Какие диоды для блока питания

Обновлено: 06.07.2024

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Последние посетители 0 пользователей онлайн

Объявления

каминщик

Площадь населённых пунктов это мизерные проценты от общей площади области. Например в моей николаевской обл вся площадь 24,5 тысяч кв км, а суммарная площадь всех населённых пунктов 560 кв километров. Сажать и сажать.

I_Avals

Нет. Вторая сетка, такая же управляющая, как и первая. И её крутизна, так же как и для первой, определяется как приращение анодного тока, отнесённое к приращению напряжения на сетке. Закон, один для всех. А отношение приращения тока к приращению напряжения, на участке цепи, это проводимость. Величина, обратная сопротивлению. Измеряется в Сименсах. Источник - учебник школьной физики. Посмотрите на ВАХ любого пентода, где показаны и токи анода и токи второй сетки. И Вы увидите, что наиболее опасная ситуация, с точки зрения роста тока (мощности рассеяния) второй сетки, возникает при напряжениях на аноде существенно меньших, чем на G2. В этом случае, вторая сетка начинает выполнять роль анода, в смысле перераспределения тока катода. Который, в этом случае, остаётся практически константой. Однако, превысить мощность рассеяния G2 в маломощных усилительных пентодах весьма непросто. Особенно, если она запитана через балластное сопротивление. Но, в случае возникновения сомнений, никто не мешает проверить реальную величину измерением.

-Baton-

В том то и дело что барыга был всего один, купил случайно.)) Там бардак, не хотел выкладывать, да уж ладно, всё одно разберу.) Шумодав вроде из кассетного Маяка потом уже туда пристроил.

IMXO

Серьёзно?? А на кой ляд нужен этот функционал? По шине разве не идут те же данные? Вы хотите сказать, что этот датчик не в состоянии работать как датчик обнаружения препятствий? (Не вот эта вот проверка (измерение дальности) пятьдесят раз в секунду, а именно незамедлительное единичное сигнализирование при попадании объекта в раструб.)

finn32

Буфер с RCL не горячий. По искажениям лучше, чем у Белки.

Похожий контент

Гость Александр

SolderingIronMen

Реальные обмоточные данные незначительно отличаются от расчётных:
Обмотка I: 26 витков, провод 2 x 0.85 мм.
Обмотка II: 9 витков, провод 4 x 0.85 мм.
Обмотка III: 9 витков, провод 4 x 0.85 мм.
Все значения входных и выходных напряжений и токов соответствуют расчётным. Если нужно, могу выложить необходимые осциллограммы.
ПРОБЛЕМА состоит в том, что после 30 минут работы БП на максимальной мощности обмотки трансформатора нагреваются до температуры примерно 130 градусов и происходит оплавление лака, которым покрыт трансформатор. В остальных режимах работы проблем не наблюдается. Путём экспериментов удалось выяснить, что на трансформаторе при этом рассеивается около 18 Вт мощности.
Помогите, пожалуйста, разобраться в чём причина сильного нагрева, и пути решения данной проблемы.

Sergei_

Как из "коаксиального кабеля" сделать антенну для приема fm диапазона.
* Если можно то схематически с размерами или словесное описание.

Схематично или словесно описать создания антенны СВ и КВ.
* Можно ссылку на сайт или схематику.

Можно ли ИБП питать устройство для которых оно не предназначено.
* Запитывать радиолу. Характеристики ИБП(220 v, 50 Гц), Характеристики радио (220 - 110 - 127 v, 50 Гц) но очень старая 1960 год.
* Если нет, то как его запитать от аккумулятора.

Можно ли увеличить запас энергии ИБП заменой аккумулятора.
* На какой другой акум. Заменить штатный.

Заранее благодарю.
Пожалуйста объясняйте как для школьника и по существу.
P.S. задавал этот вопрос, но его заблокировали.

Гость Mikaela

Здравствуйте, у меня простые вопросы про радиолу "Латвия".

1) Перевел в радио-лавке радиолу на fm частоты и проверка происходила через ради-точку. Дома радио точки нет, однако со штатной антенны ловит малый диапазон и плохо. Сходил в магазин (купить антенну), мне сказали не париться, дали провод и сказали задать на форуме как из неё сделать антенну.
* Как сделать антенну из провода ? (желательно внутри корпуса антенны)

2) Хочется добавить источник питания (аккумулятор). Имеется ненужный ИБП (Компьютерный рассчитанный на 8 мин. работы, слишком мало не знаю как для радио) ippon back offfice 600. Можно-ли поставить его как в П.К., что-бы радиола работала от батарейки.
* ИБП можно-ли использовать для радиолы ? (если нет, то как его заменить что бы концепция не поменялась)
* Как увеличить время работы ИБП ? (просто заменить аккумулятор на машинный)


3) Есть диапазоны КВ1, КВ2, ДВ, МА, СВ, УКВ.
*Они в 21 век. Бесполезны ? (если да, то как их можно переделать, что бы они стали полезные)
*На них можно поймать радио ? (надо ли для них другую антенну)

4) Объясните как пользоваться задними портами.

Фото
P.S. Я студент, но объяснения нужны как для школьника. Извините.

Добрый.
Здоровья.
Как то раз решили прибраться. ну и соответственно нашли много корпусов от старых ИБП - железо хорошее - крепкое, и сам корпус вместительный.
можно использовать их под различное применение. но внешний безликий вид передней панели приводит в уныние.
Можно напечатать переднюю панель на 3D принтере.
но требуется нарисовать "рыбу" .
соответственно потом модифицируя заготовку под нужную морду - можно делать что то приятное для глаза.
как то так. .
таких старых корпусов от APC полно в любом сервисе, у сисадминов любой крупной конторы.

Кстати, я не нашел на сайте раздела посвященного 3D принтерам , 3D сканерам, моделям.
надо где то зарегиться еще походу.


В качестве самой просто схемы я покажу вариант с одним диодом и конденсатором. Такая схема используется в обратноходовых блоках питания, которые составляют сейчас подавляющее большинство.


В готовом блоке питания она выглядит так, как показано на этом фото.
Такие блоки питания чаще всего идут в комплекте с недорогой техникой.


Следующим шагом идет двухполупериодный выпрямитель. Эта схема использовал раньше весьма часто, но в последнее время вытеснена другой, которую я покажу позже.
Такая схемотехника чаще всего встречается в мощных блоках питания, особенно она удобна в нерегулируемых блоках на базе драйвера IR2151-2153, о которых я рассказывал в прошлой части.


Как я тогда сказал, она хорошо подходит для построения первичных источников питания, которые не являются стабилизированными, но которые имеют хороший КПД и могут использовать для питания других устройств, например как этот блок питания лабораторного источника питания.


Особое преимущество данной схемы в том, что ее очень легко переделать в двухполярную и использовать для питания усилителей мощности. В таком варианте добавляется всего пара диодов и конденсатор.


Когда мощности обратноходовой схемотехники не хватает, то используют ее прямоходовый вариант. Здесь энергия при одном такте сначала накапливается в дросселе, а потом через нижний диод поступает в нагрузку. Данная схемотехника очень похожа на схему классического StepDown преобразователя.


Заметить что блок питания собран по такой схемотехнике очень просто, на плате будет большой дроссель. В качестве фильтрующих дроссели с таким габаритом используют крайне редко, потому ошибиться сложно.


Но есть альтернативный вариант этой схемы. Он применяется чаще всего в компьютерных блоках питания и ведет свои истоки от первых БП формата АТ.


Здесь присутствует накопительный дроссель, а первичная обмотка силового трансформатора связана с одной из обмоток трансформатора управления. Если изъять дроссель из этой схемы, то блок питания при нагрузке выше определенной выйдет из строя.
То же самое касается и предыдущей схемы.


Отличить блоки питания последних двух типов очень легко, слева БП построенный по аналогии блока питания АТ формата, у него сразу заметен трансформатор около транзисторов, справа однотактный прямоходовый, трансформатора здесь нет.
Дроссели имеют разные размеры, но это следствие разной рабочей частоты и иногда экономии производителя. Меньший дроссель в работе скорее всего будет перегреваться, да и схема можно работать не очень надежно при максимальной мощности.

Чаще всего в качестве выходных диодов импульсных блоков питания используются диоды Шоттки. Они имеют два важных преимущества перед обычными:
1. Падение напряжения на них в 1.5-2 раза меньше
2. Они быстрее, чем обычные диоды, потому имеют меньше потер при переключении.


В блоках питания рассчитанных на высокое выходное напряжение применяют чаще всего обычные диоды, так как прямое падение у высоковольтных обычных и Шоттки примерно одинаково. Но из-за того что Шоттки быстрее, можно получить уменьшенные потери на снаббере, потому я советую применять их и здесь.


Так как после выпрямления на конденсаторе будут присутствовать заметные пульсации, то после него ставят LC фильтр или говоря простым языком - дроссель и конденсатор


Для примера "народный" блок питания где явно виден как дроссель, так и два конденсатора.


Дроссель необязательно будет большим, а вполне может быть совсем миниатюрным. Работать правда он будет хуже, но это лучше чем ничего.


Иногда дроссель вообще не ставят, хотя место под него есть. Это банальная экономия "на спичках", я всегда рекомендую установить на это место дроссель.


Для примера уровень пульсаций без дросселя и с дросселем. Но стоит учитывать, что после установки дросселя пульсации на первом конденсаторе вырастут, так как на него будет приходится "ударный" ток. Обычно именно он выходит из строя первым.


Улучшить ситуацию можно установив параллельно электролитическим конденсаторам керамические. Данная мера можно существенно облегчить режим работы электролитов. Но стоит иметь в виду, что эффективно они работают только при относительно небольших мощностях БП, а точнее при относительно небольших токах. Можно конечно поставить много таких конденсаторов, но это дорого и габаритно.


При доработке конденсаторы можно напаивать прямо на выводы электролитических конденсаторов.
Я применяю конденсаторы с емкостью 0.1-0.47мкФ.


Чтобы еще немного улучшить качество работы, следует внимательнее отнестись к разводке печатной платы. Если страссировать плату по типу того как я показал на схеме, то пульсации могут еще немного уменьшиться, тем более что это бесплатно.


Ну и последний шаг, установка синфазного дросселя на выходе блока питания. Такое применяется чаще всего в фирменных блоках питания, которым требуется проходить сертификацию на уровень помех излучаемых в эфир. В дешевых практически никогда не встречается.


Теперь об выходных конденсаторах.
Если вы пользуетесь дешевыми блоками питания, то скорее всего на выходе увидите либо вообще безымянные модели.


Но все равно, лучше применять именно фирменные конденсаторы, а не суррогаты с их именем. На фото блок питания фирмы Менвелл.


Для облегчения работы конденсаторов есть способ, когда вместо одного двух емких устанавливают много менее емких конденсаторов. В таком варианте нагрузка лучше распределяется и конденсаторы живут дольше.


Схема стабилизации.
Самый простой вариант - стабилизировать напряжение по обратной связи со вспомогательной обмотки трансформатора, правда такое решение и самое плохое в плане стабильности, так как влияет магнитная связь между обмотками и их активное сопротивление, зато дешево.


Следующий вариант сложнее, здесь в качестве порогового элемента применен стабилитрон. В таком варианте выходное напряжение Бп будет равно падению на стабилитроне + напряжению на светодиоде оптрона. Характеристики схемы так себе, но вполне приемлемы для некритичных нагрузок.


Например блок питания с такой стабилизацией. Сверху около оптрона ничего нет.


Снизу расположен стабилитрон и несколько резисторов


Но куда лучшие характеристики показывает схема с регулируемым стабилитроном TL431. Она имеет куда выше качество работы и точность поддержания в том числе лучше держит параметры при изменении температуры.


На плате она обычно выглядит так, как показано на фото.


Расположение выводов в разных вариантах корпуса.


Например в "народном" блоке питания применен SMD вариант корпуса. На фото видны резисторы делителя обратной связи и вспомогательные, например "подтяжки" к питанию чтобы сформировать минимальный рабочий ток для стабилитрона.

Еще пара фото, сверху платы ничего нет, а стабилитрон TL431 находится снизу.


Иногда в цепи обратной связи ставят подстроечный резистор. Но сначала я скажу пару слов о том, как рассчитывается делитель.
Если применяется стандартный делитель из двух резисторов, то его номиналы подбираются таким образом чтобы при требуемом выходном напряжении в точке соединения было 2.5 Вольта, именно на это напряжение и рассчитана TL431, но стоит учитывать, что есть и более низковольтный вариант этой микросхемы, на 1.25 Вольта, хотя встречается он гораздо реже.
Теперь к подстроечному резистору. Для большего удобства на плате может располагаться подстроечный резистор, позволяющий менять выходное напряжение в небольших пределах, чаще всего +/- 10-20%, больший диапазон не рекомендуется, так как Бп может вести себя нестабильно.
Подстроечный резистор всегда должен стоять последовательно с нижним резистором делителя, тогда в случае выхода его из строя вы получите на выходе Бп минимальное напряжение, а не максимальное, как если бы подстроечный резистор стоял сверху.
Кроме того подстроечные резисторы часто имеют низкую надежность, и если вам не нужна эта функция, то лучше заменить его на постоянный, предварительно подобрав его номинал.


Полностью на плате весь этот узел выглядит следующим образом.


Пару слов о выходном нагрузочном резисторе.
Импульсный блок питания плохо работает без нагрузки, потому параллельно выходу обычно ставят нагрузочный резистор, обеспечивающий минимально необходимую нагрузку при которой БП работает стабильно.
Есть и минус у данного решения, резистор обычно греется, причем иногда заметно. Кроме того этот резистор может греть конденсаторы если они стоят рядом, как на этом фото.


Иногда они греются так, что на плате становятся видны следы перегрева. Но кроме того этот нагрев может плохо сказываться на стабильности БП если он подогревает резисторы делителя обратной связи и они при этом применены обычного типа, а не точные/термостабильные.
Резисторы греются, параметры начинают меняться и меняется выходное напряжение БП, потому рекомендуется располагать резисторы делителя так, чтобы они не были подвержены нагреву, а кроме того лучше применять точные резисторы, на которые нагрев влияет существенно меньше.


Иногда производители неправильно выбирают номинал нагрузочного резистора и он начинает греться сильнее чем допустимо. Например в 24 Вольте версии "народного" блока питания как раз была такая ситуация, пришлось поменять его потом на резистор в два раза большего номинала.


Чтобы ваши блоки питания работали надежно, следует внимательно отнесись к подбору компонентов.
Диоды выбираются из расчета двухкратного запаса для двухтактной схемы и трехкратного для однотактной, например БП 5-7 Ампер, значит диод ставим на 15-20.
Напряжение должно быть не менее чем в четыре раза больше чем выходное у блока питания, если БП на 12 Вольт, то диод на 60, если на 24, то на 100.
Все эти параметры есть в даташите на диоды


Также они указаны на самих диодах.


Конденсаторы следует выбирать низкоимпедансные или LowESR, это также обычно отражено в даташите на компонент.
Емкость выбираем из расчета 0.5-1 тысяч мкФ на 1 Ампер выходного тока. Напряжение - для двухтактной схемы 1.5-2 раза выше чем выходное, для обратноходовой однотактной - не менее чем 2х от выходного.

По фирмам смотрим чтобы были известные бренды, но это я писал и в статье про входной фильтр, здесь рекомендации аналогичны.





С выходным дросселем все гораздо проще, номинальный ток дросселя не менее чем максимальный выходной ток блока питания. Лучше применить дроссель на больший ток, тогда его нагрев будет существенно меньше. Индуктивность 4.7-22мкГн, зависит от выходного тока, так как дроссель на большой ток и индуктивность будет весьма большим.

Обычно дроссели выполняются либо в виде "гантельки", либо в "броневом" исполнении, вторые чаще предназначены для поверхностного монтажа.

В общих чертах на этом все, и конечно видеоверсия данной статьи. Как всегда буду рад вопросам и пожеланиям.

Эту страницу нашли, когда искали:
импульсный бп с обратной связью , какой стоять должен резистор на выходном каскаде блока питания на питание схемы , на китайской зарядке диод шоттки греется , на выход импульсного транса бп повесить схему диод ,конденсатор ,индуктивность и вывести проводок к потребителю , синий диод в блоке питания , импульсный блок питания без обратной связи , ka7500b схема включения , нагрузочный резистор фильтра нужен для , переменные резисторы в компьютерном бп , обратная связь блока питания на конденсаторе , зачем в блоке питания диод шоттки , резистор 60 ком в блоке питания , схемы выпрямления вторичных напряжений в импульсном блоке питания , в диммерах на входе синий элемент и жёлтый фильтр перед диодным мостом , сопротивление в блоке питания вихрь , зачем на выходе блока питания ставят индукционные катушки , сдвоенные диоды на выходе блока питания , обратная связь у полевака блока питания , выходные обмотки ибп обратноходового , совместно с транзистором 47n60c3 , диодом 1n5408 в блоке питания используется диод , фильтрация выходного тока трансформатора схема , почему в схемах бп вместо диода шоттки стоит стабилизатор , расчет фильтра tl431 , борьба с помехами во вторичных цепях импульсных источников питания , импульсный бп ступенька на выходном напряжении


По внешнему виду и параметрам невозможно определить качество. Частенько приходится рассказывать как рассчитать блок питания для светодиодов, какой лучше купить или сделать своими руками. В основном рекомендую купить готовый, любая схема после сборки требует проверки и настройки.



  • 1. Основные типы
  • 2. Как сделать расчёт
  • 3. Калькулятор для расчёта
  • 4. Подключение в автомобиле
  • 5. Напряжения питания светодиодов
  • 6. Подключение от 12В
  • 7. Подключение от 1,5В
  • 8. Как рассчитать драйвер
  • 9. Низковольтное от 9В до 50В
  • 10. Встроенный драйвер, хит 2016
  • 11. Характеристики

Основные типы


Светодиод – это полупроводниковый электронный элемент, с низким внутренним сопротивлением. Если подать на него стабилизированное напряжение, например 3V, через него пойдёт большой ток, например 4 Ампера, вместо требуемого 1А. Мощность на нём составит 12W, у него сгорят тонкие проводники, которыми подключен кристалл. Проводники отлично видно на цветных и RGB диодах, потому что на них нет жёлтого люминофора.

Если блок питания для светодиодов 12V со стабилизированным напряжением, то для ограничения тока последовательно устанавливают резистор. Недостатком такого подключения будет более высокое потребление энергии, резистор тоже потребляет некоторую энергию. Для светодиодных аккумуляторных фонарей на 1,5В применять такую схему нерационально. Количество вольт на батарейке быстро снижается, соответственно будет падать яркость. И без повышения минимум до 3В диод не заработает.

Этих недостатков лишены специализированные светодиодные драйвера на ШИМ контроллерах. При изменениях напряжения ток остаётся постоянным.

Как сделать расчёт

Чтобы рассчитать блок питания для светодиодов необходимо учитывать 2 основных параметра:

  1. номинальная потребляемая мощность или желаемая;
  2. напряжение падения.

Суммарное энергопотреблением подключаемой электрической цепи не должно превышать мощности блока.

Падения напряжения зависит от того, какой свет излучает лед чип. Я рекомендую покупать фирменные LED, типа Bridgelux, разброс параметров у них минимальный. Они гарантированно держат заявленные характеристики и имеют запас по ним. Если покупаете на китайском базаре, типа Aliexpress, то не надейтесь на чудо, в 90% вас обманут и пришлют барахло с параметрами в 2-5 раз хуже. Это многократно проверяли мои коллеги, которые заказывали недорогие LED 5730 иногда по 10 раз. Получали они SMD5730 на 0,1W, вместо 0,5W. Это определяли по вольтамперной-характеристике.

Пример различной яркости кристаллов

Пример различной яркости кристаллов

К тому же у дешевых разброс параметров очень большой. Что бы это определить в домашних условиях своими руками, подключите их последовательно 5-10 штук. Регулирую количество вольт, добейтесь чтобы они слегка светились. Вы увидите, что часть светит ярче, часть едва заметно. Поэтому некоторые в номинальном рабочем режиме будут греться сильнее, другие меньше. Мощность будет на них разная, поэтому самые нагруженные выйдут из строя раньше остальных.

Калькулятор для расчёта


Для удобства читателей опубликовал онлайн калькулятор для расчёта резистора для светодиодов при подключении к стабильному напряжению.

Калькулятор учитывает 4 параметра:

  • количество вольт на выходе;
  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи.

Подключение в автомобиле

Недостатком использования светодиодных драйверов в авто может быть появление помех на радио в УКВ диапазоне. ШИМ контроллер работает на высоких частотах и будет давать помехи на ваш радиоприёмник. Можно попробовать заменить на другой или линейный типа стабилизатор тока LM317 для светодиодов. Иногда помогает экранирование металлом и размещение подальше от головного устройства авто.

Напряжения питания светодиодов


Из таблиц видно, для маломощных на 1W, 3W этот показатель 2В для красного, желтого цвета, оранжевого. Для белого , синего, зелёного он от 3,2В до 3,4В. Для мощных от 7В до 34В. Эти циферки придется использовать для расчётов.

Таблица для LED на 1W, 3W, 5W



Таблица для мощных светодиодов 10W, 20W, 30W, 50W, 100W


Подключение от 12В


Одно из самых распространенных напряжений это 12 Вольт, они присутствуют в бытовой технике, в автомобиле и автомобильной электронике. Используя 12V можно полноценно подключить 3 лед диода. Примером служит светодиодная лента на 12V, в которой 3 штуки и резистор подключены последовательно.

Пример на диоде 1W, его номинальный ток 300мА.

  • Если на одном LED падает 3,2В, то для 3шт получится 9,6В;
  • на резисторе будет 12В – 9,6В = 2,4В;
  • 2,4 / 0,3 = 8 Ом номинал нужного сопротивления;
  • 2,4 * 0,3 = 0,72W будет рассеиваться на резисторе;
  • 1W + 1W + 1W + 0,72 = 3,72W полное энергопотребление всей цепи.

Аналогичным образом можно вычислить и для другого количества элементов в цепи.


Подключение от 1,5В


Источник питания для светодиодов может быть и простой пальчиковой батарейкой на 1,5В. Для LED диода требуется обычно минимум 3V, без стабилизатора тут никак не обойтись. Такие специализированные светодиодные драйвера используются в ручных фонариках на Cree Q5 и Cree XML T6. Миниатюрная микросхема повышает количество вольт до 3V и стабилизирует 700мА. Включение от 1.5 вольт при помощи токоограничивающего сопротивления невозможно. Если применить две батареи на 1.5 вольт, соединив их последовательно, получим 3В. Но батарейки достаточно быстро разряжаются, а яркость будет падать еще быстрее. При 2,5В емкости в батареях останется еще много, но диод уже практически потухнет. А светодиодный драйвер будет поддерживать номинальную яркость даже при 1В.

Обычно такие модули заказываю на Aliexpress, у китайцев стоят 50-100руб, в России они дороговаты.

Как рассчитать драйвер


Чтобы рассчитать драйвер питания для светодиодов со стабильным током:

  1. составьте на бумаге схему подключения;
  2. если драйвер китайский, то желательно проверить выдержит он заявленную мощность или нет;
  3. учитывайте, что для разных цветов (синий, красный, зеленый) разное падение вольт;
  4. суммарная мощность не должна быть выше, чем у источника тока.

Нарисуйте схему включения, на которой распределите элементы, если они подключены не просто последовательно, а комбинировано с параллельным соединением.


На китайском блоке питания неизвестного производителя мощность может быть значительно ниже. Они запросто указывают максимальную пиковую мощность, а не номинальную долговременную. Проверять сложнее, надо предельно нагрузить блок питания и замерить параметры.

Для третьего пункта используйте примерные таблицы для 1W,3W, 5W, 10W, 20W, 30W, 50W, 100W, которые приведены выше. Но больше доверяйте характеристикам, которые вам дал продавец. Для однокристальных бывает 3V, 6V, 12V.


Если энергопотребление цепи в сумме превысит номинальную мощность источника питания, то ток просядет и увеличится нагрев. Он восстановится до нормального уровня, если снизить нагрузку.

Для светодиодных лент сделать расчёт очень просто. Измерьте количество Ватт на 1 метр и умножьте на количество метров. Именно измерьте, в большинстве случаем мощность завышена и вместо 14,4 Вт/м получите 7 Вт/м. Ко мне слишком часто обращаются с такой проблемой разочарованные покупатели.

Низковольтное от 9В до 50В


Кратко расскажу, что использую для включения для блоков на 12В, 19V, 24В и для подключения к автомобильным 12В.

Чаще всего покупаю готовые модули на ШИМ микросхемах:

  1. бывают повышающие, например, на входе 12V, на выходе 22В;
  2. понижающие, например из 24В до 17В.

Не всем хочется тратить большую денежку на покупку готового прожектора для авто, светодиодного светильника или заказывать готовый драйвер. Поэтому обращаются ко мне, что бы из подручных комплектующих собрать что-нибудь приличное. Цена таких модулей начинается от 50руб до 300руб за модель на 5А с радиатором. Покупаю заранее по несколько штук, расходятся быстро.

Больше всех популярен вариант на линейной ИМС LM317T LM317, простой, надежный устаревший.


Очень популярны модели на LM2596, но она уже устарела и советую обратить внимание на более современное с хорошим КПД. Такие блоки имеют от 1 до 3 подстроечных сопротивлений, которыми можно настроить любые параметры до 30В и до 5А.



Встроенный драйвер, хит 2016



Характеристики


Глобальная проблема, это подделка светодиодов Cree и Philips в промышленных масштабах. У китайцев для этого есть целые предприятия, внешне копируют на 95-99%, простому покупателю отличить невозможно. Самое плохое, когда такую подделку вам продают под видом оригинального Cree T6. Вы будете подключать поддельный по техническим спецификациям оригинального. Подделка имеет характеристики в среднем на 30% хуже. Меньше световой поток, ниже максимальная рабочая температура, ниже энергопотребление. Про обман вы узнаете очень не скоро, он проработает примерно в 5-10 раз меньше настоящего, особенно на двойном токе.


Недавно измерял световой поток своих фонариков на левых Cree производства LatticeBright. Доставал всю плату с драйвером и ставил в фотометрический шар. Получилось 180-200 люмен, у оригинала 280-300лм. Без серьезного оборудования, которое преимущественно есть в лабораториях, вы не сможете измерить, соответственно узнать правду.

Иногда попадаются разогнанные диоды, сила тока на которых на 30%-60% выше номинальной, соответственно и мощность. Недобросовестный производитель, особенно подвально-китайский пользуется тем, что срок службы трудно измерить в часах. Ведь никто не засекает отработанное время, а когда светильник или светодиодный прожектор выйдут из строя продавца уже не найти. Да и искать бессмысленно, срок гарантии на такую продукцию дают всегда меньше периода службы.

Если вам понравилась моя статья,
то добавьте её к себе на страницу Вконтакте

Читайте китайские даташиты, я тут вам помочь смогу.

Как подключить , камеры обманки со встроенным светодиодом от 230 в ! Можно ли использовать блок питания на 3 в .

Используйте любой источник на 3 вольта.

Доброго времени суток. Скромный вопрос..) Что дано: китайская люстра с ноутбучным б\п 12,5 вольт на выходе и 10 ватт 12 вольт китайский диод (матрица). вопрос стоит ли подключать 6-7 диодов параллельно и какой минимальный размер радиатора? Спасибо за ответ!

Подключать можно насколько мощности блока питания хватит. Радиатор зависит от качества матриц, дешёвые не надо гореть более 60 градусов, качественные до 110.

здравствуйте,есть 60 диодов по 3 вата(4 секции по 15 шт, запаралелены ) ,блока питания на 250вт. хватит? что-то ещё нужно приобрести,и как сделать,чтоб прямой ток на них был 600ма

Способы подключения светодиодов подробно описаны у меня на сайте.

Здравствуйте. Сделал подсветку стола компьютера . Лента см 80 12 в. И блок питание 12 в. 1 ампер. Блок сильно грелся и сгорел. Подскажите какой блок лучше выбрать для такой ленты ?

Измерьте мощность ленты, и узнаете какой мощности требуется вам блок питания для ленты. Может блок питания блок питания был совсем китайский, из-за этого не выдержал нагрузки. На 2 ампера должно хватить с запасом.

Время зависит от того в каком режиме работает лента. Делите мощность аккумулятора на мощность ленты, получатся часы работы. Питайте хоть обычными пальчиковыми батарейками, соединёнными 8 штук последовательно. Аккумулятора от шуруповёрта на 15 ватт хватит примерно часа на 2-3.

Добрый день собрал лампу из 6 матриц по 20 w , проверил по одному горят . Собрал в цепь 5 из 6 драйверов взорвались . Драйвера китайские открытые по характеристикам все четко 0.6 ма 20 ватные чипы питал 20 ватными дровами . Брак или что ? Взорвались конденсаторы по всей видимости

Это вам к взрывотехникам, я такое редко взрываю.

Мультиметром замерить реальный ток на диодах. У драйвера есть минимальное подключаемое количество диодов.

Здравствуйте.
Собрал светильник на 10-ти 3W светодиода.
Едут 10 светодиодов по 5W . (6-7 v 700mA)
Если для первого варианта есть драйверы с маркировкой 6-10*3 Вт То какой драйвер взять для 5-ти ватных LED?
Спасибо !

Драйвер с подходящим током.

Здраствуй . Хочю сделать для аквариума 2 светильника в кажном из светильнике будеть стоять по 35 светодиодов по 3 вата и напряжением 3.2 вольма прямой ток 300 ma . не знаю какой длок питания поставить на сколько вольт . и возможно ли от обыкновеного блока питания да 12 вольт 15 w подключить к нему выше упомянутый повышающий драйвер от 12 вольт до 36 вольт на 150 ват

Мощность блока питания на 12 вольт должна быть не менее 150 ватт.

Лампа led ASD 11ватт, цоколь Е27. Драйвер собран на дискриминаторе 9918С. Вздулись 2 конденсатора 2,2мкФ/400В и 4,7мкФ/400В и сгорел 1 из 18 последовательно подключенных светодиодов 2835. На аналогичной рабочей лампе напряжение на светодиодной панеле 160В постоянного тока. При отключенной панеле напряжение 307В постоянного тока. После замены конденсаторов 307В появилось. Вопрос: какой светодиод 2835 впаять? Есть 2 вида с али-экспресс: 1)светодиод 2835, мощность 0,5Вт, ток 150мА, падение напряжения 3,2В 2) светодиод 2835, мощность 1,0Вт, ток 100мА, падение напряжения 9В.Забыл добавить. На плате маркировка указывает на мощность платы 9,5Ватт. При замере рабочей лампы мощность потребляемая тоже была 9,5Ватт.

Поставьте светодиод подходящий по току.

Запустить реально. Купите подходящий RGB драйвер, примерно 8 ватт на каждый цвет. Ток у вас указан 350 мА.

Как выбрать блок питания для светодиодов

Наиболее энергоэффективной технологией искусственного освещения на сегодняшний день является освещение светодиодное. А поскольку светодиоды — изделия капризные, питание им нужно особое. Нельзя просто взять и включить светодиоды в розетку, а если это и выглядит так, то скорее всего преобразователь сетевого напряжения в требуемое низкое постоянное напряжение есть, но он скрыт внутри цокольной части, скажем, светодиодной лампы.

Однако не всегда мы имеем дело со светодиодной лампой, иногда необходимо подключить единичные светодиоды или светодиодную ленту, поэтому выбор блока питания для светодиодов для кого-то может стать вполне актуальной задачей. Давайте же в рамках данной статьи разберемся, что — к чему.

Как выбрать блок питания для светодиодов

Блок питания для светодиодов или LED-драйвер

Правильно выбранный блок питания для светодиодов — залог качественного и надежного освещения. А поскольку светодиодам необходим постоянный ток, то сетевое напряжение необходимо сначала преобразовать. Этим и занимается блок питания для светодиодов. Блок питания или LED-драйвер обеспечивает светодиодам постоянный ток при номинальном напряжении.

Для самого преобразователя константой может быть 5, 12, 24 или 48 вольт постоянного напряжения, в зависимости от конфигурации вашей светодиодной сборки, либо постоянным может быть непосредственно ток, например 350 или 700 миллиампер, а напряжение будет немного «плавать» в зависимости от текущей температуры светодиодов.

Ток для светодиодных сборок, как правило, составляет от нескольких сот миллиампер до единиц ампер. Для светодиодных лент даже нормируется удельная мощность на метр длины, скажем 4,8 или 16 Вт на метр длины ленты.

Блок питания

Источники постоянного напряжения для светодиодов называют блоками питания для светодиодов. Они выглядят как плата внутри перфорированного корпуса из нержавейки (вверху на рисунке) или как зарядное устройство для портативной техники.

Светодиодный драйвер

Источники же постоянного тока для светодиодов называют светодиодными драйверами или LED-драйверами. Они похожи на металлизированный или пластиковый (как слева на рисунке) блок питания ноутбука. Но и для тех, и для других источников питания для светодиодов, будь постоянным напряжение или ток, - нормируется максимальная отдаваемая мощность в ваттах. Например 12 В 240 Вт или 350 мА 24 Вт.

Сразу ясно, в каком случае постоянным будет напряжение, а в каком — ток. В первом случае напряжение постоянное, а ток станет зависеть от количества подключенных параллельно светодиодных сборок — максимальный ток для нашего примера 20 А. Во втором случае очевидно, что максимальное напряжение составит 68,5 В, и станет зависеть от того, сколько светодиодных сборок на 350 мА будет соединено последовательно.

Светодиодная лента

Какой источник питания для светодиодов выбрать

Типичных случаев использования светодиодов с блоком питания три:

блок питания изначально встроен в источник света (например светодиодная лампа или прожектор);

светодиодный источник света имеет номинальное напряжение питания, и такие источники будут соединяться по несколько параллельно или будет лишь один (распространенный вариант — светодиодные ленты на 12 вольт);

имеются несколько светодиодных сборок, для которых не желательно превышать номинальный ток, и таких сборок несколько, их необходимо объединить последовательно (напряжение указывается диапазоном, например 11-13 В или 15-18 В).

В первом случае все ясно, нет надобности в приобретении источника питания, достаточно позаботиться об условиях эксплуатации: защитить прожектор от влаги козырьком, например.

Во втором случае подойдет блок питания постоянного напряжения для светодиодов в перфорированном корпусе: количество метров лент умножьте на мощность погонного метра ленты, - это и будет общая их мощность.

Если ленты будут соединяться параллельно, то их номинальное напряжение и берется в расчет при выборе блока питания, а мощность блока питания возьмите на 5-10% больше общей мощности лент. Например: 7,5 метров ленты на 12 вольт с погонной мощностью 7,36 Вт/м — это 55,2 ватт при 12 вольтах, соответственно выбираем блок питания постоянного тока с выходными параметрами 12 В 60 Вт.

Блок питания для светодиодов и светодиодных лент

В третьем случае прикиньте количество светодиодных сборок, и подберите LED-драйвер на подходящий диапазон напряжений. Например: есть 5 неких светодиодных сборок на номинальный ток 300 мА, напряжение для каждой сборки указано около 15 вольт.

Для последовательного соединения потребуется предельное напряжение 75 вольт, а ток 300 мА. Выбираем LED-драйвер на диапазон от 50 до 80 В, на ток 300 мА. В зависимости от того, будет ли драйвер установлен на улице или в помещении — выбираем тип корпуса устройства с соответствующим классом защиты оболочки IP.

Узнать подробнее об устройстве блоков питания и драйверов для светодиодов можно здесь: Схемотехника блоков питания для светодиодных лент и не только

Читайте также: