Как контроллер так и процессор mcu используются в

Обновлено: 06.07.2024

В наше время практически все, хоть раз в жизни, слышали слово микроконтроллер . Различная автоматизация стала частью нашей жизни и нас окружают различные "умные" вещи, даже роботы стали перестают быть экзотикой.

Естественно, что многим, далеко не только профессионалам, интересно попробовать свои силы и использовать микроконтроллеры в своих конструкциях. Но на практике это оказывается не так просто. Самым трудным, как всегда, бывает первый шаг. Но и дальше возникает не мало сложностей и непонимания. Почему так? Почему часто считается, что начать использовать микроконтроллеры трудно?

Да, в ВУЗах есть соответствующие специальности. Да, про микроконтроллеры написано уже очень много. И, тем не менее, бывает, что даже хороший программист или электронщик, никогда не работавшие с микроконтроллерами, испытывают затруднения при первой встрече с ними.

Давайте попробуем разобраться, так ли все сложно. Эта статья начинает новый цикл, посвященный микроконтроллерам и ориентированный на любителей и новичков. То есть на тех, кто раньше не использовал микроконтроллеры, но очень хочет с ними познакомиться.

В отличии от многих книг и статей я не буду сводить все к подробному описанию конкретной микросхемы. Я попробую описать ситуацию в целом, что бы у читателя возникло понимание, откуда что берется, почему именно так, и что вообще с этим делать.

Эти статьи не будут, как и всегда, являться учебниками . Это не будет переводом документации. Это будет наглядное (надеюсь) описание, но с учетом специфики Zen. Я постараюсь свести к минимуму использование математики, знаю, многие ее не любят. При этом я буду стараться приводить достаточно много иллюстраций. Статьи будут не всегда "каноническими". Это продиктовано и целевой аудиторией (далеко не только, да и не столько, специалисты) и спецификой Zen.

Поскольку тема микроконтроллеров очень большая и сложная, я не смогу описать "вообще все". Я буду предполагать, что читатель обладает некоторыми знаниями и способностями:

  • Имеет, как минимум, базовое представление о программировании. Достаточно будет даже знаний в объеме средней школы.
  • Обладает, как минимум, базовыми знаниями об электричестве (ток, напряжение, закон Ома, сопротивление, емкость) и полупроводниках (p-n переход, диод, транзистор). Достаточно знаний в объеме средней школы.
  • Действительно хочет понять, как микроконтроллеры устроены, как работают, как их применять.
  • Готов заниматься сам, читать, искать недостающую информацию. То есть, не является пассивным слушателем (читателем).

Это нужно, что бы не объяснять совсем уж базовые и, надеюсь, общеизвестные понятия вроде циклов в программировании и принципах работы транзисторов.

Однако, пора переходить к делу. Эта, первая, статья цикла будет в основном описательной. Сначала нам нужно разобраться, что вообще такое "микроконтроллер". И тут не обойтись без небольшого исторического экскурса, без которого будет сложнее понять дальнейший материал.

С чего все начиналось

Нет, я не буду углубляться в "седую древность". Нам достаточно заглянуть в те времена, когда появился термин Вычислительная Машина .

Развитие электротехники уже привело к появлению устройств автоматики еще до появления первых вычислительных машин. Это были релейные автоматы. Развитие электроники добавило к электромеханическим реле сначала ламповые схемы, а потом и полупроводники. Устройства автоматики стали сложнее, но они по прежнему строились на "жесткой логике". То есть, после изготовления под конкретное применение схема автомата оставалась неизменной. Если требовалось изменение функционала нужно было разрабатывать новую схему и изготавливать новое устройство. Добавление различных переключателей позволяло несколько менять работу устройства, но принципиально ничего не меняло.

И вот появились вычислительные машины. Их принципиальным отличием от всего ранее существовавшего была программа. Именно программа позволила менять их функционирование без необходимости изменять схему. Не суть важно, как именно было представлена программа, набором перемычек или отверстиями на бумажной ленте.

В составе разных электронных устройств часто встречаются как микроконтроллеры, так и микропроцессоры. Оба этих компонента берут из памяти команды и по ним выполняют логические и арифметические операции, работая при этом с устройствами ввода/вывода и прочей периферией. Так в чём тогда разница?

Микроконтроллер

Микроконтроллер — (далее МК) это микросхема, предназначенная для программного управления электронными схемами. МК выполняется на одном кристалле. На нём расположено как вычислительное устройство, так и ПЗУ и ОЗУ. Кроме этого, в составе МК чаще всего находятся порты ввода/вывода, таймеры, АЦП, последовательные и параллельные интерфейсы. В некоторых даже можно заметить Wi-Fi-/Bluetooth-модуль и даже поддержку NFC.

Первый патент на микроконтроллер был выдан в 1971 году компании Texas Instruments. Инженеры этой компании предложили размещать на кристалле не только процессор, но и память с устройствами ввода/вывода.

Структурная схема микроконтроллера

Структурная схема микроконтроллера

Несмотря на то, что всё необходимое для работы микроконтроллера в нём уже есть, иногда они используются в паре с внешними периферийными устройствами. К примеру, когда внутренней ПЗУ не хватает (или она попросту отсутствует), подключают внешнюю. Именно так сделали с микроконтроллерами серии ESP. У ESP8266 встроенной памяти нет вообще, а у ESP32 есть незначительные 448 КБ. Поэтому к ним в корпус (точнее под радиатор) помещается flash-память ёмкостью 1–16 МБ.

Знакомство с недорогим и функциональным микроконтроллером ESP8266: прошивка и пример использования

Тогда почему бы не сделать какой-нибудь портативный компьютер на основе микроконтроллера? Дело в том, что вычислительной мощности у МК чаще всего достаточно мало. Её хватает на управление например, системой полива, микроволновкой или же каким-нибудь станком.

Например, одна из мощных плат платформы Arduino — Due. Она находится под управлением 32-битного AVR-микроконтроллера AT91SAM3X8E. Его тактовая частота 84 МГц. Постоянной памяти тут 512 КБ, а оперативной — 96 КБ. МК имеет 54 цифровых GPIO (12 из которых с поддержкой ШИМ), 12 аналоговых входов и 2 аналоговых выхода (ЦАП). Тут так же присутствуют различные интерфейсы, такие как UART, SPI, I2C.

Не смотря на такие незначительные характеристики, микроконтроллеры очень популярны. Они используются там, где не требуется большой вычислительной мощности — робототехника, контроллеры теплиц, бытовая техника.

Микропроцессор

С микропроцессором (далее МП) дела обстоят немного иначе. Он содержит в себе арифметико-логическое устройство, блок синхронизации и управления, запоминающие устройство, регистры и шину. То есть МП содержит в себе только то, что непосредственно понадобится для выполнения арифметический и логических операций. Все остальные комплектующие (ОЗУ, ПЗУ, устройства ввода/вывода, интерфейсы) нужно подключать извне.

Структурная схема микропроцессорного устройства

Структурная схема микропроцессорного устройства

Первые микропроцессоры появились тоже в начале 70-х. Самым популярным на тот момент считался 4004. Это микропроцессор, разработанный компанией Intel и представленный 15 ноября 1971 года. Он имел внушающие на тот период характеристики:

  • 2300 транзисторов;
  • тактовая частота — 740 кГц;
  • разрядность регистров и шины — 4 бита;
  • техпроцесс — 10 мкм;
  • площадь кристалла: — 12 мм².

К слову, 4004 был выполнен в обычном DIP-16 корпусе. Этот МП является самой популярной микросхемой для коллекционирования. Некоторые экземпляры продаются по 400 $ за штуку. Менее раритетные стоят около 250 $.

Естественно, тут преимуществом является то, что к МП можно на выбор подключать разную периферию с разными характеристиками (что не во всех случаях можно на МК). Второе основное отличие микропроцессора от микроконтроллера в том, что МП имеют больше вычислительной мощности. Их не имеет смысла ставить в микроволновки и «умные» лампочки. Микропроцессоры применяют там, где вычислительная мощность МК уже не справляется — игровые приставки, сложные вычислительные устройства и приборы, гаджеты.

Получается, чтобы обеспечить работоспособность микропроцессора, нужно подключить ему хотя бы минимальный набор периферии. Минусы:

  1. Размер — если в случае МК всё уже находится в одном корпусе, то минимальный набор элементов для работы МП занимает больше места.
  2. Цена — обычно, вся «сборка» комплектующих для МП выходит гораздо дороже «голых» микроконтроллеров.
  1. Производительность — микропроцессоры обладают большей производительностью, чем микроконтроллеры.
  2. Выбор — в случае МП у вас есть возможность подобрать комплектующие. Это позволит поставить более подходящую под ваши цели периферию.

Применение

Микроконтроллер обладает явной простотой: требуется меньше аппаратного обеспечения, с ним легче работать на программном уровне, да и стоимость начинается с копеек. Но эта простота касается и производительности. Как говорилось выше, микроконтроллер не способен обеспечить высокую производительность наравне с микропроцессорами. Микропроцессоры хоть и требуют внешней коммутации «железа» и относительно МК сложны в работе, но они уже спокойно могут применяться в более сложных устройствах.

Однако иногда в сети появляются умельцы, которые впихивают в микроконтроллер ESP32 DOOM и даже эмулятор NES-игр.

Выбор подходящего устройства, на котором будет основана ваша новая разработка, бывает не простым. Необходимо найти баланс между ценой, производительностью и энергопотреблением, а также учесть долгосрочные последствия этого выбора. Например, если используемое устройство, будь то микроконтроллер или микропроцессор, станет основой целого ряда новых продуктов.


Для начала давайте рассмотрим разницу между микроконтроллером (MCU) и микропроцессором (MPU). Обычно микроконтроллер использует встроенную флэш память, в которой хранятся и выполняется его программа. Благодаря этому, микроконтроллер имеет очень короткое время запуска и может выполнять код очень быстро. Единственное ограничение при использовании встроенной памяти - это ее конечный объем. Большинство микроконтроллеров, доступных на рынке, имеют максимальный объем флэш памяти

2 мегабайта. Для некоторых приложений это может оказаться критическим фактором.

Микропроцессоры не имеют ограничений на размер памяти, поскольку для хранения программы и данных они используют внешнюю память. Программа обычно хранится в энергонезависимой памяти, такой как NAND или последовательная флэш память. При запуске программа загружается во внешнюю динамическую оперативную память и затем выполняется. Микропроцессор не способен запускаться так же быстро, как микроконтроллер, но объем оперативной и энергонезависимой памяти, которую можно подключить к процессору, может достигать сотен и даже тысяч мегабайт.

Другое отличие между микроконтроллером и микропроцессором - это система питания. Благодаря встроенному регулятору напряжения, микроконтроллеру необходимо только одно значение внешнего напряжения. Тогда как микропроцессору требуется несколько разных напряжений для ядра, периферии, портов ввода-вывода и т.д. О наличии этих напряжений на плате должен заботиться разработчик.

Выбор микроконтроллера или микропроцессора определяется некоторыми аспектами спецификации разрабатываемого устройства. Например, требуется такое количество периферийный интерфейсных каналов, которое не может предоставить микроконтроллер. Или требования относительно пользовательского интерфейса невозможно выполнить, используя микроконтроллер, потому что у него не хватает памяти и быстродействия. Приступая к первой разработке, мы знаем, что продукт в дальнейшем может сильно измениться. В этом случае возможно лучшим решением будет использование какой-то готовой платформы. Так мы учтем запас вычислительной мощности и интерфейсных возможностей для будущих модификаций устройства.

Один из аспектов, которые сложно определить, это быстродействие, требуемое для работоспособности будущей системы. Количественно оценить этот критерий можно с помощью так называемой вычислительной мощности, которая измеряется в Dhrystone MIPS или DMIPS (Dhrystone - это синтетический тест производительности компьютеров, а MIPS - количество миллионов инструкций в секунду). Например, микроконтроллер Atmel SAM4 на базе ядра ARM Cortex-M4 обеспечивает 150 DMIPS, а микропроцессор на ядре ARM Cortex-A5, такой как Atmel SAM5AD3 может обеспечить до 850 DMIPS. Один из способов оценить требуемый DMIPS - это посмотреть какая производительность нужна для запуска части приложения. Запуск полноценной операционной системы (Linux, Android или Windows CE) для работы вашего приложения потребовал бы около 300 - 400 DMIPS. А если использовать для приложения RTOS, то достаточно всего 50 DMIPS. При использовании RTOS также требуется меньше памяти, поскольку ядро обычно занимает несколько килобайт. К сожалению полноценная операционная система требует для своего запуска блок управления памятью (MMU), что в свою очередь ограничивает тип процессорных ядер, которые могут быть использованы.

Для приложений, которые обрабатывают большие объемы чисел, требуется определенный запас DMIPS. Чем больше приложение ориентировано на числовую обработку, тем выше вероятность использования микропроцессора.

Серьезного обсуждения требует использование пользовательского интерфейса, будь то бытовая или промышленная электроника. Потребителям уже привычно пользоваться интуитивно понятными графическими интерфейсами, да и в промышленности все чаще используется этот метод взаимодействия с оператором.

Существует несколько факторов относительно пользовательского интерфейса. Во-первых, это дополнительная вычислительная нагрузка. Для такой интерфейсной библиотеки как Qt, которая широко используется на Linux`e, дополнительно потребуется 80-100 DMIPS. Во-вторых - это сложность пользовательского интерфейса. Чем больше вы используете анимации, эффектов и мультимедийного содержимого, чем выше разрешение изображения, тем большая производительность и память вам потребуется. Поэтому вероятнее всего здесь подойдет микропроцессор. С другой стороны, простой пользовательский интерфейс со статическим изображением на дисплее низкого разрешения может быть реализован и на микроконтроллере.

Другой аргумент в пользу микропроцессора - это наличие встроенного TFT LCD контроллера. Мало микроконтроллеров имеют в своем составе такой модуль. Можно поставить внешний TFT LCD контроллер и какие-то другие драйверы к микроконтроллеру, но нужно учитывать получаемую в итоге себестоимость изделия.

На рынке сейчас появляются флэш микроконтроллеры с TFT LCD контроллерами, но все же должно быть достаточное количество встроенной оперативной памяти для управления дисплеем. Например, 16-цветный QVGA 320х240 требует 150 кБ оперативной памяти чтобы выдавать изображение и обновлять дисплей. Это довольно большой объем ОЗУ и может потребоваться внешняя память, что тоже скажется на себестоимости.

Более сложные графические пользовательские интерфейсы, особенно использующие дисплеи размером больше 4,3 дюйма, требуют применения микропроцессоров. Если микропроцессоры доминируют в приложениях, где используется пользовательский интерфейс с цветным TFT экраном, то микроконтроллеры - короли сегментных или точечно-матричных LCD и других экранов с последовательным интерфейсом.

С точки зрения коммуникаций, большинство микроконтроллеров и микропроцессоров имеют в своем составе наиболее популярные периферийные интерфейсы. Но высокоскоростные интерфейсы, такие как HS USB 2.0, 10/100 Мбит/с Ethernet порты или гигабитные Ethernet порты, обычно есть только у микропроцессоров, потому что они лучше приспособлены к обработке больших объемов данных. Ключевой вопрос здесь - это наличие подходящих каналов и полосы пропускания для обработки потока данных. Приложения, использующие высокоскоростные подключения и ориентированные на операционную систему, требуют применения микропроцессоров.

Другой ключевой аспект, определяющий выбор между микроконтроллером и микропроцессором, это требование по детерминированному времени реакции приложения. Из-за процессорного ядра, встроенной флэш памяти и программного обеспечения в виде RTOS (операционной системы реального времени) или чистого Си кода, микроконтроллер будет определенно лидировать по этому критерию.

Заключительная часть нашего обсуждения будет касаться энергопотребления. Хотя у микропроцессора есть режимы пониженного энергопотребления, у типичного микроконтроллера их намного больше. Кроме того, внешнее аппаратное обеспечение микропроцессора осложняет его перевод в эти режимы. Фактическое потребление микроконтроллера значительно ниже, чем микропроцессора. Например, в режиме энергосбережения с сохранением регистров и оперативной памяти, микроконтроллер может потреблять в 10-100 раз меньше.

Выбор между микроконтроллером и микропроцессором зависит от многих факторов, таких как производительность, возможности и бюджет разработки.

Вообще говоря, микроконтроллеры обычно используются в экономически оптимизированных решениях, где важное значение имеет стоимость изделия и энергосбережение. Они, например, широко используются в приложениях с ультра низким энергопотреблением, где требуется длительное время работы от батарей. Например, в пультах дистанционного управления, потребительских электросчетчиках, охранных системах и т.п. Также они используются там, где необходима высоко детерминированное поведение системы.

Микропроцессоры, как правило, применяются для создания функциональных и высокопроизводительных приложений. Они идеально подходят для промышленных и потребительских приложений на основе операционных систем, где интенсивно используются вычисления или требуется высокоскоростной обмен данными или дорогой пользовательский интерфейс.

И последнее. Выбирайте поставщика, предлагающего совместимые микроконтроллеры или микропроцессоры, чтобы иметь возможность мигрировать вверх или вниз, увеличивая повторное использование программного обеспечения.

Что такое микроконтроллер? Определение характеристик и архитектуры.

Что такое микроконтроллер? Определение характеристик и архитектуры.

Если бы мне пришлось выбрать один навык, который был бы наиболее ценным дополнением к набору навыков любого инженера, это, несомненно, было бы умение разработки схем на основе микроконтроллеров.

Микроконтроллер сыграл фундаментальную, я бы даже сказал, доминирующую роль в технологической революции, которая сформировала современную жизнь. Микроконтроллеры – это небольшие недорогие универсальные устройства, которые могут быть успешно внедрены и запрограммированы не только опытными инженерами-электронщиками, но и любителями, студентами и специалистами из других областей.

Список возможных применений микроконтроллеров настолько велик, что я не решаюсь даже привести примеры. Недорогие носимые устройства, медицинское оборудование, высококачественная потребительская электроника, надежные промышленные устройства, современные военные и аэрокосмические системы – эти адаптируемые, доступные по цене и удобные для пользователя компоненты являются желанным дополнением практически к любому электронному продукту.

В данной статье мы рассмотрим определение микроконтроллера, и зачем он нужен в проекте.

Что такое микроконтроллер?

Микроконтроллер – это устройство на интегральной микросхеме (ИМС), используемое для управления другими частями электронной системы, обычно через микропроцессорное устройство, память и несколько периферийных устройств. Эти устройства оптимизированы для встраиваемых приложений, которые требуют как возможностей обработки, так и гибкого, быстрого взаимодействия с цифровыми, аналоговыми или электромеханическими компонентами.

Наиболее распространенным способом обозначения этой категории интегральных микросхем является «микроконтроллер», но взаимозаменяемо также используется аббревиатура «MCU», так как расшифровывается «microcontroller unit». Также иногда вы можете увидеть «µC» (где греческая буква мю заменяет приставку «микро»).

«Микроконтроллер» является удачно выбранным названием, поскольку оно подчеркивает определяющие характеристики этой категории продуктов. Приставка «микро» подразумевает малые размеры, а термин «контроллер» здесь подразумевает расширенную способность выполнять функции управления. Как указано выше, эта функциональность является результатом объединения цифрового процессора и цифровой памяти с дополнительным аппаратным обеспечением, которое разработано специально, чтобы помочь микроконтроллеру взаимодействовать с другими компонентами.

Микроконтроллеры и микропроцессоры

Иногда при обращении к микроконтроллеру люди используют термин «микропроцессор», но эти два устройства необязательно идентичны. И микропроцессоры, и микроконтроллеры работают как небольшие, высокоинтегрированные вычислительные системы, но они могут служить различным целям.

Термин «процессор» используется для идентификации системы, которая состоит из центрального процессора и (необязательно) некоторой памяти. Микропроцессор – это устройство, которое реализует все функциональные возможности процессора в одной интегральной микросхеме. Микроконтроллеры, для сравнения, придают большее значение дополнительным аппаратным модулям, которые позволяют устройству управлять системой, а не просто выполнять инструкции и хранить данные.

Ниже приведена диаграмма, которая иллюстрирует эту концепцию.

Диаграмма, поясняющая различие между понятиями «микроконтроллер» и «микропроцессор»

Диаграмма, поясняющая различие между понятиями «микроконтроллер» и «микропроцессор»

В общем, взаимозаменяемое использование терминов «микропроцессор» и «микроконтроллер» не является большой проблемой, когда мы говорим неформально и стараемся не повторять одно и то же слово снова и снова. Однако в контексте технического обсуждения важно сохранить различие между этими двумя понятиями.

Микроконтроллеры и цифровые сигнальные процессоры (DSP)

Цифровой сигнальный процессор (или DSP) – это микропроцессор, оптимизированный для сложных вычислительных задач, таких как цифровая фильтрация, математический анализ сигналов в реальном времени и сжатие данных. Очень сложный микроконтроллер может быть в состоянии заменить цифровой сигнальный процессор, но он всё еще считается микроконтроллером, если значительная часть его внутренней схемы предназначена для управления, мониторинга и связи с окружающей системой.

Основные узлы микроконтроллера

Микроконтроллер состоит из центрального процессора (ЦП, CPU), энергонезависимой памяти, энергозависимой памяти, периферийных устройств и вспомогательных цепей.

Центральный процессор (CPU)

Центральный процессор выполняет арифметические операции, управляет потоком данных и генерирует управляющие сигналы в соответствии с последовательностью инструкции, созданных программистом. Эта чрезвычайно сложная схема, необходимая для функциональности процессора, разработчику не видна. Фактически, благодаря интегрированным средам разработки и языкам высокого уровня, таким как C, написание кода для микроконтроллеров часто является довольно простой задачей.

Память

Энергонезависимая память используется для хранения программы микроконтроллера, то есть (часто очень длинного) списка инструкций машинного языка, которые точно указывают процессору, что делать. Обычно вместо «энергонезависимой памяти» вы будете видеть слово «flash» («флеш»), которое относится к определенному типу энергонезависимого хранилища данных.

Энергозависимая память (то есть ОЗУ, RAM) используется для временного хранения данных. Эти данные теряются, когда микроконтроллер теряет питание. Внутренние регистры также обеспечивают временное хранение данных, но мы не рассматриваем их как отдельный функциональный блок, поскольку они интегрированы в центральный процессор.

Периферийные устройства

Мы используем слово «периферия» для описания аппаратных модулей, которые помогают микроконтроллеру взаимодействовать с внешней системой. Следующие пункты описывают различные категории периферийных устройств и приводят их примеры.

Данный график демонстрирует данные трехосевого акселерометра, оцифрованные с помощью встроенного АЦП микроконтроллера

  • Преобразователи данных: аналого-цифровой преобразователь, цифро-аналоговый преобразователь, генератор опорного напряжения. Данный график демонстрирует данные трехосевого акселерометра, оцифрованные с помощью встроенного АЦП микроконтроллера
  • Генерирование тактовых сигналов: внутренний генератор, схема на кварцевом резонаторе, петля фазовой автоподстройки частоты.
  • Расчет времени: таймер общего назначения, часы реального времени, счетчик внешних событий, широтно-импульсная модуляция.
  • Обработка аналоговых сигналов: операционный усилитель, аналоговый компаратор.
  • Ввод/вывод: цифровые входные и выходные цепи общего назначения, параллельный интерфейс памяти.
  • Последовательная связь: UART, SPI, I2C, USB

Вспомогательные цепи

Микроконтроллеры включают в себя множество функциональных блоков, которые не могут быть классифицированы как периферийные устройства, поскольку их основная цель не состоит в управлении, мониторинге или обмене данными с внешними устройствами. Тем не менее, они очень важны – они поддерживают внутреннюю работу устройства, упрощают реализацию и улучшают процесс разработки.

Программы микроконтроллера, написанные на C, организованы в функции. Прерывание заставляет выполение программы «переходить» в процедуру обработки прервывания (ISR), и после того, как ISR завершил выполение своих задач, процессор возвращается к функции, которая выполнялась, когда произошло прерывание.

  • Схема отладки позволяет разработчику тщательно контролировать микроконтроллер во время выполнения инструкций. Это важный, а иногда и необходимый метод отслеживания ошибок и оптимизации производительности прошивки.
  • Прерывания являются чрезвычайно ценным видом работы микроконтроллера. Прерывания генерируются внешними или внутренними аппаратными событиями и заставляют процессор немедленно реагировать на эти события, выполняя определенную группу инструкций. Программы микроконтроллера, написанные на C, организованы в функции. Прерывание заставляет выполнение программы «переходить» в процедуру обработки прерывания (ISR), и после того, как ISR завершил выполнение своих задач, процессор возвращается к функции, которая выполнялась, когда произошло прерывание.
  • Модуль генерирования тактового сигнала можно считать периферийным устройством, если он предназначен для генерирования сигналов, которые будут использоваться вне микросхемы. Но во многих случаях основная цель внутреннего генератора микроконтроллера состоит в том, чтобы предоставить тактовый сигнал для центрального процессора и периферийных устройств. Внутренние генераторы часто имеют низкую точность, но в приложениях, которые могут допускать эту низкую точность, они являются удобным и эффективными способом упростить конструкцию и сэкономить место на плате.
  • Микроконтроллеры могут включать в себя различные типы схем электропитания. Интегрированные стабилизаторы напряжения позволяют в самой микросхеме генерировать необходимое напряжение питания, модули управления питанием могут использоваться для значительного снижения потребления тока устройством в неактивных состояниях, а модули супервизора могут переводить процессор в состояние сброса, когда напряжение питания недостаточно высоко, чтобы обеспечить надежную работу.

Следующие статьи

В данной статье мы определили микроконтроллер как устройство, которое состоит из небольшого, эффективного процессорного ядра, объединенного с памятью программ, памятью данных, периферийными устройствами и различными типами схем поддержки и отладки.

В следующей статье этой серии «Введение в микроконтроллеры» мы расскажем, как правильно выбрать микроконтроллер. Затем мы перейдем к чтению технического описания на микроконтроллер.

Читайте также: