Как рассчитать диодный мост для блока питания

Обновлено: 06.07.2024

Не секрет, что от правильного выбора блока питания (далее БП), его конструкции и качества сборки зависит работа устройства, на которое он нагружен. Здесь я постараюсь рассказать об основных моментах выбора, расчета, конструирования и применения блоков питания.

1. Выбор блока питания

Первым делом следует четко уяснить, что именно будет подключено к БП. Главным образом нас интересует ток нагрузки. Это будет основным пунктом ТЗ. По этому параметру будет подобрана схема и элементная база. Приведу примеры нагрузок и их средние потребляемые токи

1. Световые эффекты на светодиодах (20-1000мА)

2. Световые эффекты на миниатюрных лампах накаливания (200мА-2А)

3. Световые эффекты на мощных лампах (до 1000А)

4. Миниатюрные полупроводниковые радиоприемники (100-500мА)

5. Портативная аудиотехника (100мА-1А)

6. Автомобильные магнитолы (до 20А)

7. Автомобильные УМЗЧ (по линии 12В до 200А)

8. Стационарные полупроводниковые УМЗЧ (при выходной мощности не выше 1кВт до 40А)

9. Ламповые УМЗЧ (10мА-1А – анод, 200мА-8А – накал)

10. Ламповые КВ трансиверы [выходной каскад в классе С характеризуется наибольшим КПД] (при мощности передатчика до 1кВт, до 5А – анод, до 10А – накал)

11. Полупроводниковые КВ трансиверы, Си-Би (при мощности передатчика до 100Вт, 1 – 5А)

12. Ламповые УКВ радиостанции (при мощности передатчика до 50Вт, до 1А – анод, до 3А - накал)

13. Полупроводниковые УКВ радиостанции (до 5А)

14. Полупроводниковые телевизоры (до 5А)

15. Вычислительная техника, оргтехника, сетевые устройства [концентраторы LAN, точки доступа, модемы, роутеры] (500мА - 30А)

16. Зарядные устройства для АКБ (до 10А)

17. Управляющие блоки бытовой техники (до 1А)

Следует отметить, что во многих устройствах потребляемый ток в процессе работы может значительно колебаться. Это УМЗЧ, трансиверы (особенно в телеграфном режиме), мощные СДУ. Поэтому при выборе БП следует ориентироваться ни на средний потребляемый ток и уж тем более ни на ток в режиме молчания, а на пиковую потребляемую мощность. Для питания аналоговой электроники с потребляемой мощностью до 500Вт, я рекомендую линейные блоки питания. При чем многоканальные (с несколькими выходными напряжениями). Как правило, цепи с большим потребляемым током позволяют обойтись без стабилизации напряжения. Так же следует обратить внимание на развязку напряжений. Это, прежде всего, относится к аудиотехнике и аппаратуре радиосвязи. В ряде случаев может потребоваться даже гальваническая развязка между цепями (например при конструировании ламповых УМЗЧ класса Hi-End гальваническая развязка анодных цепей позволит избежать влияния выходного каскада на усилитель напряжения. В том числе перекроет паразитные ОС по питанию). Как это делается будет рассказано ниже. Для более мощной аналоговой техники, а так же любой цифровой можно рекомендовать импульсные БП, ибо тепловой режим и массогабаритные характеристики линейных БП такой мощности оставляют желать лучшего. Вообще мощные узлы аппаратуры не особенно взыскательны к питанию, за то от качества питания во многом зависит работа помехонеустойчивых слаботочных узлов. Итак, рассмотрим кормушку изнутри.

2. Правила безопасности

Не будем забывать, что БП это самый высоковольтный узел в любом устройстве (за исключением разве что телевизора). При чем опасность представляет не только промышленная электросеть (220В). Напряжение в анодных цепях ламповой аппаратуры может достигать десятков и даже сотен (в рентгеновских установках) киловольт (тысяч вольт). Поэтому все высоковольтные участки (включая общий провод) должны быть изолированы от корпуса. Это хорошо знает тот, кто поставив ногу на системный блок трогал батарею. Электрический ток может быть опасен не только для человека и животных, но и для самого устройства. Имеются ввиду пробои и короткие замыкания. Эти явления не только выводят из строя радиокомпоненты, но и весьма пожароопасны. Мне попадались некоторые изолирующие элементы конструкций, которые в следствии подачи высокого напряжения были пробиты и выгорели до угля при чем выгорели не полностью, а каналом. Уголь проводит ток и создает таким образом короткое замыкание (далее КЗ) на корпус. При чем внешне это не видно. Поэтому между двумя проводами, припаянными к плате, должно быть расстояние из расчета примерно 2мм на вольт. Если речь идет о смертельно опасных напряжениях, то в корпусе должны быть предусмотрены микропереключатели, которые автоматически обесточивают прибор при удалении стенки с опасного участка конструкции. Элементы конструкции, которые в процессе работы сильно нагреваются (радиаторы, мощные полупроводниковые и электровакуумные приборы, резисторы мощностью свыше 2Вт) должны быть вынесены с платы (наилучший вариант) или хотя бы приподняты над ней. Так же не допускается касание корпусов разогревающихся радиоэлементов, за исключением тех случаев, когда второй элемент является датчиком температуры первого. Такие элементы не разрешается заливать эпоксидной смолой и другими компаундами. Более того, должен быть обеспечен приток воздуха к участкам с большой рассеиваемой мощностью, а при необходимости и принудительное охлаждение (вплоть до испарительного). Так. Страху нагнал, теперь о работе.

3. Законы Ома и Кирхгофа были и будут основой разработки любого электронного устройства.

3.1. Закон Ома для участка цепи

5-187-1.jpg

Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к участку и обратно пропорциональна сопротивлению участка. На этом принципе основана работа всех ограничительных, гасящих и балластных резисторов.

Эта формула хороша тем, что под "U" можно подразумевать как напряжение на нагрузке, так и напряжение на участке цепи, последовательно соединенном с нагрузкой. Например у нас есть лампочка на 12В/20Вт и источник 17В, к которому нам нужно подключить эту лампочку. Нам нужен резистор, который понизит 17В до 12.

Иллюстрация закона Ома


Рис.1

Итак, мы знаем что при последовательном соединении элементов напряжения на них могут отличаться, но ток всегда одинаковый на любом участке цепи. Вычислим ток, потребляемый лампочкой:

5-187-3.jpg

5-187-4.jpg

Значит, через резистор протекает такой же ток. В качестве напряжения берем падение напряжения на гасящем резисторе, ведь это действительно то самое напряжение, которое действует на этом резисторе ()

5-187-5.jpg

5-187-6.jpg

Из приведенного примера совершенно очевидно, что . Причем это относится не только к резисторам, но и, например, к динамикам, если мы вычисляем какое напряжение нужно подвести к динамику с заданной мощностью и сопротивлением, чтобы он развил эту мощность.

3.2. Закон Ома для полной цепи

Прежде, чем мы перейдем к нему, нужно четко уяснить физический смысл внутреннего и выходного сопротивлений. Предположим, у нас есть некоторый источник ЭДС. Так вот, внутреннее (выходное) сопротивление это мнимый резистор, включенный последовательно с ним.

Закон Ома для полной цепи


Рис.2

Естественно, фактически в источниках тока таких резисторов нет, но у генераторов есть сопротивление обмоток, у розеток – сопротивление проводки, у АКБ – сопротивление электролита и электродов и т.д. Это сопротивление при подключении нагрузки ведет себя именно как последовательно включенный резистор.

5-187-8.jpg


где: ε – ЭДС
I – сила тока
R – сопротивление нагрузки
r – внутреннее сопротивление источника

Из формулы видно, что с возрастанием внутреннего сопротивления уменьшается мощность вследствие просадки во внутреннем сопротивлении. Это видно и из закона Ома для участка цепи.

3.3 Правило Кирхгофа нас будет интересовать только одно: сумма токов, входящих в цепь равна току (сумме токов), выходящему из нее. Т.е. какой бы не была нагрузка и из скольки бы ветвей она не состояла, сила тока в одном из питающих проводов будет равна силе тока во втором проводе. Собственно, этот вывод вполне очевиден, если мы говорим о замкнутой цепи.

С законами протекания тока вроде все ясно. Посмотрим как это выглядит в реальном «железе».

4. Начинка

Все БП во многом схожи по схеме и элементной базе. Это вызвано тем, что по большому счету они выполняют одни и те же функции: изменение напряжения (всегда), выпрямление (чаще всего), стабилизация (часто), защита (часто). Теперь рассмотрим способы реализации этих функций.

4.1. Изменение напряжения чаще всего реализуется при помощи различных трансформаторов. Этот вариант наиболее надежен и безопасен. Существуют так же безтрансформаторные БП. В них для понижения напряжения используется емкостное сопротивление конденсатора, включенного последовательно между источником тока и нагрузкой. Выходное напряжение таких БП полностью зависит от тока нагрузки и ее наличия. Даже при кратковременном отключении нагрузки такие БП выходят из строя. Кроме того, они могут только понижать напряжение. Поэтому я не рекомендую такие БП для питания РЭА. Итак, остановимся на трансформаторах. В линейных БП используются трансформаторы на 50Гц (частота промышленной сети). Трансформатор состоит из сердечника, первичной обмотки и нескольких вторичных обмоток. Переменный ток, поступая на первичную обмотку создает в сердечнике магнитный поток. Этот поток, как магнит, наводит ЭДС во вторичных обмотках. Напряжение на вторичных обмотках определяется количеством витков. Отношение количества витков (напряжения) вторичной обмотки к количеству витков (напряжению) первичной обмотки называется коэффициентом трансформации (η). Если η>1 трансформатор называют повышающим, в противном случае – понижающим. Есть трансформаторы у которых η=1. Такие трансформаторы не меняют напряжение и служат только для гальванической развязки цепей (цепи считаются гальванически развязанными, если у них нет непосредственного общего электрического контакта. Хотя токи, протекающие через них, могут действовать друг на друга. Например «Blue Tooth» или лампочка и поднесенная к ней солнечная батарея или ротор и статор электродвигателя или неоновая лампа, поднесенная к антенне передатчика). Поэтому использовать их в БП нет смысла. Импульсные трансформаторы работают по такому же принципу с той лишь разницей, что на них не подается напряжение непосредственно из розетки. Сначала оно преобразуется в импульсы более высокой частоты (обычно 15-20кГц) и уже эти импульсы подаются на первичную обмотку трансформатора. Частота следования этих импульсов называется частотой преобразования импульсного БП. С возрастанием частоты увеличивается индуктивное сопротивление катушки, поэтому обмотки импульсных трансформаторов содержат меньшее количество витков по сравнению с линейными. Это делает их более компактными и легкими. Однако импульсные БП характеризуются бОльшим уровнем помех, худшим тепловым режимом и схемотехнически более сложны, следовательно менее надежны.

4.2. Выпрямление подразумевает преобразование переменного (импульсного) тока в постоянный. Этот процесс заключается в разложении положительных и отрицательных полуволн на соответствующие полюса. Есть достаточно много схем, позволяющих это сделать. Рассмотрим те, которые наиболее часто используются.

4.2.1. Четвертьмост

Схема однополупериодного выпрямителя


Рис.3

Самая простая схема однополупериодного выпрямителя. Работает следующим образом. Положительная полуволна проходит через диод и заряжает С1. Отрицательная полуволна блокируется диодом и цепь оказывается как бы оборванной. В этом случае нагрузка питается за счет разрядки конденсатора. Очевидно, что для работы на 50Гц емкость С1 должна быть сравнительно велика, чтобы обеспечивать низкий уровень пульсаций. Поэтому схема применяется в основном в импульсных БП ввиду более высокой рабочей частоты.

4.2.2 Полумост (удвоитель Латура-Делона-Гренашера)

Схема полумоста


Рис.4

Принцип работы похож на четвертьмост, только здесь они соединены как бы последовательно. Положительная полуволна проходит через VD1 и заряжает С1. На отрицательной полуволне VD1 закрывается и С1 начинает разряжаться, а отрицательная полуволна проходит через VD2. Таким образом между катодом VD1 и анодом VD2 появляется напряжение, в 2 раза превосходящее напряжение вторичной обмотки трансформатора (рис.4а). Этот принцип можно использовать для построения расщепленного БП. Так называются БП, выдающие 2 одинаковых по модулю, но противоположных по знаку напряжения (рис.4б). Однако не следует забывать, что это 2 соединенных последовательно четвертьмоста и емкости конденсаторов должны быть достаточно велики (из расчета, как минимум, 1000мкФ на 1А потребляемого тока).

4.2.3. Полный мост

Самая распространенная схема выпрямителя имеет наилучшие нагрузочные характеристики при минимальном уровне пульсаций и может применяться как в однополярных (рис.5а), так и в расщепленных БП (рис.5б).

Мостовые выпрямители


Рис.5

На рис.5в,г показана работа мостового выпрямителя.

Как уже говорилось, различные схемы выпрямителей характеризуют разные значения коэффициента пульсаций. Точный расчет выпрямителя содержит громоздкие вычисления и на практике редко бывает необходим, поэтому ограничимся ориентировочным расчетом, который можно выполнить по таблице

Поскольку в преобладающем большинстве конструкций блоков питания используется двухполупериодный выпрямитель, диоды которого включены по мостовой схеме (рис. 1), о выборе его элементов здесь и пойдет разговор. Рассчитать выпрямитель - значит правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое для выпрямления с вторичной обмотки сетевого трансформатора. Исходными данными для расчета выпрямителя служат: требуемое напряжение на нагрузке (Uн) и потребляемый ею максимальный ток (Iн).

Расчет ведут в таком порядке:

1. Определяют переменное напряжение, которое должно быть на вторичной обмотке сетевого трансформатора:

где: Uн - постоянное напряжение на нагрузке, В;
В - коэффициент, зависящий от тока нагрузки, который определяют по табл. 1.

Коэффициент Ток нагрузки,А
0,1 0,2 0,4 0,6 0,8 1,0
В 0,8 1,0 1,9 1,4 1,5 1,7
С 2,4 2,2 2,0 1,9 1,8 1,8

2. По току нагрузки определяют максимальный ток, текущий через каждый диод выпрямительного моста:

где: Iд - ток через диод, А;
Iн - максимальный ток нагрузки, А;
С - коэффициент, зависящий от тока нагрузки (определяют по табл. 1).

3. Подсчитывают обратное напряжение, которое будет приложено к каждому диоду выпрямителя:

где: Uобр - обратное напряжение, В;
Uн - напряжение на нагрузке, В.

4. Выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

5. Определяют емкость конденсатора фильтра:

где: Сф - емкость конденсатора фильтра, мкФ;
Iн - максимальный ток нагрузки. A;
Uн - напряжение на нагрузке, В;
Kп - коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения).

Для различных нагрузок коэффициент пульсаций не должен превышать определенного значения, иначе в динамической головке или громкоговорителе будет прослушиваться фон переменного тока. Для питания портативных приемников и магнитофонов, например, допустим коэффициент пульсации выпрямленного напряжения в пределах 10 -3 . 10 -2 , усилителей ВЧ и ПЧ - 10 -4 . 10 -3 , предварительных каскадов усилителей НЧ и микрофонных усилителей - 10 -5 . 10 -4 . Если выходное напряжение выпрямителя будет дополнительно стабилизироваться транзисторным стабилизатором напряжения, то расчетная емкость конденсатора фильтра может быть уменьшена в 5. 10 раз.

Как сделать выпрямитель и простейший блок питания

Выпрямитель - это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Различают два типа выпрямителей:

Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения - амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере. О них мы недавно писали большую статью - Как устроен компьютерный блок питания.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база, подробнее об этом мы писали в статье о биполярных транзисторах. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

При построении качественного блока питания важно правильно рассчитать фильтр подавления пульсаций на выходе диодного выпрямителя.

Промышленный высоконадежный блок питания общего назначения Промышленный высоконадежный блок питания общего назначения

Для самодельного простого лабораторного блока питания, можно особо не думать, и поставить на выходе выпрямителя электролитический конденсатор емкостью в 1000мкФ, выбрав лишь правильный номинал максимального напряжения , с запасом, по выходному напряжению вашего трансформатора.

Для большинства лабораторных БП 25 Вольт будет достаточно.

Простые схемы на микроконтроллерах, стандартной логике потребляют малый ток, и когда задача состоит в том чтобы помигать светодиодом, или запустить маломощный моторчик проблем не будет. В нашей схеме выше, при известных входных и выходных напряжениях не учитывается ток, потребляемый нагрузкой.

Ниже представлена относительно мощного промышленного блока питания для радиоаппаратуры:

Схема его почти ничем не отличается от показанной выше.

В сегодняшней статье я рассматриваю расчет сглаживающего фильтра в блоке питания, который можно будет использовать для питания сложных устройств таких как радиоприемники и радиостанции.

Допустим, мы имеем мощный трансформатор 220/24 В на номинальный ток 14 ампер и соответствующий этому , проходящему току диодный мост (сборку) , выбранный , с запасом. От такого блока питания можно запитать мощную нагрузку!

Правильность работы технически сложных устройств, потребителей энергии этого БП , будет сильно зависеть от качества фильтрации пульсаций переменного напряжения.

Уровень постоянного напряжения на выходе БП 12В (без пульсаций) БП нагружен на минимальную нагрузку. Уровень постоянного напряжения на выходе БП 12В (без пульсаций) БП нагружен на минимальную нагрузку.

Рассчитать номинал сглаживающего конденсатора очень просто, определившись с требуемым коэффициентом пульсаций. Выберем его равным 8%.

Определим, что нагрузка будет потреблять максимальный ток 12 Ампер, тогда емкость конденсатора фильтра для двуполупериодного выпрямителя определим по формуле:

С1= Iн / (6.28* Uн*F*Кп) - , где

Iн (номинальный ток нагрузки)

Uн (номинальное выходное напряжение БП)

F (частота промышленной сети в герцах) 50Гц

Кп (коэффициент пульсаций )

Подставляем значения в формулу, и получаем:

С1=19000 мкФ , т.е. потребуется параллельно подключить 4 конденсатора емкостью 4700 мкФ х 50В.

На что повлияет малая емкость конденсатора фильтра на практике?

Напряжение на выходе блока питания "просело" под большей нагрузкой, наблюдаются пульсации . Напряжение на выходе блока питания "просело" под большей нагрузкой, наблюдаются пульсации .

Напряжение "просело" потому, что примененный фильтр не рассчитывался под большой ток, хотя, трансформатор и диодный мост получить такую мощность позволяют.

При работе радиостанции в режиме приема, так как потребляемый в этом режиме ток очень мал, дефект проявляться не будет (см. первую осциллограмму).

Но в режиме передачи (см. вторую осциллограмму) , потребляемый ток радиостанцией резко возрастает, и следовательно подсаживается напряжение на выходе БП , что повлияет на максимальную выходную мощность передатчика.

В особо запущенных случаях, когда фильтр неисправен, радиостанция будет выключаться.

Читайте также: