Как работает бестрансформаторный блок питания

Обновлено: 07.07.2024

«Только соберёшься разбогатеть - то трусы порвутся, то сахар закончится. ».
До боли знакомое дело - только решил набросать страницу, посвящённую бестрансформаторникам, собрался с мыслями, а тут тебе на. Все сведения в одном флаконе - «Бестрансформаторные блоки питания. Автор: В.Новиков ».
И что ценно, практически все виды бестрансформаторных преобразователей: и устройства с гасящими конденсаторами, и варианты ключевых бестрансформаторных схем представлены в одном месте в виде принципиальных схем с подробным описанием принципа их функционирования.

Кто такой этот уважаемый "Автор: В.Новиков", что за первоисточник? Загадка!
Ковырялся полдня в архивах рунета, задолбался, хрен чего нашёл.
А поскольку и тема интересная, да и автор - большой молодец, приведу содержание этой статьи без каких-либо существенных сокращений.

«Сейчас в доме имеется много малогабаритной аппаратуры, которой требуется постоянное питание. Это и часы со светодиодной индикацией, и термометры, и малогабаритные приемники, и т.п. В принципе, они рассчитаны на батарейки, но те "садятся" в самый неподходящий момент. Простой выход - запитать их от сетевых блоков питания. Но даже малогабаритный сетевой (понижающий) трансформатор достаточно тяжел и места занимает не так уж мало, а импульсные источники питания все-таки сложны, требуют для изготовления определенного опыта и недешевой комплектации.

Решением данной проблемы при выполнении определенных условий может служить бестрансформаторный блок питания с гасящим конденсатором. Эти условия:
- полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства (например, к приемнику магнитофон для записи программы);
- диэлектрический (непроводящий) корпус и такие же ручки управления у самого блока питания и подключаемого к нему устройства.

Связано это с тем, что при питании от бестрансформаторного блока устройство находится под потенциалом сети, и прикосновение к его неизолированным элементам может хорошо "тряхнуть". Нелишне добавить, что при наладке таких блоков питания следует соблюдать правила техники безопасности и осторожность.
При необходимости использовать для наладки осциллограф блок питания нужно включать через разделительный трансформатор.
В самом простом виде схема бестрансформаторного блока питания имеет вид, показанный на рис.1.


Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом VD1 включен резистор R2,а для разрядки конденсатора после отключения - параллельно ему резистор R1.
Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой емкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:

где (- частота сети (50 Гц); С-емкость конденсатора С1, Ф.
Тогда выходной ток источника можно приблизительно определить так:

где Uc - напряжение сети (220 В).

Бестрансформаторные источники питания обычно собираются по классической схеме: гасящий конденсатор, выпрямитель переменного напряжения, конденсатор фильтра, стабилизатор. Емкостной фильтр сглаживает пульсации выходного напряжения. Чем больше емкость конденсаторов фильтра, тем меньше пульсации и, соответственно, больше постоянная составляющая выходного напряжения. Однако в ряде случаев можно обойтись без фильтра, который зачастую является самым громоздким узлом такого источника питания.
Известно, что конденсатор, включенный в цепь переменного тока, сдвигает его фазу на 90°. Фазосдвигающий конденсатор применяют, например, при подключении трехфазного двигателя к однофазной сети. Если в выпрямителе применить фазосдвигающий конденсатор, обеспечивающий взаимное перекрытие полуволн выпрямленного напряжения, во многих случаях можно обойтись без громоздкого емкостного фильтра или существенно уменьшить его емкость. Схема подобного стабилизированного выпрямителя показана на рис.3.

Трехфазный выпрямитель VD1.VD6 подключен к источнику переменного напряжения через активное (резистор R1) и емкостное (конденсатор С1) сопротивления.
Выходное напряжение выпрямителя стабилизирует стабилитрон VD7. Фазосдвигающий конденсатор С1 должен быть рассчитан на работу в цепях переменного тока. Здесь, например, подойдут конденсаторы типа К73-17 с рабочим напряжением не ниже 400 В.
Такой выпрямитель можно применять там, где необходимо уменьшить габариты электронного устройства, поскольку размеры оксидных конденсаторов емкостного фильтра, как правило, гораздо больше, чем фазосдвигающего конденсатора сравнительно небольшой емкости.
Еще одно преимущество предложенного варианта состоит в том, что потребляемый ток практически постоянен (в случае постоянной нагрузки), тогда как в выпрямителях с емкостным фильтром в момент включения пусковой ток значительно превышает установившееся значение (вследствие заряда конденсаторов фильтра), что в некоторых случаях крайне нежелательно.
Описанное устройство можно применять и с последовательными стабилизаторами напряжения, имеющими постоянную нагрузку, а также с нагрузкой, не требующей стабилизации напряжения.

Совершенно простенький бестрансформаторный блок питания (рис.4) можно соорудить "на коленке" буквально за полчаса.

В данном варианте схема рассчитана на выходное напряжение 6,8 В и ток 300 мА. Напряжение можно менять заменой стабилитрона VD4 и, при необходимости, VD3. А, установив транзисторы на радиаторы, можно увеличить и ток нагрузки. Диодный мост - любой, рассчитанный на обратное напряжение не менее 400 В. Кстати, можно вспомнить и про "древние" диоды. Д226Б.

В другом бестрансформаторном источнике (рис.5) в качестве стабилизатора применена микросхема КР142ЕН8. Его выходное напряжение составляет 12 В. Если необходима регулировка выходного напряжения, то вывод 2 микросхемы DA1 подключают к общему проводу через переменный резистор, например, типа СПО-1 (с линейной характеристикой изменения сопротивления). Тогда выходное напряжение может изменяться в диапазоне 12. 22 В.

В качестве микросхемы DA1 для получения других выходных напряжений нужно применить соответству- ющие интегральные стабилизаторы, например, КР142ЕН5, КР1212ЕН5, КР1157ЕН5А и др. Конденсатор С1 должен быть обязательно на рабочее напряжение не ниже 300 В, марки К76-3, К73-17 или аналогичный (неполярный, высоковольтный). Оксидный конденсатор С2 выполняет роль фильтра по питанию и сглаживает пульсации напряжения. Конденсатор С3 уменьшает помехи по высокой частоте. Резисторы R1, R2 - типа МЛТ-0,25. Диоды VD1. VD4 можно заменить на КД105Б. КД105Г, КД103А, Б, КД202Е. Стабилитрон VD5 с напряжением стабилизации 22. 27 В предохраняет микросхему от бросков напряжения в момент включения источника.

Несмотря на то, что теоретически конденсаторы в цепи переменного тока мощности не потребляют, реально в них из-за наличия потерь может выделяться некоторое количество тепла. Проверить пригодность конденсатора в качестве гасящего, для использования в бестрансформаторном источнике, можно просто подключив его к электросети и оценив температуру корпуса через полчаса. Если конденсатор успевает заметно разогреться, он не подходит. Практически не нагреваются специальные конденсаторы для промышленных электроустановок (они рассчитаны на большую реактивную мощность). Такие конденсаторы обычно используются в люминесцентных светильниках, в пускорегулирующих устройствах асинхронных электродвигателей и т.п.

В 5-вольтовом источнике (рис.6) с током нагрузки до 0,3 А применен конденсаторный делитель напряжения. Он состоит из бумажного конденсатора С1 и двух оксидных С2 и С3, образующих нижнее (по схеме) неполярное плечо емкостью 100 мкФ (встречно-последовательное включение конденсаторов). Поляризующими диодами для оксидной пары служат диоды моста. При указанных номиналах элементов ток короткого замыкания на выходе блока питания равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки - 27 В.


Блок для питания портативного приемника (рис.7) легко помещается в его батарейный отсек. Диодный мост VD1 рассчитывается на рабочий ток, его предельное напряжение определяется напряжением, которое обеспечивает стабилитрон VD2. Элементы R3, VD2. VT1 образуют аналог мощного стабилитрона.

Максимальный ток и рассеиваемая мощность такого стабилитрона определяются транзистором VT1. Для него может потребоваться радиатор. Но в любом случае максимальный ток этого транзистора не должен быть меньше тока нагрузки. Элементы R4, VD3 - цепь индикации наличия выходного напряжения. При малых токах нагрузки необходимо учитывать ток, потребляемый этой цепью. Резистор R5 нагружает цепь питания малым током, чем стабилизирует ее работу.
Гасящие конденсаторы С1 и С2 - типа КБГ или аналогичные. Можно также применить и К73-17 с рабочим напряжением 400 В (подойдут и с 250 В, так как они включены последовательно). Выходное напряжение зависит от сопротивления гасящих конденсаторов переменному току, реального тока нагрузки и от напряжения стабилизации стабилитрона.

Для стабилизации напряжения бестрансформаторного блока питания с гасящим конденсатором можно использовать симметричные динисторы (рис.8).
При зарядке конденсатора фильтра С2 до напряжения открывания динистора VS1 он включается и шунтирует вход диодного моста. Нагрузка в это время получает питание от конденсатора С2. В начале следующего полупериода С2 вновь подзаряжается до того же напряжения, и процесс повторяется. Начальное напряжение разрядки конденсатора С2 не зависит от тока нагрузки и напряжения сети, поэтому стабильность выходного напряжения блока достаточно высокая.

Падение напряжения на динисторе во включенном состоянии невелико, рассеиваемая мощность, а значит, и нагрев его значительно меньше, чем у стабилитрона. Максимальный ток через динистор составляет около 60 мА. Если для получения необходимого выходного тока этого значения недостаточно, можно "умощнить" динистор симистором или тиристором (рис.9). Недостаток таких источников питания - ограниченный выбор выходных напряжений, определяемый напряжениями включения динисторов.

Бестрансформаторный блок питания с регулируемым выходным напряжением показан на рис.10а.

Его особенность заключается в использовании регулируемой отрицательной обратной связи с выхода блока на транзисторный каскад VT1, включенный параллельно выходу диодного моста. Этот каскад является регулирующим элементом и управляется сигналом с выхода одно- каскадного усилителя на VT2.

Выходной сигнал VT2 зависит от разности напряжений, подаваемых с переменного резистора R7, включенного параллельно выходу блока питания, и источника опорного напряжения на диодах VD3, VD4. По существу, схема представляет собой регулируемый параллельный стабилизатор. Роль балластного резистора играет гасящий конденсатор С1, параллельного управляемого элемента - транзистор VT1.
Работает этот блок питания следующим образом.
При включении в сеть транзисторы VT1 и VT2 заперты, а через диод VD2 происходит заряд накопительного конденсатора С2. При достижении на базе транзистора VT2 напряжения, равного опорному, на диодах VD3, VD4, транзисторы VT2 и VT1отпираются. Транзистор VT1 шунтирует выход диодного моста, и его выходное напряжение падает, что приводит к уменьшению напряжения на накопительном конденсаторе С2 и к запиранию транзисторов VT2 и VT1. Это, в свою очередь, вызывает увеличение напряжения на С2, отпирание VT2, VT1 и повторение цикла.
За счет действующей таким образом отрицательной обратной связи выходное напряжение остается постоянным (стабилизированным) как при включенной нагрузке (R9), так и без нее (на холостом ходу). Его величина зависит от положения движка потенциометра R7.
Верхнему (по схеме) положению движка соответствует большее выходное напряжение. Максимальная выходная мощность приведенного устройства равна 2 Вт. Пределы регулировки выходного напряжения - от 16 до 26 В, а при закороченном диодеVD4 - от 15 до 19,5 В. Уровень пульсаций на нагрузке - не более 70 мВ.
Транзистор VT1 работает в переменном режиме: при наличии нагрузки - в линейном режиме, на холостом ходу - в режиме широтно-импульсной модуляции (ШИМ) с частотой пульсации напряжения на конденсаторе С2 100 Гц. При этом импульсы напряжения на коллекторе VT1 имеют пологие фронты.
Критерием правильности выбора емкости С1 является получение на нагрузке требуемого максимального напряжения. Если его емкость уменьшена, то максимальное выходное напряжение на номинальной нагрузке не достигается.
Транзистор VT1 нагревается мало и может работать практически без радиатора. Небольшой нагрев имеет место в нижнем положении движка R7 (при минимальном выходном напряжении). На холостом ходу тепловой режим транзистора VT1 ухудшается в верхнем положении движка R7. В этом случае транзистор VT1 должен быть установлен на небольшой радиатор, например, в виде "флажка" из алюминиевой пластинки квадратной формы со стороной 30 мм и толщиной 1. 2 мм.
Регулирующий транзистор VT1 - средней мощности, с большим коэффициентом передачи. Его коллекторный ток должен быть в 2. 3 раза больше максимального тока нагрузки, допустимое напряжение коллектор-эмиттер - не меньше максимального выходного напряжения блока питания. В качестве VT1 могут быть использованы транзисторы КТ972А, КТ829А, КТ827А и т.п. Транзистор VT2 работает в режиме малых токов, поэтому годится любой маломощный p-n-р-транзистор - КТ203, КТ361 и др.
Резисторы R1, R2 - защитные. Они предохраняют регулирующий транзистор VT1 от выхода из строя, вследствие перегрузки по току при переходных процессах в момент включения блока в сеть.

Бестрансформаторный конденсаторный выпрямитель (рис.11) работает с автостабилизацией выходного напряжения. Это достигнуто за счет изменения времени подключения диодного моста к накопительному конденсатору. Параллельно выходу диодного моста включен транзистор VT1, работающий в ключевом режиме. База VT1 через стабилитрон VD3 соединена с накопительным конденсатором С2, отделенным по постоянному току от выхода моста диодом VD2 для исключения быстрого разряда при открытом VT1. Пока напряжение на С2 меньше напряжения стабилизации VD3, выпрямитель работает как обычно. При увеличении напряжения на С2 и открывании VD3 транзистор VT1 также открывается и шунтирует выход выпрямительного моста. Напряжение на выходе моста скачкообразно уменьшается практически до нуля, что приводит к уменьшению напряжения на С2 и выключению стабилитрона и ключевого транзистора.
Далее напряжение на конденсаторе С2 снова увеличивается до момента включения стабилитрона и транзистора и т.д. Процесс автостабилизации выходного напряжения очень похож на работу импульсного стабилизатора напряжения с широтно-импульсным регулированием. Только в предлагаемом устройстве частота следования импульсов равна частоте пульсаций напряжения на С2. Ключевой транзистор VT1 для уменьшения потерь должен быть с большим коэффициентом усиления, например, КТ972А, КТ829А, КТ827А и др. Увеличить выходное напряжение выпрямителя можно, применив более высоковольтный стабилитрон (цепочку низковольтных, соединенных последовательно). При двух стабилитронах Д814В, Д814Д и емкости конденсатора С1 2 мкФ выходное напряжение на нагрузке сопротивлением 250 Ом может составлять 23. 24 В.

Аналогично можно стабилизировать выходное напряжение однополупериодного диодно-конденсаторного выпрямителя (рис.12).
Для выпрямителя с плюсовым выходным напряжением параллельно диоду VD1 включен n-p-n транзистор, управляемый с выхода выпрямителя через стабилитрон VD3. При достижении на конденсаторе С2 напряжения, соответствующего моменту открывания стабилитрона, транзистор VT1 тоже открывается. В результате, амплитуда положительной полуволны напряжения, поступающего на С2 через диод VD2, уменьшается почти до нуля. При уменьшении же напряжения на С2 транзистор VT1 благодаря стабилитрону закрывается, что приводит к увеличению выходного напряжения. Процесс сопровождается широтно-импульсным регулированием длительности импульсов на входе VD2, следовательно, напряжение на конденсаторе С2 стабилизировано.
В выпрямителе с отрицательным выходным напряжением параллельно диоду VD1 нужно включить p-n-p-транзистор КТ973А или КТ825А. Выходное стабилизированное напряжение на нагрузке сопротивлением 470 Ом - около 11 В, напряжение пульсаций - 0,3. 0,4 В.
В обоих вариантах стабилитрон работает в импульсном режиме при токе в единицы миллиампер, который никак не связан с током нагрузки выпрямителя, разбросом емкости гасящего конденсатора и колебаниями напряжения сети. Поэтому потери в нем существенно уменьшены, и теплоотвод ему не требуется. Ключевому транзистору радиатор также не требуется.
Резисторы R1, R2 в этих схемах ограничивают входной ток при переходных процессах в момент включения устройства в сеть. Из-за неизбежного "дребезга" контактов сетевой вилки процесс включения сопровождается серией кратковременных замыканий и разрывов цепи. При одном из таких замыканий гасящий конденсатор С1 может зарядиться до полного амплитудного значения напряжения сети, т.е. примерно до 300 В. После разрыва и последующего замыкания цепи из-за "дребезга" это и сетевое напряжения могут сложиться и составить в сумме около 600 В. Это наихудший случай, который необходимо учитывать для обеспечения надежной работы устройства.

Другой вариант ключевой бестрансформаторной схемы источника питания представлен на рис.13.
Сетевое напряжение, проходя через диодный мост на VD1.VD4, преобразуется в пульсирующее амплитудой около 300 В. Транзистор VT1 - компаратор, VT2 - ключ. Резисторы R1, R2 образуют делитель напряжения для VT1. Подстройкой R2 можно установить напряжение срабатывания компаратора. Пока напряжение на выходе диодного моста не достигнет установленного порога, транзистор VT1 закрыт, на затворе VT2 - отпирающее напряжение и он открыт. Через VТ2 и диод VD5 заряжается конденсатор С1.
При достижении установленного порога срабатывания транзистор VT1 открывается и шунтирует затвор VT2. Ключ закрывается и снова откроется тогда, когда напряжение на выходе моста станет меньше порога срабатывания компаратора. Таким образом, на С1 устанавливается напряжение, которое стабилизируется интегральным стабилизатором DA1.
С приведенными на схеме номиналами источник обеспечивает выходное напряжение 5 В при токе до 100 мА. Настройка заключается в установке порога срабатывания VT1. Вместо IRF730 можно использовать. КП752А, IRF720, BUZ60, 2N6517 заменяется на КТ504А.

А на следующей странице произведём онлайн расчёт элементов бестрансформаторного блока питания с гасящим конденсатором, построенного по схеме, изображённой на Рис.1.

Как работает бестрансформаторный блок питания

Блоки питания многих электронных устройств строятся на бестрансформаторных платах. Такие источники питания характеризуются высоким показателем КПД, малыми габаритами и массой. Они наиболее надежны, так как не имеют намоточных катушек. Область применения бестрансформаторного блока питания – маломощная аппаратура типа зарядных устройств, датчиков охранной сигнализации, бытовых ламповых переключателей, основанных на датчиках движения и иных промышленных и радио - конструкциях.

Бестрансформаторному источнику питания не страшны выходные замыкания и сетевые перепады напряжения. Работает такой блок питания бесшумно, так как лишен трансформатора, и вполне стабильно. Его несложно повторить, так как состоит он из минимального количества используемых деталей. Но основное достоинство бестрансформаторного БП схемы заключается в том, что номинал тока на выходе можно регулировать самостоятельным подбором необходимой емкости конденсатора.

Существенный недостаток бестрансформаторных блоков питания - импульсные помехи, негативно влияющие на соседние схемы устройства. В связи с этим каждый такой источник питания тщательно тестируется на электромагнитную совместимость с другим оборудованием. Кроме того данный источник питания не имеет сетевой гальванической развязки от питающего напряжения, что требует предельно внимательного соблюдения мер безопасности во время работы с данным оборудованием.

Принцип действия

Бестрансформаторные блоки питания предназначены для стабилизации напряжения с малым выходным током, обеспечивающие достаточным питанием автономные маломощные устройства.

При отключении бестрансформаторного блока питания из сети входного переменного тока, конденсатор на входе разряжается посредством параллельно подключенного входного резистора. Это происходит чтобы источник питания не ударил человека током при случайном прикосновении к входным контактам. При последующем включении переменное напряжение сети в 220 Вольт поступает и гасится конденсатором через резистор, далее выпрямляясь диодным мостом поступает на стабилитрон. Затем после сглаживания пульсаций и стабилизации конденсаторами - на выходе блока питания получают требуемое стабилизирующее напряжение в 12 вольт. Таким образом, переоценить роль и значение бестрансформаторных блоков питания сложно.

Устройства на микроконтроллерах требуют для своей работы постоянного стабилизированного напряжения величиной 3.3 - 5 Вольт. Как правило, такое напряжение получают из переменного сетевого напряжения с помощью трансформаторного источника питания и в простейшем случае он представляет собой следующую схему.

стандартный трансформаторный источник питания


Понижающий трансформатор, диодный мост, сглаживающий конденсатор и линейный/импульсный стабилизатор. Дополнительно такой источник может содержать в себе предохранитель, цепи фильтрации, схему плавного включения, схему защиты от перегрузки и т.д.
Данный источник питания (при соответствующем выборе компонентов) позволяет получать большие токи и имеет гальваническую развязку от сети переменного тока, что немаловажно для безопасной работы с устройством. Однако, такой источник может иметь большие габариты, благодаря трансформатору и фильтрующим конденсаторам.
В некоторых устройствах на микроконтроллерах гальванической развязки от сети не требуется. Например, если устройство представляет собой герметичный блок, с которым конечный пользователь никак не контактирует. В этом случае, если схема потребляет относительно невысокий ток (десятки миллиампер), ее можно запитать от сети 220 В с помощью бестрансформаторного источника питания.
В этой статье мы рассмотрим принцип работы такого источника питания, последовательность его расчета и практический пример использования.

Резистор R1 разряжает конденсатор C1, когда схема отключена от сети. Это нужно для того, чтобы источник питания не ударил тебя током при прикосновении к входным контактам.
При подключении источника питания к сети, разряженный конденсатор C1 представляет из себя, грубо говоря, проводник и через стабилитрон VD1 кратковременно протекает огромный ток, способный вывести его из строя. Резистор R2 ограничивает бросок тока в момент включения устройства.

бросок тока


"Бросок тока" в начальный момент включения схемы. Синим цветом нарисовано сетевое напряжение, красным ток потребляемый источником питания. Для наглядности график тока увеличен в несколько раз.

Если ты подключишь схему к сети в момент перехода напряжения через ноль, броска тока не будет. Но какова вероятность, что у тебя это получится?
Любой конденсатор оказывает сопротивление протеканию переменного тока. (По постоянному току конденсатор представляет собой обрыв.) Величина этого сопротивления зависит от частоты входного напряжения и емкости конденсатора и может быть вычислена по формуле. Конденсатор С1 выполняет роль балластного сопротивления, на котором будет падать большая часть входного напряжения сети.

У тебя может возникнуть резонный вопрос: а почему нельзя поставить вместо C1 обычный резистор? Можно, но на нем будет рассеиваться мощность, в результате чего он будет греться. С конденсатором этого не происходит - активная мощность выделяемая на нем за один период сетевого напряжения равна нулю. В расчетах мы коснемся этого момента.

Итак, на конденсаторе C1 упадет часть входного напряжения. (Падение напряжения на резисторе R2 можно не учитывать, так как он имеет маленькое сопротивление.) Оставшееся напряжение окажется приложенным к стабилитрону VD1.
В положительный полупериод входное напряжение будет ограничиваться стабилитроном на уровне его номинального напряжения стабилизации. В отрицательный полупериод входное напряжение будет прикладываться к стабилитрону в прямом направлении и на стабилитроне будет напряжение примерно минус 0.7 Вольт.

принцип работы бестрансформаторных источников


Естественно такое пульсирующее напряжение не годится для запитывания микроконтроллера, поэтому после стабилитрона стоит цепочка из полупроводникового диода VD2 и электролитического конденсатора C2. Когда напряжение на стабилитроне положительное, через диод VD2 протекает ток. В этот момент заряжается конденсатор C2 и запитывается нагрузка. Когда напряжение на стабилитроне падает, диод VD2 запирается и конденсатор C2 отдает запасенную энергию в нагрузку.
Напряжение на конденсаторе C2 будет колебаться (пульсировать). В положительный полупериод сетевого напряжения оно будет расти до значения Uст минус напряжение на VD2, в отрицательный полупериод падать вследствие разряда на нагрузку. Амплитуда колебаний напряжения на C2 будет зависеть от его емкости и тока потребляемого нагрузкой. Чем больше емкость конденсатора C2 и чем меньше ток нагрузки, тем меньшей величины будут эти пульсации.
Если ток нагрузки и пульсации небольшие, то после конденсатора C2 уже можно ставить нагрузку, но для устройств на микроконтроллерах лучше все-таки использовать схему со стабилизатором. Если мы правильно рассчитаем номиналы всех компонентов, то на выходе стабилизатора получим постоянное напряжение.
Схему можно улучшить, добавив в нее диодный мост. Тогда источник питания будет использовать оба полупериода входного напряжения – и положительный, и отрицательный. Это позволит при меньшей емкости конденсатора C2 получить лучшие параметры по пульсациям. Диод между стабилитроном и конденсатором из этой схеме можно исключить.

Не для кого не секрет, что источник вторичного электропитания является неотъемлемой частью любого прибора. В данной статье я постараюсь описать довольно распространенный тип источников питания — бестрансформаторные на гасящем конденсаторе.

Основными достоинствами его являются малые габариты, дешевизна и простота устройства, именно по этому его часто используют например, в терморегуляторах тёплого пола, блоках управления бытовыми холодильниками, блоках дистанционного управления люстрами, базы электрочайников с сенсорным управлением и подобных малогабаритных устройствах с сетевым питанием. Не смотря на все положительные качества есть и недостатки, пожалуй самый большой из которых это отсутствие гальванической развязки с питающей сетью и невысокий ток нагрузки.

Отсутствие гальванической развязки требует от мастера повышенного внимания при ремонте и наладке схемы!

Для начала рассмотрим типовую схему такого источника

фото1.jpg

Это самый стандартный вариант, встречающийся в 80% случаев, в остальных 20% могут присутствовать изменения которые не меняют принципа диагностики и ремонта.

Назначение элементов схемы:

-> Резистор(R1) является токоограничивающим, он ограничивает ток заряда конденсатора в момент включения в сеть т.к. разряженный конденсатор имеет низкое сопротивление, а следовательно потребляет значительный ток, так же в некоторых схемах он используется разрывной и одновременно служит плавким предохранителем
-> Конденсатор (С1) является основным элементом схемы. За счет своего реактивного сопротивления он гасит излишний ток. Напряжение же получается лишь тогда, когда появляется нагрузка, его величина подчиняется закону ома.
-> Резистор(R2) – разряжающий. Он служит для того чтобы разрядить конденсатор, иначе при отключении от сети вилка устройства будет биться током, во многих схемах не имеющих разъемных соединений, например в термостате теплого пола, датчиках движения его не ставят.
-> Диодный мост(Br1) служит для выпрямления тока, в целях экономии его часто заменяют на однополупериодный выпрямитель состоящий из одного диода.
-> Конденсатор(С2) необходим для сглаживания пульсаций выпрямленного тока.
-> Стабилитрон(D1) стабилизирует напряжение. Т.к. конденсатор ограничивает ток, то напряжение в отсутствии нагрузки было бы равно сетевому, а так же при изменении тока нагрузки скакало в широких пределах, стабилитрон же является постоянной нагрузкой в цепи и не позволяет напряжению превышать определенный порог, равный его напряжению стабилизации

Самая частая неисправность с которой подобные устройства заходят на ремонт «Не включается, не светится» и подобные выражения, которые сообщает клиент мастеру.
При данных признаках в большинстве случаев происходит пробой стабилитрона, т.к. он «сдерживает» напряжение при изменении нагрузки или скачках напряжения в сети, а в отсутствии нагрузки вся выработанная мощность БП рассеивается на нем в виде тепла.

С такой проблемой был принят в ремонт термостат тёплого пола Electrolux

фото2.jpg

Подключаем к питанию, проводим замеры питающего напряжения. Удобнее и быстрее всего произвести замер в очевидных точках, если есть микросхемы, на питающих выводах, на сглаживающем конденсаторе, и т. д.

фото3.jpg

Когда выяснено, что проблема с питающими линиями, более детально осматриваем цепи питания и воспроизводим схему питания устройства

фото4.jpg

фото5.jpg

фото6.jpg

Данная схема очень типичная, кроме наличия 2 стабилитронов, включенных последовательно, Это необходимо для питания напряжением 12В цепей управления и 17В для запитки реле.(Реле в этом регуляторе используется на 24В, выбранное производителем пониженное напряжение 17В позволяет реле уверенно срабатывать и при этом иметь минимальный нагрев)

Диагностируется данная проблема просто: Находим стабилитрон и мультиметром в режиме прозвонки производим измерение на его выводах При исправном стабилитроне на экране прибора будет какое либо значение много больше нуля, при не исправном раздастся писк свидетельствующий о коротком замыкании.
Если при диагностике обнаружен перегоревший плавкий предохранитель, то в первую очередь проверяем сам гасящий конденсатор на пробой.

Далее удаляем стабилитрон и прозваниваем без него. Короткое скорее всего пропадёт.

фото7.jpg

Так же, чтобы убедиться проверяем стабилитрон.

фото8.jpg

фото9.jpg

А далее заменяем его на исправный, если есть следы свидетельствующие о перегреве (потемнение платы) то заменяем его на стабилитрон с большей мощностью рассеяния или заменяем на включенные параллельно с выравнивающими резисторами

фото10.jpg

Далее проверяем результат нашего ремонта
При включении в сеть загорелся светодиод «Нагрев» и отчетливо слышен щелчок реле.

Бестрансформаторные блоки питания-01

Компактные бестрансформаторные блоки питания часто используются для питания от электросети небольших маломощных устройств. В этой статье мы рассмотрим несколько аппаратных аспектов, а во второй части покажем, как смоделировать такую ​​схему.

Если ток, потребляемый нагрузкой, составляет порядка нескольких десятков миллиампер, можно легко преобразовать входное напряжение переменного тока в напряжение постоянного тока без необходимости использования громоздких и дорогих трансформаторов.

Бестрансформаторные блоки питания не только имеют меньший вес и габариты, но и дешевле. В зависимости от типа схемы, бестрансформаторные блоки питания делятся на две категории: емкостные и резистивные.

Ниже мы разберем характеристики каждого типа этих схем. В статье также даются практические советы о том, как выбрать мощность соответствующих электронных компонентов для этой системы и какие меры следует предпринять для повышения безопасности эксплуатации такого блока питания.

Бестрансформаторный емкостный блок питания

Пусковой ток (потенциально способный повредить компоненты) ограничивается резистором R1 и реактивным сопротивлением C1. Элемент D1 является диодом Зенера, который обеспечивает стабилизированное опорное напряжение, в то время как D2 представляет собой кремниевый диод с задачей выпрямления напряжения переменного тока.

Бестрансформаторные блоки питания -схема


Рисунок 1: Емкостный бестрансформаторный блок питания

Напряжение на нагрузке остается постоянным, пока выходной ток IOUT меньше или равен входному току IIN, значение которого можно рассчитать как:

Формула-1

Формула-2

ффформула-3

Конденсатор C1, который дает название этому типу схемы, следует выбирать с напряжением, по крайней мере, вдвое превышающим напряжение сети переменного тока (например, 250v в США). Диод D1 должен иметь мощность, как минимум, в два раза превышающую теоретическое значение, определяемое следующей формулой:

То же самое относится к мощности диода D2, где значение постоянного напряжения 0,7v теперь может использоваться вместо VZ. Для C2 обычно применяется электролитический конденсатор с напряжением в два раза выше VZ.

Основные преимущества емкостной схемы, в сопоставлении с трансформаторным вариантом заключаются в меньших размерах, весе и стоимости. Сравнительно с конструкцией резистивного типа, представленным в следующем абзаце, эта схема позволяет получить более высокий уровень эффективности. К недостаткам можно отнести отсутствие изоляции от входного переменного напряжения и более высокую стоимость в отличии от резистивным прибором.

Бестрансформаторный резистивный блок питания

Схема типичного бестрансформаторного резистивного блока питания показана на рисунке 2. Опять же, выходное напряжение VOUT остается постоянным, пока ток IOUT меньше или равен входному току IIN, с той лишь разницей, что теперь ограничение пускового тока осуществляется только резистором R1. Выходное напряжение VOUT можно рассчитать по той же формуле, что и для емкостного блока питания, а входной ток IIN теперь можно получить, применив следующую формулу:

Бестрансформаторные блоки питания-2


Рисунок 2: Резистивный бестрансформаторный источник питания

Как и в предыдущем случае, компоненты должны быть выбраны со значением мощности, по крайней мере, вдвое превышающим теоретическое значение, которое можно рассчитать, применив закон Ома ( P=R×I2 для резистора R1 и P=V×I для диодов D1 и D2 ). Электролитический конденсатор С2 должен иметь такое же значение, как в емкостном случае.

Преимущество резистивного источника питания в том, что он имеет меньшие размеры и вес в отличии от трансформаторной версии и представляет собой самое дешевое устройство. Однако даже в этом случае нет изоляции от сети переменного тока и КПД ниже, чем у емкостного варианта схемы.

Как повысить безопасность

Обе предложенные схемы имеют большой предел: они лишены какой-либо изоляции и защиты от сетевого напряжения, что представляет собой серьезную проблему безопасности. Однако путем внесения некоторых небольших изменений можно настроить обе цепи для удовлетворения этого требования. Модификации, показанные на рисунке 3, включают в себя эти добавления:

  • Предохранитель для защиты от перегрузки по току
  • Варистор для защиты от переходных процессов
  • Резистор R2 ( R3 ) параллельно включенный с C1 ( C3 ) обеспечивают улучшения электромагнитной устойчивости.
  • Разделение R1 на два резистора R1 и R2 для лучшей защиты от переходных процессов напряжения и предотвращения возникновения электрической дуги (только для резистивной цепи).

Бестрансформаторные блоки питания-3


Рисунок 3: Модификации для повышения безопасности

Читайте также: