Как называется набор микросхем который обеспечивает подключение цпу к оперативной памяти

Обновлено: 02.07.2024

ОЗУ (оперативное запоминающее устройство), оно же RAM ("Random Access Memory" - память с произвольным доступом), представляет собой область временного хранения данных, при помощи которой обеспечивается функционирование программного обеспечения. Физически, оперативная память в системе представляет собой набор микросхем или модулей (содержащих микросхемы), которые обычно подключаются к системной плате.

В процессе работы память выступает в качестве временного буфера (в ней хранятся данные и запущенные программы) между дисковыми накопителями и процессором благодаря значительно большей скорости чтения и записи данных.

Примечание. Совсем новички часто путают оперативную память с памятью жесткого диска (ПЗУ - постоянное запоминающее устройство), чего делать не нужно, т.к. это совершенно разные виды памяти. Оперативная память (по типу является динамической - Dynamic RAM), в отличие от постоянной - энергозависима, т.е. для хранения данных ей необходима электроэнергия, и при ее отключении (выключение компьютера) данные удаляются. Пример энергонезависимой памяти ПЗУ - флэш-память, в которой электричество используется лишь для записи и чтения, в то время как для самого хранения данных источник питания не нужен.

По своей структуре память напоминает пчелиные соты, т.е. состоит из ячеек, каждая из которых предназначена для хранения мёда определенного объема данных, как правило, одного или четырех бит. Каждая ячейка оной имеет свой уникальный «домашний» адрес, который делится на два компонента – адрес горизонтальной строки (Row) и вертикального столбца (Column).

Ячейки представляют собой конденсаторы, способные накапливать электрический заряд. С помощью специальных усилителей аналоговые сигналы переводятся в цифровые, которые в свою очередь образуют данные.

Для передачи на микросхему памяти адреса строки служит некий сигнал, который зовется RAS (Row Address Strobe), а для адреса столбца — сигнал CAS (Column Address Strobe).

Как работает оперативная память?

Работа оперативной памяти непосредственно связана с работой процессора и внешних устройств компьютера, так как именно ей последние «доверяют» свою информацию. Таким образом, данные сперва попадают с жесткого диска (или другого носителя) в саму ОЗУ и уже затем обрабатываются центральным процессором.

Обмен данными между процессором и памятью может происходить напрямую, но чаще все же бывает с участием кэш-памяти.

Кэш-память является местом временного хранения наиболее часто запрашиваемой информации и представляет собой относительно небольшие участки быстрой локальной памяти. Её использование позволяет значительно уменьшить время доставки информации в регистры процессора, так как быстродействие внешних носителей (оперативки и дисковой подсистемы) намного хуже процессорного. Как следствие, уменьшаются, а часто и полностью устраняются, вынужденные простои процессора, что повышает общую производительность системы.

Оперативной памятью управляет контроллер, который находится в чипсете материнской платы, а точнее в той его части, которая называется North Bridge (северный мост) - он обеспечивает подключение CPU (процессора) к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер (смотрите изображение).

Примечание. Важно понимать, что если в процессе работы оперативной памяти производится запись данных в какую-либо ячейку, то её содержимое, которое было до поступления новой информации, будет безвозвратно утеряно. Т.е. по команде процессора данные записываются в указанную ячейку, одновременно стирая при этом то, что там было записано ранее.

Зачем нужна оперативная память?

Как мы уже знаем, обмен данными между процессором и памятью происходит чаще всего с участием кэш-памяти. В свою очередь, ею управляет специальный контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их, т.е. кэш-контроллер загружает в кэш-память нужные данные из оперативной памят­и, и возвращает, когда нужно, модифицирован­ные процессором данные в оперативку.

После процессора, оперативную память можно считать самым быстродействующим устройством. Поэтому основной обмен данными и происходит между этими двумя девайсами. Вся информация в персональном компьютере хранится на жестком диске. При включении компа в ОЗУ с винта записываются драйверы, специальные программы и элементы операционной системы. Затем туда записываются те программы – приложения, которые мы будем запускать, при закрытии последних они будут стерты из оной.

Данные, записанные в оперативной памяти, передаются в CPU (он же не раз упомянутый процессор, он же Central Processing Unit), там обрабатываются и записываются обратно. И так постоянно: дали команду процессору взять биты по таким-то адресам (как то: обработатьих и вернуть на место или записать на новое) – он так и сделал (смотрите изображение).

Компоновка модулей

Практически все модули памяти состоят из одних и тех же конструктивных элементов.

Для примера используем модули стандарта SD-RAM (1): DDR (1.1); DDR2 (1.2).

  1. Чипы (микросхемы) памяти
  2. SPD (Serial Presence Detect) – микросхема энергонезависимой памяти, в которую записаны базовые настройки любого модуля. Во время старта системы BIOS материнской платы считывает информацию, отображенную в SPD, и выставляет соответствующие тайминги и частоту работы ОЗУ;
  3. «Ключ» - специальная прорезь платы, по которой можно определить тип модуля. Механически препятствует неверной установке плашек в слоты, предназначенные для оперативной памяти;
  4. SMD-компоненты модулей (резисторы, конденсаторы). Обеспечивают электрическую развязку сигнальных цепей и управление питанием чипов;
  5. Cтикеры производителя - указывают стандарт памяти, штатную частоту работы и базовые тайминги;
  6. РСВ – печатная плата. На ней распаиваются остальные компоненты модуля. От качества зачастую зависит результат разгона: на разных платах одинаковые чипы могут вести себя по-разному.

Виды и объем памяти

Плата на сегодняшний день может иметь объем в несколько десятков гигабайт. Современные технические средства позволяют использовать её максимально быстро. Большинство операционных систем оснащаются возможностью взаимодействовать с такими устройствами. Имеется пропорциональная зависимость между объемом ОЗУ и стоимостью. Чем больше её размер, тем более она дорогая. И наоборот.

Все современные ОЗУ можно разделить на две разновидности:

Статический тип

Более дорогой на сегодняшний день является микросхема статическая. Маркируется она как SDRAM. Динамическая же является более дешевой.

Отличительными чертами SDRAM-разновидности являются:

  • двоичные и троичные разряды сохраняются при положительной обратной связи;
  • поддерживается постоянное состояние без осуществления регенерации.

Также отличительной особенностью RAM является наличие возможности осуществлять выбор того бита, в который будет осуществлена запись какой-либо информации.

К недостаткам можно отнести:

  • малую плотность записи;
  • относительно высокую стоимость.

Устройства оперативной памяти компьютера всевозможного вида (SDRAM и DRAM) имеют внешние отличия. Они заключаются в длине контактной части. Также имеет отличия её форма. Обозначение оперативной памяти находится как на этикетке-наклейке, так и пропечатано непосредственно на самой планке.

Сегодня существует множество различных модификаций SDRAM.

Обозначается она как:

Динамический тип

Ещё один вид микросхем обозначается как DRAM. Он является также полностью энергозависимым, доступ к битам записи осуществляется произвольным образом. Данная разновидность широко используется в большинстве современных ПК. Также она применяется в тех компьютерных системах, где высоки требования к задержкам – быстродействие DRAM на порядок выше SDRAM.

Чаще всего данная разновидность имеет форм-фактор типа DIMM. Такое же конструктивное решение используется и для изготовления статической схемы (SDRAM). Особенностью DIMM-исполнения является то, что контакты имеются с обеих сторон поверхности.

Параметры ОП

  • частота работы;
  • тайминг;
  • напряжение.

Все они зависят от типа конкретной модели. Например, ДДР 2 будет выполнять различные действия однозначно быстрее, чем планка ДДР 1, так как обладает более выдающимися рабочими характеристиками.

Таймингами называется время задержки информации между различными компонентами устройства. Маленькие тайминги позволяют увеличить скорость выполнения различных операций. Но чем выше быстродействие оперативно-запоминающего устройства, тем больше значения таймингов.

Выходом из данного положения служит повышение рабочего напряжения – чем оно выше, тем меньше становятся тайминги. Количество выполненных операций за единицу времени в то же время возрастает.

Частота и скорость

Чем выше пропускная способность ОЗУ, тем больше её скорость. Частота является параметром, определяющим пропускную способность каналов, через которые осуществляется передача данных различного рода в ЦП через материнскую плату.

Желательно, чтобы данная характеристика совпадала с допустимой скоростью работы материнской платы.

Например, если планка поддерживает частоту 1600 МГц, а материнская плата – не более 1066 Мгц, то скорость обмена данными между ОЗУ и ЦП будет ограничена именно возможностями материнской платы. То есть скорость будет не более 1066 МГц.

Производительность

Быстродействие зависит от многих факторов. Очень большое влияние на данный параметр оказывает количество используемых планок. Двухканальная ОЗУ работает на порядок быстрее, чем одноканальная. Наличие возможности поддерживать режимы многоканальности обозначается на наклейке, расположенной поверх платы.

Данные обозначения имеют следующий вид:

  • Single (одиночный);
  • Dual (двойной);
  • Triple (тройной).

Для определения того, какой режим является оптимальным для конкретной материнской платы, необходимо посчитать общее количество слотов для подключения, и разделить их на два. Например, если их 4, то необходимо 2 идентичных планки от одного производителя. При их параллельной установке активируется режим Dual.

Принцип работы и функции

  • на требуемую строку подается электрический сигнал;
  • происходит открытие транзистора;
  • электрический заряд, присутствующий в конденсаторе, подается на нужный столбец.

Каждый столбец подключен к чрезвычайно чувствительному усилителю. Он регистрирует потоки электронов, возникающие в случае, если конденсатор разряжается. При этом подается соответствующая команда. Таким образом, происходит осуществление доступа к различным ячейкам, расположенным на плате. Есть один важный нюанс, который следует обязательно знать. Когда подается электрический импульс на какую-либо строку, он открывает все её транзисторы. Они подключены к ней напрямую.

Из этого можно сделать вывод, что одна строка является минимальным объемом информации, который можно прочитать при осуществлении доступа. Основное назначение ОЗУ – хранить различного рода временные данные, которые необходимы, пока персональный компьютер включен и функционирует операционная система. В ОЗУ загружаются наиболее важные исполняемые файлы, ЦП осуществляет их выполнение напрямую, просто сохраняя результаты выполненных операций.

Также в ячейках хранятся:

  • исполняемые библиотеки;
  • коды клавиш, нажатие на которые было осуществлено;
  • результаты различных математических операций.

При необходимости все, что находится в RAM, центральный процессор может сохранить на жесткий диск. Причем сделать это в том виде, в котором это необходимо.

Статическая оперативная память

Статическая память используется в кэше центрального процессора, а динамическая в качестве системной оперативной памяти компьютера.

В современном мире чипы памяти комплектуются в компонент, именуемый модулем. Порой компьютерные специалисты называют его «планкой памяти». Один модуль или «планка» содержит несколько чипов памяти. Не исключено, что вам приходилось слышать такие определения, как «память 8×32» или «память 4×16». Разумеется, цифры могли быть иными. В этой простой формуле первым множителем является количество чипов в модуле, а вторым емкость каждого модуля. Только не в мегабайтах, а в мегабитах. Это значит, что результат действия умножения следует разделить на восемь, чтобы получить объем модуля в привычных нам мегабайтах.

К примеру: 4×32 означает, что модуль содержит четыре 32-мегабитных чипа. Умножив 4 на 32, получаем 128 мегабит. Поскольку нам известно, что в одном байте восемь бит, нам нужно разделить 128 на 8. В итоге узнаем, что «модуль 4×32» является 16-мегабайтным и устарел еще в конце минувшего века, что не мешает ему быть превосходным простым примером для тех вычислений, которые нам потребовались.

Принцип работы оперативной памяти компьютера, ноутбука

Оперативная память хранит в себе данные, необходимые для работы всей системы в определённый момент времени. При создании чипов оперативной памяти используют динамическую память, которая медленнее, но дешевле чем статическая, которая используется при создании кеш памяти процессоров. Если нам нужно прочитать память, то на определённую строку страницы памяти, подаётся сигнал, который открывает транзистор и пропускает электрический заряд, который содержится (или не содержится) в конденсаторе на соответствующий столбец. К каждому столбцу подключен чувствительный усилитель, который реагирует на незначительный поток электронов выпущенных с конденсатора. Но тут есть нюанс – сигнал, поданный на строку матрицы, открывает все транзисторы данной строки, так как они все подключены на данную строку, и таким образом происходит чтение всей строки. Исходя из вышесказанного, становится ясно, что строка в памяти, является минимальной величиной для чтения – прочитать одну ячейку, не затронув другие невозможно. Процесс чтения памяти является деструктивным, так как прочитанный конденсатор отдал все свои электроны, что бы его услышал чувствительный усилитель. И по этому, после каждого чтения строки, её нужно записать заново. онденсатор, который служит хранителем данных, имеет микроскопические размеры и как следствие маленькую ёмкость, и ввиду этого не может долго хранить заряд заданный ему, по причине саморазряда. Для борьбы с этой проблемой, используется регенерация памяти, которая, с определённой периодичностью считывает ячейки и записывает заново. Благодаря подобному явлению, эта память и получила название динамической.

EDO-DRAM (Extended Data Out DRAM) – динамическая память с усовершенствованным выходом. В этом типе памяти адрес следующего считываемого слова передавался до завершения считывания линии данных памяти, то есть до того, как считанные данные из памяти были переданы процессору.

Приступить к считыванию нового слова данных, до завершения чтения предыдущего, стало возможным, благодаря вводу, так называемых, регистров – защелок, которые сохраняли последнее считанное слово даже после того, как начиналось чтение или запись следующего слова.

Сочетая в себе также новшества памяти FPM RAM, новый тип памяти давал прирост производительности в пике, достигавший 15-20%.

Однако прогресс не стоял на месте, тактовые частоты работы процессоров, системной шины и естественно памяти росли. С повышением тактовой частоты все сложнее было добиваться стабильной работы памяти EDO-DRAM, так как из-за непредвиденных задержек чтение нового слова данных могло начаться прежде, чем предыдущее слово данных было сохранено с помощью регистров-защелок.

Любой, кто разбирал компьютер, видел как много различных элементов на материнской плате, в этой статье я постараюсь кратко описать и показать основные компоненты, устанавливаемые на материнские платы современных компьютеров.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Или мосфет. Обычно используется для усиления, генерации и преобразования электрических сигналов. В общем случае транзистором называют любое устройство, которое имитирует главное свойство транзистора - изменения сигнала между двумя различными состояниями при изменении сигнала на управляющем электроде.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Резистор - это пассивный элемент радиоэлектронной аппаратуры, предназначенный для создания в электрической цепи требуемой величины электрического сопротивления, обеспечивающий перераспределение и регулирование электрической энергии между элементами схемы.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Электролитические конденсаторы схожи с аккумуляторами, но в отличии от которых выводят весь свой заряд в крошечные доли секунды. Используются, чтобы выровнять напряжение или блокировать постоянный ток в цепи.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Керамические SMD, танталовые, ниобиевые и др. Лучше для электроники, которая не требует высокой интенсивности работы.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Светодиод (LED). В основном LED - крошечные лампочки.

Катушки и индуктивности

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Индуктор (дроссель) - обмотка провода, катушка, используется для смягчения скачка тока при запуске. Зачастую стоят перед процессором.

Генератор тактовых частот.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Генератор тактовых частот (клокер) — устройство, формирующее тактовые частоты, используемые на материнской плате и в процессоре.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Кварц перемещает энергию назад и вперед между двумя формами в равные доли времени. Задаёт частоту работы всей электрической схемы.

SuperIO (SIO, MultiIO, MIO, "мультик").

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Третья по значимости и размеру микросхема на материнской плате – после мостов. Отвечает за порты ввода-вывода (COM, LPT, GamePort, инфракрасный порт, PS/2 для клавиатуры и мыши и др.). Является микроконтроллером (выполняет часть прошивки биос), выродился из контроллера клавиатуры, но в современных платах выполняет множество важных функций. Он например мониторит сигналы с Шим и когда убедится что всё ОК с питанием - даёт южному мосту команду "нажали на вкл, запускайся", ещё он управляет режимами S0-S5. На текущий момент это его основной функционал, а функции ввода - вывода - отмирающий придаток. Зачастую обладает дополнительным функционалом:

встроенный Hardware Monitoring

контроллер управления скоростью вентиляторов

интерфейс для подключения CompactFlash-карт.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

ШИМ-контроллер (от Широтно-Импульсная Модуляция) - главная микросхема, управляющая напряжением на материнской плате.

Мосты (северный и южный).

Северный мост (MCH).

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Одним из основным составляющим компонентом материнской платы будь то компьютера либо ноутбука является Северный мост (англ. Northbridge; в отдельных чипсетах Intel, также — контроллер-концентратор памяти с английского Memory Controller Hub)

MCH является системным контроллером чипсета на материнской плате платформы x86, к которому в рамках организации взаимодействия подключено следующие оборудование:

1. через Front Side Bus — микропроцессор, если в составе процессора нет контроллера памяти, тогда через шину контроллера памяти подключена— оперативная память.

2. через шину графического контроллера — видеоадаптер (в материнских платах нижнего ценового диапазона, видеоадаптер часто встроенный. В таком случае северный мост, произведенный Intel, называется GMCH (от англ. Chipset Graphics and Memory Controller Hub).

Исходя из назначения, северный мост определяет параметры (возможный тип, частоту, пропускную способность):

- системной шины и, косвенно, процессора (исходя из этого — до какой степени может быть разогнан компьютер);

- оперативной памяти (тип — например SDRAM, DDR, DDR2, её максимальный объем);

Во многих случаях именно параметры и быстродействие северного моста определяют выбор реализованных на материнской плате шин расширения (PCI, PCI Express) системы.

В свою очередь, северный мост соединён с остальной частью материнской платы через согласующий интерфейс и южный мост. Когда технологии производства не позволяют скомпенсировать возросшее, вследствие усложнения внутренней схемы, тепловыделение чипа, современные мощные микросхемы северного моста помимо пассивного охлаждения (радиатора) для своей бесперебойной работы требуют использования индивидуального вентилятора или системы жидкостного охлаждения, что в свою очередь увеличивает энергопотребление всей системы и требует более мощного блока питания.

Минуя северный мост согласно нашей схеме двигаясь на юг на материнской плате расположен южный мост.

Южный мост ( ICH)

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Южный мост (от англ. Southbridge) (функциональный контроллер), также известен как контроллер-концентратор ввода-вывода (от англ. I/O Controller Hub, ICH).

Если взять функциональность, то южный мост включает в себя:

- контроллеры шин PCI, PCI Express, SMBus, I2C, LPC, Super I/O;

- PATA (IDE) и SATA контроллеры;

- часы реального времени (Real Time Clock);

- управление питанием (Power management, APM и ACPI);

- энергонезависимую память BIOS (CMOS);

- звуковой контроллер (обычно AC'97 или Intel HDA).

Опционально южный мост также может включать в себя контроллер Ethernet, RAID-контроллеры, контроллеры USB, контроллеры FireWire, аудио-кодек и др. Реже южный мост включает в себя поддержку клавиатуры, мыши и последовательных портов, но обычно эти устройства подключаются с помощью другого устройства — Super I/O (контроллера ввода-вывода).

Поддержка шины PCI включает в себя традиционную спецификацию PCI, но может также обеспечивать и поддержку шины PCI-X и PCI Express. Хотя поддержка шины ISA используется достаточно редко, она все таки является неотъемлемой частью современного южного моста. Шина SM используется для связи с другими устройствами на материнской плате (например, для управления вентиляторами). Контроллер DMA позволяет устройствам на шине ISA или LPC получать прямой доступ к оперативной памяти, обходясь без помощи центрального процессора.

Системная память CMOS, поддерживаемая питанием от батареи, позволяет создать ограниченную по объёму область памяти для хранения системных настроек (настроек BIOS).

Меню настроек Bios.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Северный и южный мосты материнской платы вкупе составляют одно целое устройство управления всей системой так сказать глаза, уши, руки ЦП. Вкупе эти два чипа называются – чипсет.

Чипсет (англ. chipset) — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет, размещаемый на материнской плате выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, центрального процессора (ЦП), ввода-вывода и других. Чипсеты так можно встретить и в других устройствах, например, в радиоблоках сотовых телефонов.

Чаще всего чипсет современных материнских плат компьютеров состоит из двух основных микросхем северного и южного моста (иногда объединяемых в один чип, т. н. системный контроллер-концентратор (англ. System Controller Hub, SCH):

Иногда в состав чипсета включают микросхему Super I/O, которая подключается к южному мосту по шине Low Pin Count и отвечает за низкоскоростные порты: RS232, LPT, PS/2.

Существуют и чипсеты, заметно отличающиеся от традиционной схемы. Например, у процессоров для разъёма LGA 1156 функциональность северного моста (соединение с видеокартой и памятью) полностью встроена в сам процессор, и следовательно, чипсет для LGA 1156 состоит из одного южного моста, соединенного с процессором через шину DMI.

Создание полноценной вычислительной системы для персонального и домашнего компьютера на базе, состоящих из столь малого количества микросхем (чипсет и микропроцессор) является следствием развития техпроцессов микроэлектроники развивающихся по закону Мура.

В создании чипсетов, обеспечивающих поддержку новых процессоров, в первую очередь заинтересованны фирмы-производители процессоров. Исходя из этого, ведущими фирмами (Intel и AMD) выпускаются пробные наборы, специально для производителей материнских плат, так называемые англ. referance-чипсеты. После обкатки на таких чипсетах, выпускаются новые серии материнских плат, и по мере продвижения на рынок лицензии (а учитывая глобализацию мировых производителей, кросс-лицензии) выдаются разным фирмам-производителям и, иногда, субподрядчикам производителей материнских плат.

Список основных производителей чипсетов для архитектуры x86: Intel, NVidia, ATI/AMD: (после перекупки в 2006 году ATi вошла в состав Advanced Micro Devices), Via, SiS

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Микропроцессор (ЦП)- является полным механизмом вычисления.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

BIOS (Basic Input-Output System) микросхемы основной системы ввода/вывода.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Технология Dual Bios на материнских платах производства Gigabyte. В случае сбоя основного bios его можно восстановить из резервной микросхемы.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Батарейка CMOS. Служит для хранения настроек BIOS и для поддержания системного времени в актуальном состоянии.

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Аудиокодек (англ. Audio codec; аудио кодер/декодер) — компьютерная программа или аппаратное средство, предназначенное для кодирования или декодирования аудиоданных.

Сетевой контроллер (Onboard LAN).

Как называются и как выглядят компоненты материнских плат. Материнская плата, Устройство, Ремонт техники, Длиннопост

Сетевой контроллер (Onboard LAN) представляет собой отдельную микросхему. Как и в случае с аудио кодеком при выходе из строя может сильно греться. Ремонтируется так же заменой или демонтажем.

Иногда, при неисправности внуренней сетевухи или звуковухи компьютер может не стартануть вводя в ступор южник. Можно починить материнскую плату просто отпаяв микросхему и как правило с вероятностью 80% компьютер заводится и тогда отключив в BIOS

сеть и/или звук и вставив внешнюю плату можно пользоваться компьютером без опаски.

Если вы когда-нибудь задумывались, что это за процесс, за которым следует процессор и Оперативная память что он назначил для получения данных и инструкций, которые он должен выполнить, то вам повезло, потому что в этой статье мы собираемся объяснить, что это за процесс связи между двумя наиболее важными элементами ПК, с которыми общаются разное.

В этой статье мы не будем объяснять, какой тип оперативной памяти лучше or спецификации каждого , но процессор связывается с ним, чтобы иметь возможность выполнять программы.

Связь между ЦП и ОЗУ

Причина почему мы используем внешнюю память потому, что количество транзисторов, необходимых для хранения информации, не поместится в пространстве процессора , поэтому необходимо использовать память RAM, внешнюю по отношению к процессору, для хранения инструкций и данных, которые они будут выполнять.

Зачем процессору связь с ОЗУ?

Получить процесс

Стадия, на которой CPU / ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР берет следующую инструкцию для выполнения из ОЗУ, называется «выборкой» и является одним из трех этапов, составляющих цикл команд: Fetch-Decode-Execute, о котором мы поговорим только в этой статье о первой, а о второй два будут оставлены на другой раз, так как оперативная память не вмешивается в них, кроме как для записи результата обратно.

  1. Счетчик команд: ПК указывает на следующую строку памяти, где находится следующая инструкция процессора. Его значение увеличивается на 1 каждый раз, когда завершается полный цикл команд или когда команда перехода изменяет значение программного счетчика.
  2. Регистр адреса памяти: MAR копирует содержимое ПК и отправляет его в RAM через адресные контакты ЦП, которые соединены с адресными контактами RAM.
  3. Регистр данных памяти : Если инструкция прочитана, то ОЗУ будет передавать через свою шину данных содержимое адреса памяти, на который указывал MAR.
  4. Реестр инструкций: Инструкция копируется в регистр инструкций, откуда блок управления расшифровывает ее, чтобы знать, как выполнить инструкцию.

Что такое память DRAM?


Освободи Себя тип памяти, используемой для RAM как системное ОЗУ, так и видеопамять или видеопамять. Память DRAM или 1T-DRAM . В этом типе памяти каждый бит хранится в комбинация конденсатора и транзистора , а не в нескольких транзисторах, таких как SRAM, отсюда и название 1T-DRAM.

Вся память RAM, используемая в настоящее время в ПК: DDR4, GDDR6, HBM2e, LPDDR4 и т. Д., Является памятью типа DRAM, в то время как внутренняя память процессоров, кеши регистров и блокноты относятся к типу SRAM.

Указанная комбинация конденсатора и транзистора называется Bitcell , когда конденсатор битовой ячейки заряжен, интерпретируется, что информация, содержащаяся в этой битовой ячейке, равна 1, когда она не заряжена, она интерпретируется как 0.

Массив DRAM

Битовые ячейки организованы в матрицу, в которой контакты адресации используются для доступа к ним следующим образом:

  • Первая половина битов выбирает строку, к которой мы хотим получить доступ
  • Вторая половина битов адресации содержит столбец, к которому мы хотим получить доступ,

Для этого между матрицей битовых ячеек и шиной адресации существует двоичный декодер, который позволяет выбрать соответствующую битовую ячейку.

Контакты для связи с RAM

по модулю памяти RAM

  • адресация штифты : Обычно обозначается от A0 до AN, где N - количество контактов и равно количеству бит адресации, которое всегда равно 2 ^ N.
  • Контакты данных : Здесь данные передаются в оперативную память и из нее.
  • Запись разрешена: Если вывод активен, передача данных осуществляется в память, запись, с другой стороны, если она не активна, то в сторону процессора, чтение.

Если наша система имеет несколько микросхем памяти RAM, то первые биты адресации используются для выбора, к какой из микросхем памяти мы хотим получить доступ в модуле памяти DIMM. Также были случаи, когда адрес и контакты данных совпадали. Это связано с тем, что адресация и доступ к данным не выполняются одновременно.

Но чтобы понять, как работает адресация, мы должны рассмотреть основную часть электроники - двоичный декодер.

Двоичный декодер и его роль в связи с RAM

В оперативной памяти адресация передается в двух циклах: сначала отправляется строка, к которой необходимо получить доступ, а затем столбец, а не одновременно.

По этой причине обращение к оперативной памяти происходит в два этапа.

Банки памяти

Bancos Memoria

Данные в ОЗУ не хранятся последовательно , но в разных банках на одном чипе, каждый из банков содержит массив битовых ячеек , но если мы хотим передать, например, n битов данных, нам понадобится n массивов битовых ячеек, каждый из которых подключен к выводу шины данных.

Использование несколько банков , в той же микросхеме памяти, позволяет выбрать несколько бит одновременно с одним доступом к памяти , поскольку все банки разделяют адресацию . Таким образом, если у нас есть 8 банков памяти, выбор конкретной битовой ячейки приведет к одновременной передаче данных в 8 банков памяти и из них.

Стандартный размер банков в памяти RAM составляет 8 бит, поэтому максимальный объем памяти при адресации всегда считается как 2 ^ n байтов. Фактически, это 16-, 32-, 64-битные шины и т. Д. Они передают данные нескольких последовательных адресов памяти, начиная с первого.

Связь между RAM и CPU

Pistas PCB

  1. Выберите столбец (Адресация)
  2. Выберите строку (Адресация)
  3. Передача данных.

Для этого используется ряд специальных контактов, один из которых мы уже видели, и это запись Enable, а два других следующие:

  • Строб доступа к колонке: Этот вывод активируется, когда мы указываем оперативной памяти, что указываем столбец, к которому хотим получить доступ.
  • Строб доступа к строке :: Этот вывод активируется, когда мы указываем оперативной памяти, что указываем строку, к которой хотим получить доступ.

Обе операции можно резюмировать следующим образом:

Ввод данных

Выходные данные

  • Операция чтения очень проста, для этого у вас должен быть неактивен вывод WE, чтобы указать, что данные идут из ОЗУ в процессор, указать строку, а затем столбец, чтобы информация поступала к процессору из ОЗУ памяти. .
  • Операция записи несколько отличается, для этого вывод WE должен быть активен, но данные передаются не после выбора столбца данных, а после выбора строки и одновременно с выбором столбца, в котором находятся данные.

Благодаря этому вы уже можете получить приблизительное представление о том, как работает связь между процессором и его оперативной памятью.

Сегодня хочется поговорить с Вами о такой важной и полезной штуке как оперативная память, в связи с чем опубликовано сразу две статьи, одна из которых рассказывает о памяти вообще (тобишь ниже по тексту), а другая рассказывает о том как эту самую память выбрать (собственно, статья находится прямо под этой, просто опубликована отдельно).

Как работает оперативная память и зачем она нужна - иконка статьи

Изначально это был один материал, но, дабы не делать очередную многобуквенную страницу-простыню, да и просто из соображений разделения и систематизации статей, было решено разбить их на две.

Ну, а сейчас, приступаем.

  • Вводная
  • Общее
  • Как же работает оперативная память?
  • Подробнее
  • Зачем нужна эта самая оперативная память?
  • Компоновка модулей
  • Температура, лаг, энергозависимость и вообще "на пальцах"
  • Послесловие

Вводная

Перед каждым пользователем рано или поздно (или никогда) встает вопрос модернизации своего верного «железного коня». Некоторые сразу меняют «голову» - процессор, другие - колдуют над видеокартой, однако, самый простой и дешевый способ – это увеличение объема оперативной памяти.

Почему самый простой?

Да потому что не требует специальных знаний технической части, установка занимает мало времени и не создает практически никаких сложностей (и еще он наименее затратный из всех, которые я знаю).

Итак, чтобы узнать чуть больше о таком простом и одновременно эффективном инструменте апгрейда, как оперативная память (далее ОП), для этого обратимся к родимой теории.

Общее

ОЗУ (оперативное запоминающее устройство), оно же RAM (" Random Access Memory " - память с произвольным доступом), представляет собой область временного хранения данных, при помощи которой обеспечивается функционирование программного обеспечения. Физически, оперативная память в системе представляет собой набор микросхем или модулей (содержащих микросхемы), которые обычно подключаются к системной плате.

В процессе работы память выступает в качестве временного буфера (в ней хранятся данные и запущенные программы) между дисковыми накопителями и процессором, благодаря значительно большей скорости чтения и записи данных.

Примечание.
Совсем новички часто путают оперативную память с памятью жесткого диска ( ПЗУ - постоянное запоминающее устройство), чего делать не нужно, т.к. это совершенно разные виды памяти. Оперативная память (по типу является динамической - Dynamic RAM ), в отличие от постоянной - энергозависима, т.е. для хранения данных ей необходима электроэнергия, и при ее отключении (выключение компьютера) данные удаляются. Пример энергонезависимой памяти ПЗУ - флэш-память, в которой электричество используется лишь для записи и чтения, в то время как для самого хранения данных источник питания не нужен.

По своей структуре память напоминает пчелиные соты, т.е. состоит из ячеек, каждая из которых предназначена для хранения мёда определенного объема данных, как правило, одного или четырех бит. Каждая ячейка оной имеет свой уникальный «домашний» адрес, который делится на два компонента – адрес горизонтальной строки ( Row ) и вертикального столбца ( Column ).

Ячейки представляют собой конденсаторы, способные накапливать электрический заряд. С помощью специальных усилителей аналоговые сигналы переводятся в цифровые, которые в свою очередь образуют данные.

Для передачи на микросхему памяти адреса строки служит некий сигнал, который зовется RAS ( Row Address Strobe ), а для адреса столбца — сигнал CAS ( Column Address Strobe ).

С этим разобрались, идем дальше. Затронем еще один немаловажный вопрос:

Как же работает оперативная память?

Работа оперативной памяти непосредственно связана с работой процессора и внешних устройств компьютера, так как именно ей последние «доверяют» свою информацию. Таким образом, данные сперва попадают с жесткого диска (или другого носителя) в саму ОЗУ и уже затем обрабатываются центральным процессором (смотрите изображение).

Как работает оперативная память - Схема - взаимодействие компонентов ПК

Обмен данными между процессором и памятью может происходить напрямую, но чаще все же бывает с участием кэш-памяти.

Кэш-память является местом временного хранения наиболее часто запрашиваемой информации и представляет собой относительно небольшие участки быстрой локальной памяти. Её использование позволяет значительно уменьшить время доставки информации в регистры процессора, так как быстродействие внешних носителей (оперативки и дисковой подсистемы) намного хуже процессорного. Как следствие, уменьшаются, а часто и полностью устраняются, вынужденные простои процессора, что повышает общую производительность системы.

Оперативной памятью управляет контроллер, который находится в чипсете материнской платы, а точнее в той его части, которая называется North Bridge (северный мост) - он обеспечивает подключение CPU (процессора) к узлам, использующим высокопроизводительные шины: ОЗУ , графический контроллер (смотрите изображение).

Как работает оперативная память - Управление оперативной памятью

Примечание.
Важно понимать, что если в процессе работы оперативной памяти производится запись данных в какую-либо ячейку, то её содержимое, которое было до поступления новой информации, будет безвозвратно утеряно. Т.е. по команде процессора данные записываются в указанную ячейку, одновременно стирая при этом то, что там было записано ранее.

Рассмотрим еще один важный аспект работы оперативки – это ее деление на несколько разделов с помощью специального программного обеспечения (ПО), которое поддерживается операционными системами.

Сейчас Вы поймете, о чем это я.

Подробнее

Дело в том, что современные устройства оперативной памяти являются достаточно объемными (привет двухтысячным, когда хватало и 32 Mб), чтобы в ней можно было размещать данные от нескольких одновременно работающих задач. Процессор также может одновременно обрабатывать несколько задач. Это обстоятельство способствовало развитию так называемой системы динамического распределения памяти, когда под каждую обрабатываемую процессором задачу отводятся динамические (переменные по своей величине и местоположению) разделы оперативной памяти.

Динамический характер работы позволяет распоряжаться имеющейся памятью более экономно, своевременно «изымая» лишние участки памяти у одних задач и «добавляя» дополнительные участки – другим (в зависимости от их важности, объема обрабатываемой информации, срочности выполнения и т.п.). За «правильное» динамическое распределение памяти в ПК отвечает операционная система, тогда как за «правильное» использование памяти, отвечает прикладное программное обеспечение.

Совершенно очевидно, что прикладные программы должны иметь способность работать под управлением операционной системы, в противном случае последняя не сможет выделить такой программе оперативную память или она не сможет «правильно» работать в пределах отведенной памяти. Именно поэтому не всегда удается запустить под современной операционкой, ранее написанные программы, которые работали под управлением устаревших систем, например под ранними версиями Windows (98 например).

Ещё (для общего развития) следует знать, что поддержка памяти зависит от разрядности системы, например, операционная система Windows 7, разрядностью 64 бита, поддерживает объем памяти до 192 Гбайт (младший 32 -битный собрат "видит" не больше 4 Гбайт). Однако, если Вам и этого мало, пожалуйста, 128 -разрядная Windows 8 заявляет поддержку поистине колоссальных объемов – я даже не осмеливаюсь озвучить эту цифру. Чуть подробнее про разрядность мы писали тут.

Что это такое разобрались.

Дальше, на очереди, как и гласил заголовок, у нас не менее интересный вопрос:

Зачем нужна эта самая оперативная память?

Как мы уже знаем, обмен данными между процессором и памятью происходит чаще всего с участием кэш-памяти. В свою очередь, ею управляет специальный контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их, т.е. кэш-контроллер загружает в кэш-память нужные данные из оперативной памят­и, и возвращает, когда нужно, модифицирован­ные процессором данные в оперативку.

После процессора, оперативную память можно считать самым быстродействующим устройством. Поэтому основной обмен данными и происходит между этими двумя девайсами. Вся информация в персональном компьютере хранится на жестком диске. При включении компа в ОЗУ с винта записываются драйверы, специальные программы и элементы операционной системы. Затем туда записываются те программы – приложения, которые мы будем запускать, при закрытии последних они будут стерты из оной.

Данные, записанные в оперативной памяти, передаются в CPU (он же не раз упомянутый процессор, он же Central Processing Unit ), там обрабатываются и записываются обратно. И так постоянно: дали команду процессору взять биты по таким-то адресам (как то: обработатьих и вернуть на место или записать на новое) – он так и сделал (смотрите изображение).

Как работает оперативная память - процессор и оперативная память - взаимодействие

Все это хорошо до тех пор, пока ячеек памяти ( 1 ) хватает. А если нет?

Тогда в работу вступает файл подкачки ( 2 ). Этот файл расположен на жестком диске и туда записывается все, что не влезает в ячейки оперативной памяти. Поскольку быстродействие винта значительно ниже ОЗУ , то работа файла подкачки сильно замедляет работу системы. Кроме этого, это снижает долговечность самого жесткого диска. Но это уже совсем другая история.

Примечание.
Во всех современных процессорах имеется кэш ( cache ) - массив сверхскоростной оперативной памяти, являющейся буфером между контроллером сравнительно медленной системной памяти и процессором. В этом буфере хранятся блоки данных, с которыми CPU работает в текущий момент, благодаря чему существенно уменьшается количество обращений процессора к чрезвычайно медленной (по сравнению со скоростью работы процессора) системной памяти.

Однако, кэш-память малоэффективна при работе с большими массивами данных (видео, звук, графика, архивы), ибо такие файлы просто туда не помещаются, поэтому все время приходится обращаться к оперативной памяти, или к HDD (у которого также имеется свой кэш).

Компоновка модулей

Кстати, давайте рассмотрим из чего же состоит (из каких элементов) сам модуль.

Так как практически все модули памяти, состоят из одних и тех же конструктивных элементов, мы для наглядности возьмем стандарт SD-RAM (для настольных компьютеров). На изображении специально приведено разное конструктивное исполнение оных (чтобы Вы знали не только «шаблонное» исполнение модуля, но и весьма «экзотическое»).

Итак, модули стандарта SD-RAM ( 1 ): DDR ( 1.1 ); DDR2 ( 1.2 ).

Как работает оперативная память - компоновка модулей памяти

  1. Чипы (микросхемы) памяти
  2. SPD ( Serial Presence Detect ) – микросхема энергонезависимой памяти, в которую записаны базовые настройки любого модуля. Во время старта системы BIOS материнской платы считывает информацию, отображенную в SPD , и выставляет соответствующие тайминги и частоту работы ОЗУ ;
  3. «Ключ» - специальная прорезь платы, по которой можно определить тип модуля. Механически препятствует неверной установке плашек в слоты, предназначенные для оперативной памяти;
  4. SMD -компоненты модулей (резисторы, конденсаторы). Обеспечивают электрическую развязку сигнальных цепей и управление питанием чипов;
  5. Cтикеры производителя - указывают стандарт памяти, штатную частоту работы и базовые тайминги;
  6. РСВ – печатная плата. На ней распаиваются остальные компоненты модуля. От качества зачастую зависит результат разгона: на разных платах одинаковые чипы могут вести себя по-разному.

Теперь обощая, упрощая.

Температура, лаг, энергозависимость и вообще "на пальцах"

Условно говоря, если очень просто, то оперативная память это много мелких ячеек, хранящих данные и каждый бит этих данных хранится зарядом (или его отсутствием) на крошечном конденсаторе в микросхеме (о чем говорилось выше по тексту).

Эта память является энергозависимой, именно поэтому во время режима сна (гибернации компьютера) содержимое памяти записывается на жесткий диск, а при пробуждении загружается обратно. Когда компьютер выключен, - память пуста.

Файл подкачки, который является "продолжением" этой памяти, логичным образом, хранит в себе данные на жестком диске, что, в общем случае, небезопасно.

Информация в ячейках со временем "теряется", причем, чем выше температура, тем быстрее это происходит.

Чтобы избежать потери сохранённых данных, они должны регулярно обновляться, чтобы восстановить заряд (если он есть) до первоначального уровня. Этот процесс обновления включает чтение каждого бита, а потом запись его обратно. Это происходит не целиком, а блоками. В процессе такого «обновления» память занята и не может выполнять обычные операции, такие как запись или хранение битов. В общем случае из-за этого обновления память тормозит каждые 7,8 мкс.

Послесловие

Собственно, это основы основ и базисный базис, а посему, надеюсь, что статья была интересна Вам как с точки зрения расширения кругозора, так и в качестве кирпичика в персональных знаниях о персональном компьютере :).

На сим всё. Как и всегда, если есть какие-то вопросы, комментарии, дополнения и тп, то можете смело бежать в комментарии, которые расположены ниже. И да, не забудьте прочитать материал по выбору этой самой оперативной памяти.

Белов Андрей (Sonikelf) Заметки Сис.Админа [Sonikelf's Project's] Космодамианская наб., 32-34 Россия, Москва (916) 174-8226

Читайте также: