Как выбрать конденсатор для блока питания

Обновлено: 06.07.2024

Выполняя мелкий ремонт или модернизацию своего любимого электронного устройства, в 8 случаях из 10 требуется замена электролитического конденсатора, так как у них есть свойство со временем высыхать и тем самым выходить из строя. И зачастую под рукой просто нет 100% аналога, требующего замены конденсатора. В этой статье я расскажу, как правильно подобрать аналоги.

Основные правила замены электролитического конденсатора

Важно. Самостоятельный ремонт без специальных знаний может быть опасен. Берегите себя!

Электролитический конденсатор характеризуется тремя главными параметрами: напряжение, емкость и температура. Вот на них и стоит обращать внимание при замене вышедшего из строя электролитического конденсатора.

Неисправный конденсатор - основная причина выхода из строя оборудования Неисправный конденсатор - основная причина выхода из строя оборудования

Итак, вы разобрали корпус своего прибора, провели диагностику и выявили, что у вас вышел из строя конденсатор (чаще всего они вздуваются).

Прежде чем выпаять определите, где у него плюс, а где минус.

Чаще всего минусовой вывод обозначается светлой полосой.

Минус на конденсаторе обозначается светлой полосой Минус на конденсаторе обозначается светлой полосой

После этого просто выпаиваем его с помощью паяльника и заменяем.

Идеально, если у вас есть точно такой же электролитический конденсатор. Но если нет, начинаем искать замену.

Подбор конденсатора на замену

Первым делом обращаем внимание на напряжение. Допустим, вам необходим конденсатор на 25 Вольт. Так вот поставить вместо такого конденсатор на 16 Вольт и ниже нельзя. Вам нужно найти замену с таким же напряжением или же выше. То есть можно использовать 35 В, 50 В, 63 В и т. п.

Конденсатор напряжением 16V нельзя ставить на место конденсатора рассчитанного на 25 V Конденсатор напряжением 16V нельзя ставить на место конденсатора рассчитанного на 25 V

Если же у вас таковых нет, а ремонт нужно выполнить здесь и сейчас, то тогда можно соединить несколько конденсаторов последовательно. Тем самым возрастет напряжение, но при этом снизится емкость.

Следующий параметр, на который мы обращаем внимание - это емкость заменяемого элемента. Зачастую мы меняем сглаживающие конденсаторы, которые служат для сглаживания пульсаций выпрямленного напряжения, и тут работает принцип, чем больше емкость, тем лучше сглаживание. Так что для замены выбираем аналогичную емкость или же большую, но никак не меньшую.

Если у вас нет подходящего варианта замены, а на плате достаточно свободного места, то можно выполнить параллельное соединение конденсаторов. При таком соединении происходит сложение емкостей отдельных конденсаторов.

И наконец, третьим основным параметром, на который мы обращаем внимание, является максимальная рабочая температура, на которую рассчитан конденсатор. В этом случае также следует выбирать изделие с аналогичным или более высоким параметром.

Кроме этих трех параметров так же следует обращать особое внимание на ESR – эквивалентное последовательное сопротивление.

Данный параметр указывается в даташитах на изделие и может быть измерено с помощью RLC – транзистометра .

Учтя выше представленные рекомендации, вы с легкостью замените вышедший из строя конденсатор, и отремонтированный прибор прослужит вам еще долгое время. Понравилась статья, тогда оцените ее лайком и подписывайтесь, чтобы не пропустить много интересного.

Как выбрать конденсатор

Компьютер периодически «виснет», отключается или вовсе вышел из строя? В восьми из десяти случаев неполадки ПК связаны с неисправностью конденсатора – устройства, предназначенного для накопления заряда. Внешне этот прибор выглядит как небольшой бочонок с двумя полюсами-выводами. Рассмотрим, как выбрать конденсатор для замены и на какие параметры стоит обратить внимание в первую очередь.

Принцип действия конденсатора

Для начала разберемся, зачем вообще нужен конденсатор. Представить современные электронные приборы от простейшего блока питания до сложнейших вычислительных систем без этого устройства сегодня просто невозможно.

Оно является своеобразным аккумулятором небольшой емкости, способным накапливать и моментально отдавать заряд в случае кратковременного отключения напряжения или его просадке. Существуют также конденсаторы, предназначенные для фильтрования частот, как низких, так и высоких, подавления помех, сглаживания скачков напряжения, повышения коэффициента мощности и пр.

Конденсаторы имеют два вывода-полюса – плюсовое (+) и минусовое (-). Они представляют собой металлические пластины, на которых скапливаются положительные и отрицательные заряды.

Между ними размещают диэлектрик (стекло, картон, дерево и пр.), не позволяющий замкнуть цепь. Часто для увеличения емкости полюса изготавливают не в виде пластин, а в форме спиралей или сфер.

Конденсаторы, расположенные на блоке питания

Как выбрать конденсатор в зависимости от характеристик?

Существует немало разновидностей конденсаторов. Форма этих элементов может быть самой разнообразной:

  • рулонные низкочастотные: представляют из себя бумажную ленту, переложенную фольгой и свернутую в рулон;
  • пластинчатые: собранные в герметичные пакеты, покрытые защитной эмалью;
  • трубчатые: имеющие форму керамической трубки и серебряный проводящий слой;
  • дисковые: с диэлектриком в форме керамического диска (форму диска или трубки обычно имеют высокочастотные конденсаторы);
  • литые секционированные, предназначенные для установки в микросхемах, имеют 2 паза, между которыми заливается серебряная паста.

Виды устройств для накопления заряда

Рассмотрим, как выбрать конденсатор по виду диэлектрика. По виду изолятора это устройство может быть:

  • электролитическим (алюминиевым или танталовым): анодом в нем является пластина из металла, диэлектриком – оксидная пленка, катодом – электролит;
  • пленочным и металлопленочным: с изоляторами в виде полипропиленовой, полиэстеровой или полистиреновой пленки, уложенной между слоями фольги; несмотря на минимальную емкость, способны работать при повышенных напряжениях в высокочастотных схемах;
  • керамическим небольшой емкости: диэлектриком в нем служат керамические пластины; хорошо работают с сигналами меняющейся полярности;
  • бумажным: используется реже, имеет большие размеры; изолятором служит промасляная или непромасляная бумага.

Керамические устройства для вытяжного вентилятора

Как выбрать конденсатор в зависимости от параметров?

Для того, чтобы понять, какие конденсаторы выбрать для замены, изучим основные их параметры, главными из которых являются напряжение, емкость и температура:

  • емкость, то есть способность накапливать электрозаряд; ее размер зависит от площади проводников, толщины слоя, а также материала изготовления диэлектрика; измеряется в фарадах (Ф);
  • номинальное напряжение, при котором прибор сможет отработать срок службы без каких-либо изменений параметров; напряжение заменяемого конденсатора должно точно соответствовать или быть выше напряжения вышедшего из строя устройства;
  • максимальная рабочая температура: должна иметь аналогичное или более высокое значение.

Теперь чуть подробней о том, как выбрать конденсатор по емкости. В идеале она должна равняться емкости предыдущего прибора или быть чуть большей. Монтаж же накопителя емкости меньшей, чем требуемая, ухудшит работоспособность системы.

Конденсаторы могут обладать и отрицательной емкостью. В таких устройствах при увеличении напряжения заряд не увеличивается, а уменьшается. Они предназначены для ускорения работы ПК и снижения его перегрева.

Как выбрать конденсатор

Параметры устройства указываются на его корпусе.

Кроме вышеописанных параметров, существенное значение также имеют:

  • удельная емкость: отношение емкости к объему (иногда массе) диэлектрика; при его уменьшении этот параметр увеличивается;
  • эквивалентное последовательное сопротивление (обозначается буквами ESR) материалов изготовления (выводов, обкладок) и потери в диэлектрике;
  • плотность энергии относительно массы корпуса в электролитических устройствах;
  • номинальное напряжение на корпусе;
  • полярность (для электролитических устройств), то есть расположение положительного и отрицательного зарядов («+», «-»); если в остальных видах конденсаторов она не имеет значения, то есть любая из пластин может служить как в качестве плюса, так и минуса, то в электролитических неверное подключение приведет к поломке прибора.

Совет! Если на плате много свободного места, допускается параллельное расположение нескольких конденсаторов небольшой емкости. При последовательном их расположении напряжение возрастет, но емкость уменьшится.

Признаки неисправности конденсатора

Перед тем, как выбрать конденсатор, следует выпаять вышедшее из строя устройство и определить его параметры. Признаком нарушения работоспособности этого элемента могут служить:

  • «вздутие», деформация крышки;
  • снижение емкости и комплексного электросопротивления (импеданса): для определения их значения используется оммометр; его щупы прикладываются к одному из предварительно отпаянных выводов конденсатора; при обрыве стрелка прибора будет отклоняться в сторону «бесконечности»; на неисправность конденсатора указывает также снижение показателей его емкости;

Вздутые конденсаторы

Косвенными признаками выхода из строя одного или нескольких конденсаторов являются нестабильность работы компьютера, его периодическое «зависание», перезагрузка, увеличение потребляемой мощности одного из узлов или полный выход из строя ПК.

Важно! Затягивать с заменой конденсатора, задействованного в цепи электропитания важнейших элементов, к примеру, процессора, крайне нежелательно. Это может привести к его выходу из строя.

Основные причины «вздутия» конденсатора

Можно правильно выбрать конденсатор, впаять его, и через пару дней обнаружить, что он вновь вышел из строя. Основной причиной быстрой поломки этих элементов является перегрев при:

  • недостаточной вентиляции корпуса и его перегреве свыше +45°С;
  • установке блока питания недостаточной мощности; она должна быть на 10-15% больше, чем та, которую компьютер использует в момент высшей производительности; в противном случае в цепи возникают токовые нагрузки и, как следствие, перегрев элементов.

Выход из строя конденсатора возможен также при:

  • несоблюдении полярности электролитических элементов при припайке;
  • механических повреждениях устройства.

Самостоятельная замена конденсатора

Итак, мы разобрались, как выбрать конденсатор. Осталось его впаять. Для этого следует:

  1. Обработать обе ножки вздувшегося конденсатора флюсом.
  2. Поочередно прогреть их паяльником до расплавления.
  3. Удалить заменяемую деталь.
  4. Обработать открывшиеся отверстия отсосом припоя до полной очистки.
  5. Вставить новый конденсатор (в электролитических обязательно соблюдая полярность).
  6. Обрезать излишнюю длину ножек таким образом, чтобы элемент выступал над поверхностью на пару миллиметров.
  7. Обработать их флюсом и припаять.
  8. Тщательно очистить место припоя ваткой со спиртом.

Таким образом, заменить неисправный конденсатор можно в течение нескольких минут. В том случае, если устройство выбрано правильно и в процессе эксплуатации не перегревается, оно прослужит долго.

Типы конденсаторов в блоках питания: за что мы переплачиваем

Все мы знаем, что блок питания — один из важных элементов компьютера. Некачественная модель может быстро выйти из строя, унеся за собой остальные компоненты. Давайте выясним, как применяемые в БП комплектующие влияют на надежность и стабильную работу ПК.

Надежность работы блока питания и качество формируемых напряжений напрямую зависит от компонентов, применяемых в конструкции. Самые распространенные радиоэлементы в БП — это, конечно, конденсаторы. В бюджетных моделях ставят алюминиевые электролитические. Их отличительные черты: невысокая стоимость, низкая надежность, малый срок службы и довольно средние эксплуатационные характеристики.

В более дорогих БП используются полимерные конденсаторы. Но не везде, а лишь в критически важных участках электрической схемы. У «полимеров» все гораздо лучше с надежностью, а эксплуатационные параметры значительно превосходят «электролиты».

Наступил момент, чтобы разобраться в устройстве конденсаторов более подробно. Давайте выясним, как их качество влияет на формирование питающих напряжений.

Устройство конденсаторов

Алюминиевый электролитический конденсатор обладает большой емкостью при относительно малых размерах. Себестоимость производства небольшая, поэтому такой тип недорог и очень популярен.

Конструкция алюминиевого электролитического конденсатора

Конструктивно он состоит из двух лент алюминиевой фольги, между которыми размещена бумага, пропитанная электролитом. Вся конструкция свернута в плотный рулон и упакована в герметичный металлический корпус. Диэлектриком является окись алюминия на поверхности фольги, которая исполняет роль положительной обкладки (анода). Окись образовывается путем взаимодействия электролита с поверхностью при протекании электрического тока, поэтому ее толщина очень мала — за счет этого и достигается большая емкость конденсатора. Катодом является электролит, который имеет электрический контакт со всей поверхностью неоксидированной обкладки, соединенной с отрицательным выводом.

Кроме алюминиевых, существуют и другие виды электролитических конденсаторов — например, танталовые и ниобиевые. Диэлектрический слой в них образован окислом этих металлов, поэтому они дороже в производстве.

Конструкция полимерных конденсаторов аналогична алюминиевым электролитическим. Отличие состоит в том, что в качестве электролита в них применяются токопроводящие полимеры. Последние находятся в твердом состоянии: диэлектрический оксидный слой создается не на обкладке, а на поверхности токопроводящего полимерного слоя.

Конструкция полимерных и гибридных конденсаторов

Жидкий электролит может сочетаться с твердыми токопроводящими полимерами — такие конденсаторы называются гибридными.

Сейчас выпускаются четыре вида полимерных конденсаторов, три из которых (SP-Cap, POSCAP, OS-CON) имеют в качестве электролита твердый токопроводящий полимер и отличаются друг от друга только материалом обкладок. Четвертый вид — гибридный (Hybrid).

Виды полимерных конденсаторов

Любой полимерный конденсатор по эксплуатационным характеристикам лучше, чем даже самый качественный электролитический. Более подробно поговорим об этом в следующем разделе.

Говоря о терминологии, стоит отметить, что неправильно отделять полимерные и гибридные конденсаторы от алюминиевых электролитических. По сути, все они относятся к одной группе — электролитических. Но в техническом жаргоне есть традиционное разделение на «электролиты» и «полимеры», им и будем пользоваться для удобства.

Рассмотрим основные параметры, по которым различаются конденсаторы.

Электрическая емкость — это способность обкладок конденсатора накапливать электрический заряд. Измеряется в Фарадах (Ф) или долях (мкФ, нФ, пФ). Величина обычно указывается на корпусе.


Номинальное напряжение — величина, при которой рабочие параметры конденсатора сохраняются на протяжении всего срока службы.


Максимально допустимая рабочая температура также обычно указывается на корпусе.

Примеры обозначений максимально допустимой температуры

Повышение температуры конденсатора на каждые 10°С (свыше 40°С) уменьшает срок его службы вдвое, а то и в трое, в зависимости от типа:

Зависимость срока службы конденсаторов от температуры

ESR (Equivalen Series Resistance, в переводе «эквивалентное последовательное сопротивление») состоит из суммы активных сопротивлений обкладок, выводов, электролита и контактных соединений обкладок с выводами. Оно является паразитным, то есть — вредным. Наибольшее влияние на величину ESR оказывает электролит. Реальный конденсатор схематически можно представить как последовательное соединение паразитного сопротивления R и идеального конденсатора C:


Это сопротивление приводит к потерям как при заряде, так и разряде конденсатора. Таким образом, ухудшается качество сглаживания напряжений, формируемых БП. Помимо этого, при прохождении тока выделяется тепло, то есть происходит нагрев конденсатора. Делаем вывод: чем меньше ESR, тем лучше конденсатор.

ESI или ESL (Equivalen Series Inductance, в переводе «эквивалентная последовательная индуктивность») тоже является также паразитной. Она возникает из-за неидеальной конструкции конденсаторов и состоит из суммы индуктивностей обкладок и выводов.

Большое значение ESI (ESL) имеют конденсаторы со спиральной намоткой обкладок. При рассмотрении этого параметра реальный конденсатор представим как последовательное соединение паразитной индуктивности L и идеального конденсатора C:


При небольшой частоте импульсного тока, проходящего через конденсатор, индуктивное сопротивление будет очень мало и на работу не повлияет. Но при увеличении частоты, будет увеличиваться и индуктивное сопротивление. На частотах свыше нескольких сотен килогерц электролитический конденсатор и вовсе перестанет выполнять свои функции.

Таким образом, эквивалентная схема конденсатора с учетом всех физических несовершенств конструкции выглядит следующим образом:


Помимо вышеуказанных параметров, добавилось паразитное сопротивление R leakage. Оно характеризует ток утечки между обкладками конденсатора из-за несовершенства диэлектрического материала.

Описав эквивалентную схему суммой сопротивлений всех ее активных и реактивных элементов, получаем комплексное сопротивление Z, также называемое импедансом. Чем ниже импеданс конденсатора, тем он лучше.

Зависимость импеданса электролитического конденсатора от частоты

Из графика видно, что импеданс в области низких частот определяется емкостным сопротивлением идеального конденсатора, в области средних частот ограничивается паразитным ESR, а по мере дальнейшего увеличения частоты, на импеданс все больше влияния начинает оказывать влияние индуктивное сопротивление паразитной ESL.

ТКЕ (температурный коэффициент емкости) характеризует относительное изменение емкости при изменении температуры. Это вредное явление, к нему особенно критичны частотозадающие цепи. При изменении температуры работающего устройства или окружающей среды, меняется и температура конденсатора, а частота начинает «плыть».

Сравнительный ТКЕ полимерных и керамических конденсаторов

DC-bias (эффект смещения при постоянном напряжении) характеризует зависимость емкости от приложенного напряжения. Например, при увеличении напряжения на конденсаторе MLCC (см. график ниже) до максимального значения, емкость может снизиться на 65% от номинальной величины.

Сравнительная зависимость емкости от напряжения

Каждый уважающий себя конденсатор должен поддерживать емкость неизменной. Как видим, полимерные справляются с этой задачей на отлично.

Преимущества полимерных конденсаторов

С устройством мы разобрались, теперь давайте выясним, что все это значит на практике.

Полимерные конденсаторы по сравнению с обычными электролитическими обладают более низким ESR, соответственно, и более низким импедансом. При использовании первых в сглаживающем фильтре БП заряд, накапливаемый от источника и отдаваемый в нагрузку, будет больше, сглаживание пульсаций выходного напряжения — лучше, а нагрев — гораздо меньше.

Влияние на качество сглаживания напряжений электролитического и полимерного конденсаторов

Надежность полимерных конденсаторов на порядок выше, чем алюминиевых электролитических. У последних частенько высыхает жидкий электролит, особенно, если они неправильно размещены в устройстве. Например, в непосредственной близости от горячих радиаторов охлаждения. Повышенная температура не только способствует ускоренному высыханию, но и уменьшает срок службы электролитов. Также она приводит к вздутию — нарушению герметичности корпуса путем разрыва предохранительных насечек.

Вздувшийся алюминиевый электролитический конденсатор (слева)

В полимерных конденсаторах высыхания быть не может — в них используется твердый токопроводящий слой. Но эксплуатация при повышенном напряжении также может привести к вздутию и разрыву корпуса.

Вздувшийся полимерный конденсатор

«Полимеры» способны к самовосстановлению при локальном пробое оксидного слоя. При воздействии большого тока короткого замыкания, в локальной точке происходит сильный нагрев токопроводящего полимера. Молекулярная цепочка в зоне дефекта разрушается. В результате формируется диэлектрический слой, изолирующий место пробоя.

Процессы самовосстановления локального пробоя

В алюминиевых электролитических конденсаторах подобный пробой будет лавинообразно разрастаться. Это приведет к разрыву корпуса и выходу из строя всего блока питания.

Подытоживая, давайте сравним эксплуатационные параметры рассматриваемых типов конденсаторов.

Сравнительная оценка параметров конденсаторов различных технологий

Выводы

Выбирайте блок питания так же тщательно, как и другие важные компоненты компьютера: процессор, видеокарту или материнскую плату.

Перед покупкой изучите обзоры, по ним можно определить, какой тип конденсаторов применяется в конкретном блоке. Применение полимеров, пусть и частично, положительно сказывается на надежности и долговечности БП.

Полимерные конденсаторы в БП Corsair HX1200

Полимерные конденсаторы в БП Thermaltake Toughpower GF1 1000W

Полимерные конденсаторы в БП Seasonic Core GM 650

Повторяем в очередной раз — экономить на блоке питания не стоит. Как говорил барон Ротшильд: «Мы не настолько богаты, чтобы покупать дешевые вещи».


Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.


Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.



Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические


Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические



Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика


История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Читайте также: