Как уменьшить помехи от импульсного блока питания

Обновлено: 07.07.2024

На написание данного текста меня сподвигло ощущение незнания многими принципов работы, использования (или даже незнание о существовании) параллельной защиты от импульсных перенапряжений в сети, в том числе и вызванных разрядами молний
Импульсные помехи в сети довольно распространены, они могут возникать во время грозы, при включении/выключении мощных нагрузок (поскольку сеть это RLC цепь, то в ней при этом возникают колебания, вызывающие выбросы напряжения) и многие другие факторы. В слаботочных, в том числе цифровых цепях, это еще более актуально, поскольку коммутационные помехи достаточно хорошо проникают через источники питания (больше всего защищенными являются Обратноходовые преобразователи — в них энергия трансформатора передается на нагрузку, когда первичная обмотка отключена от сети).
В Европе уже давно де-факто практически обязательна установка модулей защиты от импульсных перенапряжений (далее буду, для простоты, называть грозозащитой или УЗИП), хотя сети у них получше наших, а грозовых областей меньше.
Особо актуальна стало применение УЗИП последние 20 лет, когда ученые стали разрабатывать все больше вариантов полевых MOSFET транзисторов, которые очень боятся превышения обратного напряжения. А такие транзисторы используются практически во всех импульсных источниках питания до 1 кВА, в качестве ключей на первичной (сетевой) стороне.
Другой аспект применения УЗИП — обеспечение ограничения напряжения между нейтральным и земляным проводником. Перенапряжение на нейтральном проводнике в сети может возникать, например, при переключении Автомата ввода резерва с разделенной нейтралью. Во время переключения, нейтальный проводник окажется «в воздухе» и на нем может быть что угодно.

Характеристики импульсов перенапряжения


Импульсы перенапряжений в сети характеризуются формой волны и амплитудой тока. Форма импульса тока характеризуется временем его нарастания и спада — для европейских стандартов это импульсы 10/350 мкс и 8/20 мкс. В России, как это случается часто в последнее время, переняли стандарты Европы и появился ГОСТ Р 51992-2002. Числа в обозначении формы импульса означают следующее:
— первая — время (в микросекундах) нарастания импульса тока с 10% до 90% от максимального значения тока;
— вторая — время (в микросекундах) спада импульса тока до 50% от максимального значения тока;

Защитные устройства делятся на классы в зависимости от мощности импульса, который они могут рассеять:
1) Класс 0 (А) — внешняя грозозащита (в данном посте не рассматриваем);
2) Класс I (B) — защита от перенапряжений, характеризующихся импульсными токами амплитудой от 25 до 100 кА формой волны 10/350 мкс (защита в вводно-распределительных щитах здания);
3) Класс II ( C) — защита от перенапряжений, характеризующихся импульсными токами амплитудой от 10 до 40 кА формой волны 8/20 мкс (защита в этажных щитах, электрощитах помещений, вводах электропитающего оборудования);
3) Класс III (D) — защита от перенапряжений, характеризующихся импульсными токами амплитудой до 10 кА формой волны 8/20 мкс (в большинстве случаев защита встроена в оборудование — если оно изготовлено в соответствии с ГОСТ);

Приборы защиты от импульсных перенапряжений

Основными двумя приборами УЗИП являются разрядники и варисторы различной конструкции.

Разрядник


Разрядник — электрический прибор открытого (воздушного) или закрытого (наполненного инертными газами) типа, содержащий в простейшем случае два электрода. При превышении напряжения на электродах разрядника определенного значения, он «пробивается», тем самым ограничивая напряжение на электродах на определенном уровне. При пробое разрядника по нему протекает значительный ток (от сотен Ампер до десятков килоАмпер) за короткое время (до сотен микросекунд). После снятия импульса перенапряжения, если не была превышена мощность, которую способен рассеять разрядник — он переходит в исходное закрытое состояние до следующего импульса.

Основные характеристики разрядников:
1) Класс защиты (см. выше);
2) Номинальное рабочее напряжение — длительное, рекомендованное производителем рабочее напряжение разрядника;
3) Максимальное рабочее переменное напряжение — предельное длительное напряжение разрядника, при котором он гарантированно не сработает;
4) Максимальный импульсный разрядный ток (10/350) мкс — максимальное значение амплитуды тока с формой волны (10/350) мкс, при котором разрядник не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс — номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором разрядник обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения — максимальное напряжение на электродах разрядника при его пробое из-за возникновения импульса перенапряжения;
7) Время срабатывания — время открывания разрядника (практически для всех разрядников — менее 100 нс);
8) (редко указываемый производителями параметр) статическое напряжение пробоя разрядника — статическое напряжение (медленно изменяемое во времени), при котором произойдет открытие разрядника. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 20-30% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;

Выбор разрядника достаточно творческий процесс с многочисленными «плевками в потолок» — ведь мы заранее не знаем значение тока, который возникнет в сети.
При выборе разрядника можно руководствоваться следующими правилами:
1) При установке защиты в вводных щитах от воздушной линии электропередач или в областях, где частые грозы, устанавливать разрядники с максимальным разрядным током (10/350) мкс не менее 35 кА;
2) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, разрядник откроется и выйдет из строя от перегрева);
3) Выбирать разрядники с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 и 2). Обычно напряжение ограничения разрядников класса I от 2,5 до 5 кВ;
4) Между проводниками N и PE устанавливать разрядники, специально для этого предназначенные (производители указывают что они для подключения к N-PE проводникам). Кроме того, эти разрядники характеризуются более низкими рабочими напряжениями, обычно порядка 250 В переменного тока (между нейтралью и землей в нормальном режиме вообще напряжение отсутствует) и большим разрядным током — от 50 кА до 100 кА и выше.
5) Подключать разрядники к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины. Например, при возникновении в проводнике длиной 2 мера сечением 4 мм2 тока 40 кА, на нем упадет (в идеальном случае без учена индуктивности — а она тут играет большую роль) около 350 В. Если таким проводником подключен разрядник, то в точке подключения к сети напряжение ограничения будет равным сумме напряжения ограничения разрядника и падения напряжения на проводнике при импульсном токе (наши 350 В). Таким образом, значительно ухудшаются защитные свойства.
6) По возможности устанавливать разрядники перед вводным автоматическим выключателем и обязательно перед УЗО (при этом необходимо последовательно с разрядником установить предохранитель с характеристикой gL на ток 80-125 А, для обеспечения отключения разрядника от сети при выходе его из строя). Поскольку установить УЗИП перед вводным автоматом никто не позволит — желательно чтобы автомат был на ток не менее 80А с характеристикой срабатывания D. Это снизит вероятность ложного срабатывания автомата при срабатывании разрядника. Установка УЗИП перед УЗО обусловлена низкой стойкостью УЗО к импульсным токам, кроме того, при срабатывании разрядника N-PE, УЗО будет ложно срабатывать. Также, желательно УЗИП устанавливать перед счетчиками электроэнергии (что опять же, энергетики не позволят сделать)

Варистор


Варистор — полупроводниковый прибор с «крутой» симметричной вольт-амперной характеристикой.


В исходном состоянии варистор имеет высокое внутреннее сопротивление (от сотен кОм до десятков и сотен МОм). При достижении напряжения на контактах варистора определенного уровня, он резко снижает свое сопротивление и начинает проводить значительный ток, при этом напряжение на контактах варистора изменяется незначительно. Как и разрядник, варистор способен поглотить энергию импульса перенапряжения длительностью до сотен микросекунд. Но при длительном повышенном напряжении, варистор выходит из строя с выделением большого количества тепла (взрывается).
Все варисторы в исполнении на DIN-рейку оснащены тепловой защитой, предназначенной для отключения варистора от сети при его недопустимом перегреве (при этом по локальной механической индикации можно определить, что варистор вышел из строя).
На фото варисторы с встроенным тепловым реле после превышения рабочего напряжения разных значений. При значительном перенапряжении такая встроенная тепловая защита практически не эффективна — варисторы взрываются так, что уши закладывает. Однако, встроенная тепловая защита в варисторных модулях на DIN-рейку достаточно эффективна при любых длительных перенапряжениях, и успевает отключить варистор от сети

Небольшое видео натуралистических испытаний :) (подача на варистор диаметром 20 мм повышенного напряжения — превышение на 50 В)

Основные характеристики варисторов:
1) Класс защиты (см. выше). Обычно варисторы имеют класс защиты II ( C), III (D);
2) Номинальное рабочее напряжение — длительное, рекомендованное производителем рабочее напряжение варистора;
3) Максимальное рабочее переменное напряжение — предельное длительное напряжение варистора, при котором он гарантированно не откроется;
4) Максимальный импульсный разрядный ток (8/20) мкс — максимальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс — номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения — максимальное напряжение на варисторе при его открытии из-за возникновения импульса перенапряжения;
7) Время срабатывания — время открывания варистора (практически для всех варисторов — менее 25 нс);
8) (редко указываемый производителями параметр) классификационное напряжение варистора — статическое напряжение (медленно изменяемое во времени), при котором ток утечки варистора достигает значения 1 мА. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 15-20% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;
9) (очень редко указываемый производителями параметр) допустимая погрешность параметров варистора — практически для всех варисторов ±10%. Эту погрешность следует учитывать при выборе максимального рабочего напряжения варистора.

Выбор варисторов также как и разрядников сопряжен с трудностями, связанными с неизвестностью условий их работы.
При выборе варисторной защиты можно руководствоваться следующими правилами:
1) Варисторы устанавливаются как вторая-третья ступень защиты от импульсных перенапряжений;
2) При использовании варисторной защиты II класса совместно с защитой I класса, необходимо учитывать разную скорость срабатывания варисторов и разрядников. Поскольку разрядники медленнее варисторов, если УЗИП не согласовать, варисторы будут принимать на себя бОльшую часть импульса перенапряжения и быстро выйдут из строя. Для согласования I и II классов грозозащиты применяются специальные согласующие дроссели (производители УЗИ имеют их ассортимент для таких случаев), либо длина кабеля между УЗИП I и II классов должна быть не менее 10 метров. Недостатком такого решение является необходимость вреза дросселей в сеть или ее удлинение, что увеличивает ее индуктивную составляющую. Единственным исключением является немецкий производитель PhoenixContact, который разработал специальные разрядники I класса с так называемым «электронным поджигом», которые «согласованы» с варисторными модулями этого же производителя. Эти комбинации УЗИП можно устанавливать без дополнительного согласования;
3) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, варистор откроется и выйдет из строя от перегрева). Но тут нельзя перебарщивать, поскольку напряжение ограничения варистора напрямую зависит от классификационного (а следовательно, от максимального рабочего напряжения). Примером неудачного выбора максимального рабочего напряжения являются варисторные модули ИЭК с максимальным длительным напряжением 440 В. Если их устанавливать в сеть с номинальным напряжением 220 В, то работа его будет крайне неэффективна. Кроме того, следует учитывать, что варисторы имеют тенденцию к «старению» (т.е. со временем, при многих срабатываниях варистора, его классификационное напряжение начинает снижаться). Оптимальным для России будет применение варисторов длительным рабочим напряжением от 320 до 350 В;
4) Выбирать нужно с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 — 3). Обычно напряжение ограничения варисторов класса II для сетевого напряжения от 900 В до 2,5 кВ;
5) Не соединять параллельно варисторы для увеличения суммарной рассеиваемой мощности. Многие производители защит УЗИП (особенно класса III (D)) грешат параллельным соединением варисторов. Но, поскольку 100% одинаковых варисторов не существует (даже из одной партии они разные), всегда один из варисторов окажется самым слабым звеном и выйдет из строя при импульсе перенапряжения. При последующих же импульсах выйдут из строя цепочной остальные варисторы, поскольку они уже не будет обеспечивать требуемую мощность рассеяния (это тоже самое что соединять параллельно диоды для увеличения общего тока — так делать нельзя)
6) Подключать варисторы к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины (рассуждения те же, что и для разрядников).
7) По возможности устанавливать варисторы перед вводным автоматическим выключателем и обязательно перед УЗО. Поскольку установить УЗИП перед вводным автоматом никто не позволит — желательно чтобы автомат был на ток не менее 50А с характеристикой срабатывания D (для варисторов II класса). Это снизит вероятность ложного срабатывания автомата при срабатывании варистора.

Краткий обзор производителей УЗИП

Ведущими производителями, специализирующимися на УЗИП низковольтных сетей являются: Phoenix Contact; Dehn; OBO Bettermann; CITEL; Hakel. Также у многих производителей низковольтной аппаратуры, в продукции имеются модули УЗИП (ABB, Schneider Electric и др.). Кроме того, китай успешно копирует УЗИП мировых производителей (поскольку Варистор достаточно простой прибор, китайские производители изготавливают довольно качественную продукцию — например модули TYCOTIU).
Кроме того, на рынке довольно много готовых щитков защиты от импульсных перенапряжения, включающих в себя модули одного или двух классов защиты, а также предохранители для обеспечения безопасности, в случае выхода из строя защитных элементов. В этом случае, щиток закрепляется на стене и подключается к имеющейся электропроводке в соответствии с рекомендациями производителя.
Стоимость УЗИП разнится в зависимости от производителя в разы. В свое время (несколько лет назад), мною был проведен анализ рынка и выбран ряд производителей II класса защиты (некоторые в список не попали, в связи с отсутствием исполнений модулей на требуемое длительное рабочее напряжения 320 В или 350 В).
Как замечание по качеству, могу выделить только модули HAKEL (например PIIIMT 280 DS) — они имеют слабые контактные соединения вставок и изготовлены из горючего пластика, что запрещено ГОСТ Р 51992-2002. На данный момент HAKEL обновили ряд продукции — о ней ничего сказать не могу, т.к. не буду использовать HAKEL больше никогда

Применение УЗИП класса III (D) и защиту цифровых цепей устройств оставим на потом.
В заключение могу сказать, если после прочтения всего у вас появилось больше вопросов, чем после прочтения заголовка — это хорошо, поскольку тема заинтересовала, а она настолько необъятная, что можно не одну книгу написать.

DIY: Борьба с помехами на радио от блоков питания видеорегистраторов/навигаторов

Любительский

Аватар пользователя

Текстом ниже не пытаюсь «открыть Америку» для читателей, просто решил поделиться своим опытом…

Все началось приблизительно, год назад, когда я обратил внимание, что, при прослушивании радио в автомобиле, появились шумы, причем проявлялись они не всегда, а только в определенных точках города, где раньше проблем с приемом никогда не было. В тот момент подумал, что это связанно с работами на радиопередающей вышке, да и сам радиоэфир слушаю редко, все больше музыку с дисков, поэтому особого внимания проблеме не уделял.

Но вот, совсем недавно, в сервисе «Вопрос-ответ» DNS встретил несколько вопросов по проблемам со штатными блоками питания видеорегистраторов и навигаторов и, при активном «гуглении», наткнулся на упоминание некачественной продукции, от которой идут наводки на автомагнитолы при прослушивании радио, и более того, помехи для GPS приемников навигаторов. "Шуметь" может как блок питания, так и устройство к нему подлюченное. Сопоставив данные факты с датой приобретения видеорегистратора Explay DVR-004 (как раз год назад), начали закрадываться подозрения, не он ли источник помех радио.

Покатался по городу, нашел точку, в которой начались помехи, вытащил блок питания видеорегистратора из прикуривателя и …


помехи пропали, радио стало слышно просто отлично!

Проблема локализована, пора заняться ее устранением :-)

Снова изучение форумов, и приблизительный список решений:

  • * Заменить некачественный блок питания на качественный.
  • * Убрать импульсный блок питания и поставить стабилизатор на базе кр142ен5 или аналогов.
  • * Запитать видеорегистратор от отдельного источника питания.
  • * Экранировать корпус видеорегистратора и провод его питания.
  • * Поставить на провод питания видеорегистратора ферритовые кольца.
  • * Поставить сглаживающие фильтры по питанию на вход и/или выход блока питания регистратора.

Первый вариант я для себя отсек сразу, т.к. вскрытие блока питания моего видеорегистратора показало, что, схема, в принципе, достаточно грамотная, по крайней мере, соответствует типовой для микросхемы MC34063.

Второй вариант плох тем, что «кренки» сильно греются и их нужно хорошо охлаждать (радиатор площадью не меньше 10 см2), что достаточно пожароопасно.

Третий вариант для автомобиля совсем не подходит, не возить же с собой два аккумулятора.

Четвертый вариант, особенно в части корпуса видеорегистратора или навигатора, труднореализуем.

Для себя решил пробовать 5 или 6 вариант, т.е. ставить фильтр по питанию.

Под рукой, как раз был неисправный блок питания персонального компьютера, на входе у которого отдельной платкой стоял фильтр по питанию, решил попробовать его.


Замеры шумов при его подключении показали, что они «живее всех живых» :-)


Тогда решил собрать из подручных средств П-образный сглаживающий фильтр, не заморачиваясь его расчетами.

Под рукой, как раз, были необходимые компоненты, а именно:

  • * Конденсаторы 25V 1000uF (продаются в любом радиомагазине за сущие копейки).
  • * Дроссель (выпаял из неисправного блока питания).
  • * Штекер в прикуриватель автомобиля (позаимствован с неисправного автомобильного компрессора).



Первым делом поставил в штекер предохранитель, чтобы, в случае короткого замыкания, не спалить электронику автомобиля или блок питания видеорегистратора. Именно отсутствие предохранителя и стало причиной мучительной смерти компрессора, когда на морозе лопнула оплетка его провода и произошло короткое замыкание. Второй раз на эти грабли решил не вставать.


Для быстрой проверки изготовил «прототип» - распаял схемку «навесом». Получилась такая конструкция.


Первое же испытание «в поле» показало неплохой результат, уровень шумов снизился существенно, небольшие помехи остались, но их можно списать на действительно низкий уровень сигнала в некоторых местах нашего города. Также, не стал ставить ферритовые кольца на провод питания, т.к. их под рукой не оказалось, а полученный эффект меня устроил :-)

Следующим шагом – облагородил схемку в небольшой корпус из под мышки Logitech, уж очень не хотелось снимать часть панели в авто и припаивать получившийся фильтр непосредственно к разъему «прикуривателя».

Для этого разобрал блок питания видеорегистратора


отпаял пружинку и минусовой контакт


Выкинул "потроха" мышки и разместил фильтр и блок питания внутри ее корпуса, закрепив элементы с помощью клеевого термопистолета.

Не сочтите за флуд, просто некоторые аспекты использования "дешёвых" импульсников с трансивером. Которые всплыли в моей практике,может кому поможет.
Как правило такие ИБП "массово продающиеся на наших рынках" не предназначены для использования с приемно передающей техникой! Их клепают для светодиодной рекламы и тому подобное.
В интернете, встречаются многостраничные темы о переделке всевозможных "компьютерных" ИБП и борьба с ихними высокочастотными наводками.
Как от простого редактирования номиналов обвязки ШИМ и транзистора преобразователя, до координальной переделки ИБП с применением всевозможных фильтров.

Упрощенная схема импульсного преобразователя с внешним управлением приведена на рисунке



Увеличение импульсных помех излучаемым ИБП.
Увеличение помех связано с тем, что транзистор преобразователя работает в ключевом режиме. В таком режиме транзистор является источником импульсных помех, возникающих в моменты переходных процессов транзистора. Это является недостатком любого транзистора работающего в ключевом режиме. Но если транзистор работает с малыми напряжениями (например, транзисторная логика с напряжением в 5В) это не особо страшно. Для борьбы с этими помехами в ИБП используются более сложные схемы сетевых фильтров, чем в обычном БП.

В свое время, я тоже столкнулся с огромной проблемой ИБП.


Купил платку:PS-65-13,5 (4,7A; 13,5V) от Mean Well

Поместил в железную коробку от советского тестера. Впаял керамические емкости, параллельно каждому электролитическому конденсатору.
Включил свои миник и опечалился. Широкополосная помеха "выхлоп" гуляла по 160 до 10 м. Но самое интересное - она была явно выражена только на определенных диапазонах!
Почесав репу, решил убрать по далее ИБП и заземлить! Но это не решило всей проблемы, помеха упала в среднем на бал. Но 8 бальные трели и шум по диапазонам остался.
Опять почесав репу, понял что высокочастотная помеха лезет на выходе ИБП, по проводам питания 13,5V "потом вспомнил, что данная проблема широко обсуждалась на спец форумах, как и борьба с помехой"


Выпаял из старого сгоревшего компьютерного ИБП, колечко Т200-52 "но можно и ферритовое от старого телевизора"

Намотал запорный дроссель - подключил к выходу ИБП, удивился тем что помехи идущие по проводам питания 13,5, остались только на определенных диапазонах!
Намотал кольцо до заполнения, можно и синфазно "в два провода + и -" и получил приличную индуктивность. Этот дроссель, в обще убрал помехи ШИМ ИБП, идущие по проводам питания 13,5 Вольт.

Вывод.
Надо экспериментировать с фильтрами "как на входе так и на выходе", точнее подбирать их индуктивность. Чтобы побороть полностью высокочастотные помехи. Сама плата ИБП дает очень хорошую помеху, и ее уровень зависит от модели блока питания и скупости производителя!
В общем, к каждому ИБП "особенно если он бюджетный" надо подходить индивидуально.

Поместив эту конструкцию обратно в металлическую коробку от советского тестера и заземлил - помехи исчезли полностью. Сама плата БП перестала наводить и по проводам не чего не лезет. Но такой способ последнее дело,все ИБП разные и надо экспериментировать с номиналами обвязки, парой простой диод вносит ужасную картину.


ЗЫ. В данный момент не использую металлический корпус - сильно большой и плохо вентилируемый. Поместил ИБП в пластиковый корпус - но чтоб избавится от помехи "наведенки" самой платки. Поместил ИБП под стол в удаленном от трансиверов месте)
Пользую больше года, живу за городои и все ВЧ диапазонны чистые от индустриальных помех.


Здравствуйте. Подскажите, реально ли избавиться от помех в радиоприемнике.Ситуация такая: на работе стоит старый музыкальный центр, вокруг стены, железо, и много китайских светодиодных ламп, разных мощностей,+ три сварочника инверторных естественно. И в округе думаю тоже всё такое же. Как в подводной лодке. Я подозреваю что эти помехи идут от импульсных бп различных устройств и.т.д. Создают помехи и по сети и на антену. При выключании автоматов в цеху, или вытаскивания провода приемника из розетки, (когда вырубаю сеть,приемник не выключен, и кнопка на нем через раз а не тактовая. )в этот секундный промежуток вещание становится намного чище, значит при питании от остатков заряда в емкостях блока питания приемника помех гораздо меньше! Нашел старую плату от телевизора, и вырезал из нее кусок текстолита с дросселем и емкостями, смд, и большой,конденсатор,( большой сравнительно, емкость там в пф) еще какая то лепешка на входе, термистор может. Припаял все это в разрыв 220 в,теперь помех от сети нет,так как проверил так же как написано выше, Стало гораздо приятней,пару станций можно нормально слушать.но помехи идущие на антену (кусок медного провода) выносят мозг, . Я хочу взять антенный телевизионный кабель, протянуть его до форточки, и там сделать антену, кусок провода медного или алюминевого. Наружную оплетку-экран думаю подключить на заземление в цеху, хотя оно вряд ли там нормальное,из за всех приблуд. современной китайской электроники. также заземлить землю(минус) приемника. Подскажите Пожалуйста,как лучше, правильней, все это сделать. Спасибо.С уважением Евгений. фильтр на фото почти как у меня.

Что бы избавиться от помех по сети нужно в разрыв проводов питания включить
в каждый провод по дросселю, лучше на больших ферритовых кольцах. Дроссель должен иметь хотя бы витков по пятьдесят провода диаметром, который способен выдержать ток питания аппаратуры, между входами и выходами дросселей нужно подключить конденсаторы емкостью не менее 0,01 микрофарады на напряжение 400 вольт или более. Тогда импульсные помехи по сети будут снижены до минимума.

Подскажите Пожалуйста,как лучше, правильней, все это сделать.



Схема работать как фильтр не будет,нужна земля,обязательно и желательно отдельно,например арматура в землю,куда будет стекать вся сетевая пыль от импульсных приборов,как пример такая вот схема сетевого фильтра,обрати внимание на заземление в схеме,куда притулены кондюки

Спасибо.,по помехам сети понятно а как антену сделать? может усилитель телевизионный.


Не стОит,опять вся пыль с эфира назад в радио,желательно каоксиальный кабель нужной длины и диапазонную антенку вынести наружу,можно вертикал,пруток см 60-70,можно рамку,типа квадрат ,она выгоднее,меньше помех будет принимать,или антенну Харченко к примеру,это не сложно

Спасибо что не прошли мимо. Тут все понятно. Будет время сделаю, каоксиальный кабель был, я провел до окошка, и выкинул туда кусок (метр примерно) обмедненой проволоки. Ловит лучше или нет не пойму. Эканировку- оплетку закрутил на заземление. Пробывал взять минус от мафона, чтоб тоже заземлить, идет дополнительный фон, отключил назад.Но это все без вашей верхней схемы. Схема чуть другая, у меня, два дросселя но без земли.+емкости., но с ней сразу же лучше стало. Если бы определить от чего помехи, . Думал запитать мафон от акумулятора, чтоб точно убедиться, не получилось, так как там идет много вторичных обмоток, с транса.

ZHETON, Наверное нужен всё таки мультиметр в помощь,паяльник и слегка ровные руки,и всё получится,дело творческое,удачи

Читайте также: