Какие блоки питания взрываются

Обновлено: 07.07.2024

Купил в прошлом году KCAS 500w и только недавно понял что купил не самый надёжный блок + еще на 500w.

MSI GTX 1060 gaming x 6gb

Башня на проц Arctic Freezer 33

RAM g.skill ddr4 16gb 3000mhz aegis 2 планки

Материнская плата Gigabyte B450 AORUS ELITE

Для такого блока это норм ? В ближайшее время менять его не хочу, но и что-бы он бахнул тоже не хочу. Выдержит ли он такую нагрузку ближайшие 3 года ?

Блок питания Aerocool Kcas 500W по цене от 1615 до 1615 грн. >>> e-Katalog - каталог сравнение…

Если блок питания работает год, то пусть он хоть от Китайской фирмы No Name с Алиэкспресс. Как завещал наш Системный администратор - работает? Не трож

Если оно работает, это не значит что он работает в штатном режиме. Это как ездить со стрелкой в красной зоне. Едет же.

Отличный совет, учитывая что дешевый китайский блок питания в любой момент может навернуться и забрать с собой мамку, видеокарту или всю начинку компа разом лол. Если за год он не накрылся - это еще не значит, что он не накроется в скорем времени, например, от того, что очередной перепад напряжения в сети будет чуть более значительным, чем обычно. Да и неизвестно как этот блок питания работает в целом, если ОП ничего не тестировал. Я вот как-то взял себе бюджетный Чифтен, вроде всё норм работало, но однажды мне вздумалось оставить Аиду на ночь. На утро смотрю, а там по линии 12V максимальное зафиксированное напряжение 15V лол - я грю "Окей" и иду за новым БП. Может, этот PSU и не спалил бы мне систему, но периодические скачки до 15V явно не пошли бы на пользу видюхе и винту. Но в любом случае, имхо, если с деньгами не совсем туго - лучше перестраховаться, потому что это именно та ситуация, когда скупой в лучше случае платит дважды

Оставлять аиду на ночь - это ты хорошо придумал, нечего сказать!

Энто был сарказмъ? Я же не с включенным стресс-тестом оставлял лел

Ну, как сказать. У меня в мёртвом компе дома (мёртвый, но работает) с 440гт и i3 2100 - 300w работает уже лет 10 точно. Пищал, даже в перезагрузки входил. Но брат в дотане играет и хоть бы хны. Всё жду, когда сдохнет. во сделали для людей блин.
У видяхи уже кулера нет родного, сдох. Я поставил внешний на 12v. чтобы работало всё. видяза 70 в простое. 110 в нагрузке. но работает. и даже не подаёт признаков смерти. какие там отвалы чипа или памяти. какие там проблемы с артефактами и питанием. какие там конденсаторы и транзисторы? Тю, она живёт и ещё всех переживёт мне кажется.

Суть не в том что он бахнет, а в том что через год там скачки напряжения будут сильнее, чем были такие в молодости у Саши Грей. А еще учитывая что видимокарта у тебя МСИ, которые традиционно не ставят предохранителей, я бы сидел со сжатыми булками.

БП для расслабленных булок
DeepCool DA/DN нужной мощности (3к-4к)
Chieftec BDF/CPS нужной мощности (3к-5к)
FSP PNR нужной мощности (3к)
Любой Be Quiet (4к-5к)
Cougar VTE/STE (если вышеназванных нет в твоем округе.) (3к-4к)

БП для изготовления булок (годные БП)
CoolerMaster GцифрыM нужной мощности (5к-7к)
Cougar CMX нужной мощности (5к-7к)
Thermaltake Smart PRO нужной мощности (6к-8к)
Gigabyte Pцифры нужной мощности (5к-7к)

БП для вторжения в Польшу с помощью булок (идеальные БП)
Любой Seasonic и любой SuperFlower (6к-20к)

Это шортлист БПшек, который не означает что все другие БП говно или других букв тех же брендов. Есть отличные у Fractal Design, Corsair, Enermax и т. п. Просто у них нужно смотреть по конкретным моделям на начинку ОЕМ. Бывает такое, что одна модель разной мощности имеет разных ОЕМ производителей. Но самое главное, что нужно запомнить - ВСЕ блоки питания от AeroCool говно. Вообще все.


Когда я был школьником, мама порой с ужасом смотрела на мои запасы радиохлама, служившего источником радиодеталей. Ужас этот оформлялся в вопрос: а у тебя там точно ничего не взорвется? И надо сказать, вопрос был не беспочвенный: в наших золотоносных краях, богатых не только драгоценным металлом, но и разнообразной взрывчаткой, неоднократно были случаи, когда дети притаскивали домой электродетонаторы и прочие опасные вещи. Но я хорошо знал не только как выглядит детонатор, но и как с ним обращаться, и мне бы в голову не пришло хранить его дома. Так что мои сокровища были безобидными. Примерно такими, как на КДПВ (если кто не понял, это обычные часы в экстравагантном оформлении).

Впрочем, не всегда так. Иногда электроника взрывается. И об этом моя статья.

Есть такое явление - электровзрыв

Если пропустить через тонкую проволочку достаточно большой ток, она раскалится и перегорит. Характер этого явления сильно зависит от силы тока: если при невысоких ее значениях она просто перегорит, и процесс этот будет длиться секунды или десятые доли секунды, то при больших плотностях тока (10 4 -10 6 А/мм 2 ) выделившееся тепло за считанные доли микросекунды или единицы микросекунд превратит проволочку в пар. Причем пар чудовищно сильно сжатый (с плотностью, как у твердой меди!) и находящийся под крайне большим давлением. Температура его тоже немалая. Тут же он начинает расширяться со сверхзвуковой скоростью, порождая ударную волну, в энергию которой переходит около четверти всей подведенной к проволочке энергии. Другой вариант электровзрыва реализуется при пробое жидкого или твердого диэлектрика, который превращается в пар в канале разряда.

Электровзрыв – явление интересное и имеющее множество полезных применений: с его помощью генерируют ударные волны и создают сверхвысокие давления и температуры, получают наночастицы и напыляют тонкие пленки, проводят химические реакции, требующие экстремальных условий. Электровзрыв применяют для атомизации проб в эмиссионном спектральном анализе, с его помощью генерируют сейсмические волны для зондирования морского дна и даже дробят горные породы. В электронике же электровзрыв – явление безусловно вредное. Развивается он, разумеется, при аварийной ситуации, и впоследствии может очень сильно осложнить ремонт. Речь тут уже идет не только о выгоревших проводниках, но и о той меди, которая осела на все вокруг в виде проводящей пленки. Об ударных волнах, которые способны, например, оторвать разварочную проволоку от кристалла микросхемы, находящейся в другом конце платы и на первый взгляд никак не пострадавшей. Наконец, давлением взрыва может вырвать из платы крупногабаритные детали или даже деформировать плату и разорвать корпус. И самое неприятное последствие – это то, что ионизированные пары меди создают условия для перебрасывания дуги, образовавшейся после взрыва, на низковольтные цепи – тут уже возникает и опасность поражения током, и вероятность пожара, и материальный ущерб из-за внезапного подключения последнего iPhone прямо к сети 220 В. Типичное место возникновения такой аварии – импульсные блоки питания с сетевой стороны. При замыкании входного выпрямителя к току КЗ сети добавляется ток разряда фильтрующего конденсатора и общий ток в импульсе легко может достигнуть тысяч и десятков тысяч ампер! Такой ток с легкостью испаряет не только печатные проводники, но и выводы радиодеталей.

Профилактикой от таких ужасов является ограничение тока короткого замыкания. Обычно на входе импульсных блоков питания ставят предохранитель и терморезистор (NTC). К сожалению, последний выполняет в основном функцию ограничения зарядного тока при включении, но и его остаточное сопротивление – порядка десятых долей ома – может снизить ток КЗ в несколько раз. У блоков питания невысокой мощности (до 10-15 Вт) имеет смысл установить резистор сопротивлением в несколько ом уже после выпрямителя – на нем будет рассеиваться несколько сот милливатт мощности, зато при любой аварии ток не превысит десятков ампер. Хорошей практикой является использование в таких цепях разрывных резисторов, выполняющих одновременно роль предохранителя. Также не следует пренебрегать мерами против переброса дуги в виде перегородок между высоковольтной и низковольтной частями схемы.

В низковольтных цепях, даже сильноточных (а в современной компьютерной технике такие не редкость) электровзрыв обычно развивается только внутри корпусов транзисторов и микросхем, порой взрывая их изнутри, но не производя дополнительных разрушений.

Бабах из конденсатора

Вам знакома забава советских детей – "электролит" покрупнее в розетку и бежать? Иногда так случается и в аппаратуре, когда конденсатор выходит из строя по той или иной причине. Результат часто бывает печален: по всему корпусу разбросаны обрывки фольги, замкнувшей все и вся, так что ремонтировать просто нечего – все напрочь сгорело. Природа взрыва проста и незатейлива: закипевший электролит своим давлением пара разрывает герметичный корпус и выбрасывает свое содержимое. Так "взлететь" может не только оксидный конденсатор – бумажные и пленочные на это также способны при наличии сколько-нибудь прочного корпуса. Аналогично взрываются и аккумуляторы при неправильной зарядке (с литий-ионными "немножко" другая физика и химия, об этом ниже).

Кстати, такие взрывы могут представлять серьезную опасность, особенно когда идет речь о старых советских конденсаторах крупных размеров без предохранительного клапана и насечек на корпусе. Вынесу из комментариев описание инцидента:

в ходе опытов было устанослено, что 10000мКф, 25В(?) конденсатор с цельным корпусом способен с 7 метров оставить вмятину в алюминивом профиле глубиной в 5мм. (@OvO)

(цитату не редактировал, чтобы сохранить атмосферу после взрыва и трясущиеся руки).

Как бороться? Ставьте конденсаторы хороших фирм и с запасом, не забывая учитывать и реактивную мощность. Между более дешевым конденсатором без предохранительного клапана и более дорогим с клапаном выбирайте последний, особенно если конденсатор крупный.

Обычно все взрывы в электронике ограничиваются ровно той энергией, которую туда подвели непосредственно перед взрывом извне. Но иногда источник энергии находится внутри.

Настоящая взрывчатка inside

Так тоже бывает.

Знаете, как устроен танталовый конденсатор? Микроскопически – точно так же, как обычный электролитический: на поверхности тантала имеется оксидная пленка, служащая изолятором. Только вместо электролита (он же вторая обкладка) – диоксид марганца, смешанный для лучшей электропроводности с сажей. Основное отличие состоит в том, что вместо рулончика фольги здесь – кирпичик из спрессованного порошка тантала, поры которого заполнены двуокисью марганца. Вам это ничего не напоминает? Это же термит! Смесь порошка более активного металла и оксида менее активного, в которой после поджигания идет бурная реакция, сопровождающаяся выделением большого количества тепла, разбрасыванием искр и образованием продукта в виде расплавленного металла.


Отсюда не удивительно, что танталовый конденсатор, пробиваясь, отправляется в царство Ямараджа не тихо-спокойно, а с фейерверком. Причем произойти это может даже в слаботочных цепях, от которых вовсе не ожидаешь пиротехнических эффектов при включении – накопленной конденсатором энергии достаточно, чтобы разогреть точку пробоя до начала реакции. Фейерверк этот может продолжаться несколько секунд, независимо от подачи тока, и может прожечь плату насквозь, до дыры. Данному эффекту не подвержены полимерные танталовые конденсаторы, в которых отсутствует двуокись марганца.


Я выше упомянул литий-ионные аккумуляторы, мол, там немного по другому. Так вот, с ними та же история. Если из заряженного литий-ионного аккумулятора убрать сепаратор, то это та же самая взрывчатая смесь. Ведь катод здесь, после зарядки – это почти что двуокись кобальта, сильный окислитель. А анод – мало того, что горючий графит, так еще и набитый еще более горючим литием под завязку. И все это – в тесном соседстве и плотном соприкосновении. Стоит лишь образоваться маленькой дырочке в сепараторе – от механического повреждения, перегрева, заводского дефекта или дендрита металлического лития, образовавшегося из-за неправильной зарядки – как разогрев током короткого замыкания эту смесь тут же подожжет.

Как бороться? Культурно обращаться с атомной энергией, как сказала Фаина Раневская. Литий-ионные аккумуляторы требуют тщательного соблюдения всех надлежащих мер безопасности, описание которых тянет как минимум на следующую статью. А с танталовыми конденсаторами -- в общем-то все то же, что с обычными, только пробиться со взрывом они могут и от микросекундных иголок. Ну и проверять все (особенно полярность!) перед первым включением и не наклоняться над платой в этот момент.

А иногда бывает.

Так задумано

Электродетонаторы, электровоспламенители и пиропатроны – это, в сущности, тоже электронные компоненты. Взрываться – их функция. Главное, чтобы они взрывались только по команде. А значит, нужно тщательно продумывать схему включения таким образом, чтобы случайное инициирование исключалось, в том числе при любых мыслимых неисправностях. Сфера эта специфическая, многое тут покрыто секретностью, а то, что несекретно, обсуждать на открытой площадке тоже не стоит по понятным причинам.

В свое время ходили байки про пиропатроны, встроенные в японские магнитофоны, призванные взорвать аппарат при попытке заглянуть внутрь. В реальности, конечно, было как в песне у Иващенко с Васильевым:

. А потом они решили
посмотреть, что там внутри:
нежно крышку приоткрыли

динамиту не нашли.

Так что в гражданской сфере основное применение компонентов такого рода – это автомобильные подушки безопасности.

А вам желаю никогда не подрываться на собственных конструкциях. И не пренебрегать защитными очками.

Читайте также: