо выше обычного кулера. Если он охлаждается воздушным кулером, то количество рассеиваемого тепла теперь гораздо больше: к теплу самого процессора добавляется немалое тепловыделение от термоэлектрического элемента Пельтье. Все это тепло попадает во внутрь корпуса, поэтому требуются дополнительные меры для его вентиляции. Надежность элементов Пельтье тоже не очень высока. Сама пластинка обладает очень плохой теплопроводностью. Если термоэлектрический модуль по каким-то причинам перестанет работать, то элемент Пельтье сразу же превращается в керамический теплоизолятор, и огромный кулер поверх него попросту окажется бесполезным, а процессор, если не будет принято каких-либо мер автоматического отключения, скорее всего сгорит. При установке модули Пельтье также требуют применения специальных герметизирующих прокладок, так как их холодная сторона способна конденсировать влагу из окружающего воздуха.

И еще несколько слов

В свете последних достижений процессорной индустрии, когда штатные частоты CPU перевалили за рубеж 3 ГГц, киличество выделяемого процессорами тепла увеличивается и каких-то кардинальных решений по его уменьшению на уровне чипа пока что не предвидится, применение средств охлаждения, которые мы сейчас именуем не иначе как экстремальными или альтернативными, может стать делом совершенно обычным. И из удела экстремалов и оверклокеров они, может быть, перейдут в разряд устройств для спокойных домашних пользователей. Может, мы еще доживем до такого времени, когда в стандартном компьютерном корпусе, кроме предустановленного БП, будет присутствовать отсек с небольшим холодильным агрегатом. Учитывая давно отработанные технологические процессы производства бытовых компрессоров, при их серийном выпуске в качестве компьютерных аксессуаров, цена должна быть не слишком высокой. Или может быть воздушные кулеры вдруг массово обзаведутся встроенными в свое основание модулями Пельтье…

Со времени появления первых микропроцессоров прошло уже более 30 лет. Микроэлектронная технология успела далеко шагнуть за этот период, и если раньше компьютер был уделом только избранных, то теперь он стал неотъемлемой частью жизни каждого из нас. Но вместе с переходом компьютеров из категории роскоши в разряд, так сказать, средств передвижения, неминуемо образовалась масса серьезных проблем.

Радиаторы

По своей сути радиатор является устройством, существенно облегчающим теплообмен процессора с окружающей средой. Площадь поверхности процессорного кристалла чрезвычайно мала (на сегодня не превышает нескольких квадратных сантиметров) и недостаточна для сколько-нибудь эффективного отвода тепловой мощности, измеряемой десятками ватт. Благодаря своей оребренной поверхности, радиатор, будучи установленным на процессоре, в сотни и даже тысячи раз увеличивает площадь его теплового контакта с окружающей средой, способствуя тем самым усилению интенсивности теплообмена и кардинальному снижению рабочей температуры.

Термическое сопротивление выражается простым соотношением:

Измеряется термическое сопротивление соответственно в °С/Вт. Оно показывает, насколько увеличится температура процессорного кристалла относительно температуры в компьютерном корпусе при отводе определенной тепловой мощности через данный конкретный радиатор, установленный на процессоре.

Для примера возьмем платформу VIA Eden. Типичное термическое сопротивление процессорного радиатора составляет здесь 6°С/Вт, типичная тепловая мощность процессора равняется 3 Вт, а типичная температура внутри системного блока лежит в пределах 50°C. Перемножив значения термического сопротивления радиатора и тепловой мощности процессора, мы получим 18°C. Теперь мы знаем, что температура поверхности процессорного кристалла будет превышать температуру в системном блоке на 18°C и будет держаться соответственно на уровне 68°C. В принципе, такая температура вполне соответствует «медицинским» нормативам на процессоры VIA Eden ESP, и поводов для беспокойства за его здоровье у нас нет.

Таким образом, для термического сопротивления действует четкий принцип «чем меньше, тем намного лучше». Зная его величину, мы сможем легко оценить целесообразность применения того или иного радиатора (или процессорного кулера в целом, но об этом чуть позднее) в наших конкретных эксплуатационных условиях. И также легко сможем избежать ошибок, которые нередко приводят к катастрофическим последствиям для компьютерной системы и кошелька пользователя.

На практике термическое сопротивление (суть тепловая эффективность) радиатора во многом зависит не только от площади оребренной поверхности, но и от его конструктивных особенностей и технологии изготовления. В настоящее время на рынке представлены пять «архетипов» радиаторов, задействованных в массовом производстве. Позвольте уделить им немного вашего драгоценного внимания.






Итак, радиаторы мы рассмотрели, обратимся теперь к вентиляторам.

Вентиляторы

На сегодня в процессорных кулерах находят применение в основном осевые (аксиальные) вентиляторы, формирующие воздушный поток в направлении, параллельном оси вращения пропеллера (крыльчатки).


Как же оценить, насколько хорош (или плох) тот или иной вентилятор? Каковы его технические характеристики и эксплуатационные параметры? Давайте посмотрим!

Что же касается эксплуатационных параметров, то наиболее существенными из них являются уровень шума и срок службы вентилятора.

Уровень шума вентилятора выражается в децибелах и показывает, насколько громким он будет в субъективном восприятии. Значения уровня шума вентиляторов лежат в диапазоне от 20 до 50 дБА. Человеком воспринимаются в качестве тихих только те вентиляторы, уровень шума которых не превышает 30-35 дБА.

Итак, на сегодня, пожалуй, все. В следующий раз мы вновь обратимся к вентиляторам, произведем их вскрытие и более подробно рассмотрим некоторые технические тонкости. Спасибо за внимание и до встречи!

Кулером называют систему охлаждения процессора. Он состоит из алюминиевого либо медного радиатора и обдувающего его вентилятора. Задача устройства – снижение нагрева комплектующих и, таким образом, повышение эффективности работы компьютера. (Состоят из алюминия, алюминия и меди).

В этой статье мы ознакомим вас с параметрами выбора систем охлаждения, их характеристиками, типами конструкций, основными компонентами и популярными марками.

Система охлаждения для процессора

Содержание

Конструкция кулера

    С алюминиевым радиатором. Это самые простые и бюджетные модели. Форма радиатора у них круглая (например, в процессорах Intel) или квадратная (в процессорах AMD), а размер вентилятора стандартный – 80-100 мм. Они часто идут в комплекте с простыми боксовыми процессорами малой мощности. Их можно купить и отдельно, но в этом случае качество может быть снижено, а процессор будет разгоняться хуже.

Система охлаждения для процессора с радиатором из наборных пластин

Виды кулеров. Какой выбрать?

Обычно все кулерные устройства классифицируют как башенные и классические. На самом деле вариантов значительно больше:

  • Классический. Это самый простой и недорогой вентилятор для пк с наименьшим показателем охлаждения (второе его название – экструдированный). Используется в бюджетных «холодных» системах; часто встроен в процессоры-боксы, работающие без разгона. Выбор модели такого типа показан для бюджетных ПК.
  • Top-Flow. Это система охлаждения с тепловыми трубками, которыми соединены радиатор и основание кулера. Обдувающий вентилятор расположен параллельно «материнке», что позволяет охлаждать не только сам процессор, но и пространство вокруг сокета. Система дает возможность использовать модули памяти с большим радиатором.
  • Башенный. Один из самых производительных, обеспечивает качественное охлаждение. Бывает с одной или двумя вертикальными секциями-башнями. Чтобы выбрать эффективный кулер, узнаем о нем больше. Основание и радиатор соединены между собой тепловыми трубками. Внутренние компоненты компьютера не нагреваются, так как вентилятор отводит тепло с радиатора в сторону вентиляторов корпуса. Обычно такая конструкция используется в компьютерах среднего ценового сегмента.
  • С-типа. Его трубки изогнуты как буква «С». Внизу они запаяны в основание, а вверху скреплены с пластинами перпендикулярно материнской плате. Такой вариант схож с башенным, с той лишь разницей, что поток теплого воздуха направляется в сторону «материнки», в результате чего воздушное охлаждение процессора происходит хуже. Но есть и плюс: все соседние элементы обдуваются воздухом от кулера.
  • Комбинированный. Это редкий вариант, применяемый в дорогих «горячих» моделях. Он способен обдувать цепи питания на «материнке». Два его радиатора закреплены на одном основании в горизонтальном и вертикальном положениях.

Виды систем охлаждения (СО)

Выбирая кулер для ЦП, обращайте внимание на вид охлаждения процессора. Есть два варианта:

    Воздушный теплоотвод. Подходит для ЦП низкого и среднего ценового сегмента с низким значением TDP. Его конструкция проста: цилиндрический или призматический алюминиевый радиатор с ветродуем (о том, как выбрать вентилятор для процессора, мы поговорим ниже). Более продвинутые модели содержат медное основание с 1–2 тепловыми трубками либо в них вставлен медный сердечник. Наиболее производительными считаются башенные системы для охлаждения ЦП. Их основание прижато к теплораспределительной крышке, из него выходят тепловые трубки, на которые нанизаны ребра, увеличивающие площадь поверхности теплообмена. Башня обдувается вентилятором. Такие модели бывают разными по размеру. Наиболее компактные – с горизонтальным расположением трубок, радиатора и вентилятора. Как выбрать кулер для процессора – вы узнаете, прочитав статью до конца.

Кулер для ЦП с водяной системой охлаждения

Способ подключения

Подбор места подключения вентилятора зависит от движения потоков воздуха внутри компьютера. Обычно они движутся вверх.

Есть стандартная схема установки вентиляторов на основе естественного движения воздушных потоков:

  • вентиляторы на вдув помещаются на боковой, передней и нижней стенках корпуса;
  • модели на выдув – на задней и верхней стенках.

Второй момент – нужно измерить размер вентилятора и посадочное место под него. Для измерения посадочного места замеряется расстояние между центрами крепежных отверстий.

Третий момент – типы крепления кулера на процессоре бывают разными. В зависимости от типа разъемов подключение происходит либо непосредственно к блоку питания (разъем Molex), либо к материнской плате (разъемы 3-pin и 4-pin). От способа подключения зависит, сможет ли пользователь управлять скоростью вращения вентиляторов с помощью программ. Кулеры с разъемами 4-pin дают такую возможность: максимальные обороты устанавливаются в зависимости от температуры процессора. Некоторые материнки могут управлять оборотами вентиляторов и при подключении через 3-pin. Molex вообще не дает такой возможности, так как питание в данном случае идет непосредственно от блока питания.

Подключение к «материнке» происходит тремя способами: винтовым, на защелках, креплением «кроватка». Первый и второй подходят для процессора Intel, третий – исключительно для процессора Amd.

Тип подшипника

Существует три разновидности вентиляторных подшипников:

  • Скольжения, типа втулки. Устанавливается в самых дешевых и недолговечных моделях.
  • Качения (шариковый или роликовый). Считается более надежным, чем первый, но слишком шумит во время работы.
  • Гидродинамический. Один из лучших. Его преимущества – надежность, долговечность, низкий уровень шума. При выборе кулера отдайте предпочтение именно такому подшипнику.

Кулер для процессора с гидродинамическим вентиляторным подшипником

Материал основания

Теперь поговорим о таком важном элементе, как основание. Это площадка, непосредственно контактирующая с процессором; от ее конструкции и качества материала напрямую зависит эффективное охлаждение. В более дорогих вариантах основание выполнено из меди, в более дешевых – из алюминия. Медь предпочтительнее: она лучше отводит тепло. Некоторые модели выполнены из сочетания алюминия и меди. Рассмотрим разные варианты оснований:

  • Алюминиевый радиатор. В данном случае основанием служит сам радиатор, который может быть цельным или щелистым. Цельный вариант наиболее предпочтителен, поскольку он максимально соприкасается с процессором, способствуя его наилучшему охлаждению. В щели же может набиваться пыль, что отрицательно сказывается на качестве охлаждения. Кроме того, чистить сквозное устройство намного сложнее, чем сплошное: для очистки необходимо демонтировать его, что вызывает определенные неудобства. Это еще один ответ на вопрос, как правильно подобрать кулер для процессора.
  • Медное основание. Его имеют модели с тепловыми трубками. Это хороший вариант, способный обеспечивать активное охлаждение прибора.
  • Радиатор с медной вставкой в основании. Вставка непосредственно соприкасается с процессором. Ее эффективность значительно выше, чем у полностью алюминиевых конструкций. Когда мы выбираем кулер в процессор, нужно обращать на это внимание.
  • Прямой контакт. Основания такого типа сделаны из «сплющенных» медных трубок, которые образуют контактную площадку, соприкасающуюся непосредственно с ЦП. По эффективности они примерно одинаковы с радиаторами, в которых основание с медной вставкой.

Основные критерии выбора

При выборе нужно учитывать, из чего кулер состоит и какие у него характеристики. На что нужно обращать внимание:

  • Сокет. Это специальный разъем на материнской плате, куда устанавливается процессор. На AMD используются одинаковые крепления для разных поколений сокетов. Лишь сокет TR4 требует особого варианта крепления. На Intel используют одинаковое крепление для всех систем охлаждения. Какие сокеты поддерживаются разными системами, обычно указано на сайтах производителей.
  • Размеры кулера. В характеристиках любого компьютерного корпуса указывается максимальная высота охлаждающей системы. Там же можно узнать о поддерживаемых габаритах радиатора. Важный фактор для башенной конструкции – совместимость с радиатором «оперативки». Надо учитывать, что высокий радиатор может перекрываться либо вентилятором, либо ребрами кулера.

Кулер для процессора

Дополнительные критерии выбора

Существуют второстепенные параметры выбора СО, на которые тоже нужно обращать внимание:

  • Уровень шума. Чем больше система, тем выше ее производительность и тем ниже уровень шума, поскольку большие лопасти вентилятора способны пропускать через себя больше воздуха за единицу времени при малой частоте оборотов. Если хотите выбрать тихий кулер для процессора, нужно устанавливать самый большой из тех, что помещается в системник. Кроме того, имеет значение количество вентиляторов: чем их больше, тем сильнее будет гудение.
  • Тепловые трубки. Эффективные башенные системы охлаждения содержат до четырех тепловых трубок. Они подходят для стандартных процессоров средней мощности. Для охлаждения разогнанного процессора стоит выбирать большой двухсекционный кулер с несколькими вентиляторами и более чем пятью трубками.
  • Подсветка. Этот параметр не играет никакой практической роли в кулере для процессора, но отвечает за эстетику внешнего вида изделия. В башенных моделях используется подсветка преимущественно одного цвета. Но можно выбрать и многоцветную систему. Она подключается к контроллеру «материнки» и регулируется пультом ДУ, позволяя выбирать разные оттенки.

Кулер для процессора с подсветкой

Что лучше?

Как мы выяснили, характеристики кулера определяют его выбор. Рассмотрим еще два вопроса, которые часто задают покупатели.

    Какая СО эффективнее: башенная или обычная?

Если выбирать между этими двумя видами, то башенная конструкция с алюминиевым радиатором определенно выигрывает у классической модели с медным радиатором, так как она лучше охлаждает. Предпочтительнее подбирать кулер для процессора именно такого типа.

По теплопроводности медь лучше алюминия. Выше мы уже говорили о преимуществах и недостатках оснований из этих материалов. При выборе радиатора нужно обратить внимание на то, как он сделан. Иногда производители идут на уловки и покрывают алюминиевый радиатор тонким слоем меди. Очевидно, что производительность такого устройства будет значительно снижена по сравнению с полностью медным – нужно не упускать это из виду.

Как узнать, какой кулер нужен для процессора

Подведем итоги, основываясь на советах специалистов:

  • Для моделей с TDP меньше 65 Вт подойдет любая система охлаждения: классическая или башенная. Но у нее должен быть запас по тепловыделению не меньше 30 %. Для моделей с TDP больше 65 Вт рекомендуется приобретать башенную конструкцию. У этого типа кулеров должен быть такой же запас по тепловыделению.
  • В башенной модели большую играет роль глубина башни. Чем она глубже, тем мощнее должен быть вентилятор для ее продувки. Если такой возможности нет, нужно установить два вентилятора. Идеальный выбор – неглубокая башня с двумя радиаторами средней глубины.
  • При подборе кулера для процессора нужно внимательно отнестись к материалу его основания: медное будет предпочтительнее алюминиевого. Также следует обратить внимание на степень полировки основания: чем оно качественнее отполировано, тем лучше, поскольку поверхность соприкосновения с ЦП будет плотнее, что повысит качество теплоотведения.
  • Вентилятор охлаждения процессора должен быть как можно большего диаметра, и желательно на гидродинамическом подшипнике или подшипнике качения.
  • Если процессор непосредственно контактирует с тепловыми трубками, надо смотреть, чтобы они находились ближе к его центру – к нагревающемуся кристаллу. Если прямого контакта нет, то установленная поверх трубок медная пластина должна очень плотно к ним примыкать, чтобы как можно более равномерно распределять тепло по всем трубкам. В противном случае работа устройства будет низко результативной.

Системы охлаждения для процессора

Мы провели краткий обзор кулеров для охлаждения процессора. Надеемся, он поможет вам лучше понять это устройство и сделать верный выбор!


Внимание!Длинопост! Очень многа букав!
Мотаясь по просторам тырнетов, очень часто наталкиваюсь на статьи по поиску и замене радиаторов на автомобилях, в коих идут бурные ( и не очень) их конструкционных особенностях, материалах изготовления и технологических решений по производству.
К сожалению, информации подобного типа в сети крайне мало. Технологические циклы производства в наше время никто не предоставляет просто так( если вы понимаете, о чем я)) Менеджмент и маркетинг предоставляет покупателю информацию только о достоинствах той или иной технологии изготовления радиаторов. И часто эта информация, пропущенная через фильтр рекламы, становится всего лишь красивой оберткой))
В данном посте я попробую рассказать о большинстве технологий изготовления радиаторов, опишу их плюсы и минусы, а так же приведу немного теоретических выкладок. И так, поехали!))
Википедия на запрос "Радиатор", выдает одним из пунктов:
Радиатор ДВС
В двигателе внутреннего сгорания радиатор является теплообменником, объединяющим два контура системы охлаждения. В основном применяются трубчато-пластинчатые и трубчато-ленточные решётки радиаторов. В радиаторе для прохода охлаждающей жидкости применяют шовные или цельнотянутые трубки из латунной ленты толщиной до 0,15 мм. Используются и алюминиевые радиаторы: они дешевле и легче, но теплообменные свойства, при прочих равных условиях (размеры, площадь теплообмена и т. п.), и надёжность ниже.

Не будем углубляться в дебри ссылок, и типы систем охлаждения.Принципиальное устройство малого /большого контура, назначение помпы не знает, думаю, только ленивый(для королей лени-гугл в помощь)) Возьмем одну-"Замкнутая, жидкостная система охлаждения"
Итак, конструкционно, любой радиатор состоит из охлаждающей сердцевины, резервуаров( бачков, банок) и различного навесного и крепежного оборудования. Расположение радиатора в подкапотном пространстве бывает:
вертикальное-когда резервуары(далее-банки), располагаются друг над другом(горизонтально), радиатор имеет заливную горловину с крышкой-клапаном;
и горизонтальное-когда банки располагаются друг напротив друга (вертикально), заливная горловина отсутствуют, на расширительный бачок антифриз уходит по пара-воздушному штуцеру, расположенному в верхней части одной из банок.
Немного разберем цитату, приведённую выше.В основном применяются трубчато-пластинчатые и трубчато-ленточные решётки радиаторов. Данное выражение относится к, так называемым, радиаторам, изготовленным по "классической" технологии.


Слева показан трубчато-пластинчатая сердцевина, так называемое "плоское оребрение".Справа, соответственно, трубчато-ленточная сердцевина ("ленточное"оребрение). Чаще всего материалом для обоих способов служит латунь.
Чтобы не говорил вам продавец, ЧИСТУЮ медь не один производитель не будет использовать-слишком мягкая и быстро окисляется. Под фразой МЕДЬ, производитель обычно имеет в виду, что чем меньше содержание цинка в используемом сплаве, тем больше сплав ближе к состоянию ЧИСТОЙ МЕДИ.
Не буду описывать принцип технологии, по этой ссылке

процесс описан очень подробно.Теперь о плюсах и минусах.
Медь (и сплавы на ее основе) на третьем месте по теплопроводности, что обеспечивает эффективный теплосъём с охлаждающей сердцевины.


Принципиальная схема изготовления отработана производителями до мелочей, изготовления аналога радиатора(под замену оригинала) по данной технологии обеспечивает надежность работы изделия без каких-либо расчетов. Да, производители тупо копируют изделия друг у друга, и в 99% случаев аналог по эффективности не уступает оригиналу))). Поэтому, а также в связи с доступностью материала, "классическая" технология до сих пор ее используесят в изготовлении радиаторов.
Слабыми местами данной конструкции являются:
1.место пайки охлаждающих трубок с основанием-чаще всего радиатор начинает течь по углам, припой от вибрационных и динамических воздействиях "отщелкивается".


2.процесс пайки-полностью автоматизировать процесс пайки не возможно, поэтому сердцевины паяются (частично) в ручную что вводит человеческий фактор в производство, и как следствие, возможный брак.На видео, кстати, показана не полная пропайка трубок, которая чаще всего и приводит к образованию течей.
3.банки для таких радиаторов чаще всего изготавливаются из латуни, методом штамповки. А штамповка является дорогим удовольствием, так как требует изготовление матриц под КАЖДУЮ модель радиатора, а так же наличие как можно большего числа прессов-не будешь же ты переставлять и отстраивать пресс каждый раз под новый заказ))Кстати, поэтому некоторые производители изготавливают вместо латунных бачков-стальные.Их тоже можно применять, НО, сталь ооочень быстро корродирует и забивает в последствии трубки радиатора ржой)
4.ну и цена на материалы делает цену на конечный продукт выше, чем, например, на алюминиевые радиаторы)
Тем не менее, данную технологию применяют до сих пор( по опыту скажу-в оборонке только-только алюминий начал приходить на смену медяхе), некоторые автолюбители пытаются купить себе на заказ медный радиатор взамен алюмишки. Ну тут хозяин барин))
Многие акцентоводы сталкивались с радиаторами, у которых сердцевина выполнена в виде круглых трубок, смонтированных через резинки в "ванночки"(билят, мужики, это не ванночки, это основание!)Ну "донья", на худой конец))
Говоря скупым языком технаря-сердцевина в таких радиаторах монтируется с помощью радиально-уплотнительных втулок. Такой способ изначально подразумевает, что сердцевина целиком( или отдельные охлаждающие трубки) возможно поменять, в случае повреждения сердцевины. При этом вскрытие всего радиатора не требуется.


Принципиальная схема радиатора на радиально-уплотнительных втулках.

Да идея хороша, и она не нова. Первые образцы радиаторов на радиально-уплотнительных были разработаны в послевоенные годы. Принцип быстрой замены сердцевины, без снятия всего радиатора, в полевых условиях( в теории) стал главным козырем маркетологов. Огромным плюсом также являлось то, что сердцевина, за счет использования этих самых втулок, меньше подвергалась вибрационным нагрузкам, что повышает ее срок службы.Но.
Как всегда есть НО!) Первые образцы использовали круглую трубку, а не плоско-овальную, как в "классической" технологии.
Немного выкладок-при использовании круглой трубки, схема расположения рядная, при обдуве, поток воздуха создает " турбулентное" завихрение за обдуваемой трубкой, так называемую "мертвую тень", в которой не происходит охлаждение трубки.А, учитывая рядное расположение, теплосъем происходит только с боковых стенок трубок, соответственно рабочая(полезная) площадь теплосъема уменьшается.
Поэтому производители стали использовать шахматную схему расположения трубок. Что, в свою очередь, уменьшало количество теплообменных каналов при равных габаритах.Как пример, именно поэтому радиаторы на круглых трубках и втулках не работают на наших акцентах-меньше пропускная способность, меньшее количество теплообменных каналов(в сравнении с оригиналом), и как следствие, меньший теплосъем всего изделия в целом.Скученность подкапотного пространства не позволяет изготовить аналог по такой технологии без увеличения габаритов радиатора))
Более поздний варианты использует сплющенную круглую трубку, чтобы исключить эффект "мертвой тени". Схемы расположения трубок в таком случае различные


Чаще всего данную технологию применяют на тяжелой спец-технике: грейдеры, карьерные самосвалы, буровые и компрессорные установки, где габаритные размеры радиатора менее ограничены.Но, на такой серьезной технике радиаторы расчитываются и подбираются на основе лабораторных испытаний, расчетах теплового баланса работы двигателя.


.здесь плюсы технологии перекрывают минусы, так как аксиома "время-деньги" здесь основополагающая))

Развитие промышленности открыло новые горизонты, и на смену медно-латунным радиаторам постепенно начали приходить алюминиевые.
Одна из технологий, применяемых до сих пор, является ТАСПО. Аббревиатура переводится как теплообменные аппараты с подрезным оребрением. Что это значит, мы сейчас разберем.

На офф сайте белорусской компании ТАСПО достаточно подробно описана история компании с регалиями, и коротееенько технология))Ну эт как у всех))Попробую описать чуть подробнее))

Цитата: ".изготовление отдельно оребренных плоских многоканальных труб безотходным методом подрезания и отгиба тонких слоев металла с поверхности заготовки с последующей сборкой теплообменников с помощью клеевых составов, пайки или аргоно-дуговой сварки". Говоря русским языком, производитель берет алюминиевую трубку(на ней чуть позже остановимся) и из "тела" трубки как бы " поднимает" оребрение.


Одно из главных достоинств той технологии-это алюминиевая трубка, изготовленная методом экструзии.Трубка получается бесшовной, в теории-способной выдерживать давление свыше 25 БАР. Вся загвоздка-в способе оребрения. Для "поднятия" оребрения из "тела" трубки требуется особый спец.инструмент, который, в свою очередь" требует очень тонкой настройки на станки. Если интересно-отвечу в комментах, а пока-пара фото старых описаний данной технологии)

Читайте также: