Какой ток в блоке питания постоянный или переменный ток

Обновлено: 06.07.2024

Где-то в макулатуре наткнулся на заметку ставящую вопрос "Нужен ли компьютеру переменный ток? Не ручаюсь за точность названия, но смысл его точно такой. Автор поставив конкретный вопрос, но мудрствуя, просто перечислил ряд напряжения и цвета проводов соединителей. Вопрос остался без ответа.
Когда-то, в одной из статей я коротко описал, о проблемах питания компьютера по сети переменного тока. Там же была описана возможность питания ПК от сети постоянного тока.
Попробую здесь кратко описать схему блока питания и вытекающие из нее возможности.

Немного истории

На заре энергетики, велись споры: каким током пользоваться в электротехнической практике, постоянным или переменным?

Знаменитые изобретатели находили (например Н. Тесла и Т. Эдисон), для обоснования своего мнения, положительные стороны в применении одного и другого.

Как во всякой борьбе использовались все методы, вплоть до фальсификаций. Но в конечном итоге победил переменный ток.

И причины не только в том, что двигатели переменного тока проще, надежнее и имеют более высокий КПД.

Главную роль сыграло то, что все более возрастающие мощности электрической энергии необходимо передавать от источника энергии (электростанции) на все большие расстояния к конечному потребителю. А на переменном токе эта проблема решалась достаточно просто. Подачей в линии электропередачи напряжения переменного тока высокого напряжения. Это напряжение с помощью трансформатора может повышаться на стороне источника энергии, высокое напряжение передается по линиям электропередачи с меньшими токами чем это бы пришлось делать на низком напряжении, а значит и с меньшими потерями. А на стороне потребителя таким же трансформатором напряжение понижалось до необходимой потребителю величины.

С тех пор мы используем в быту именно переменный ток. И он долго служил нам верой и правдой, поскольку большинство нагрузок было активными или индуктивными.

Но прошло время,

громоздких и дорогих трансформаторов в бытовой технике. Теперь бытовые устройства питаются от небольших, легких и дешевых электронных блоков питания. А в них (компьютерах, телевизорах, радиоприемниках, плеерах разного назначения, да и просто зарядниках) питание внутренних узлов или нагрузок осуществляется постоянным током напряжением вписывающимся в следующий стандартный ряд: 1,5; 3; 6; 12; 24, 36, 48 (и далее) вольт. Их применение позволило (за счет замены трансформаторной стали на меньший по объему и более легкий феррит) существенно снизить вес блоков питания и расход таких ценных материалов как трансформаторная сталь и МЕДЬ. Последняя широко применяется для изготовления обмоточного провода трансформаторов, для снижения потерь в них.

Массовое применение электронных блоков питания привело к появлению множества новых специфических проблем, в сетях переменного тока. Эти проблемы подробно описаны в статье "Компьютер в нагрузку" опубликованной в журнале "Компьютерра" №47 от 06 декабря 2002 года.

(Производители часто изменяют ее, но изменения делаются скорее для снижения цены за счет удаления "ненужных" элементов, чем из необходимости улучшить ее работу)

Суть схемы изображенной на рис.1 состоит в том, что переменное напряжение 220 Вольт преобразуют в постоянное напряжением около 310 Вольт. А уже из него с помощь инверторов получают переменное напряжение высокой частоты (от 60 КГц и выше), из которого с помощью ферритового трансформатора получают необходимый набор напряжений, который далее с помощью диодных выпрямителей преобразуется в постоянный ток необходимый для питания электронных узлов.

Особенности работы электронного блока питания

Как уже говорилось выше, переменное напряжение 220 вольт с помощью полупроводникового моста - выпрямителя преобразуется в постоянный ток, который заряжает конденсатор (или конденсаторы) запасающие энергию необходимую для работы инвертора в паузах (когда его подпитки от сети не происходит). Этот конденсатор является емкостной нагрузкой и создает специфическую реакцию сети.

На рис.2 показан характер установившегося изменения напряжение на накопительном конденсаторе электронного блока питания с однофазной двухполупериодной схемой выпрямления.

Здесь: T - период следования сетевого напряжения, t зар - время зарядки накопительного конденсатора, t р - время когда потребители расходуют запасенную накопительным конденсатором энергию до последующей его зарядке через время равное - T/2 (для двухполупериодной схемы выпрямителя).

Промежуточная зарядка накопительного конденсатора (рис.2 между двумя полупериодами) производится другой (на рис не показана) полуволной переменного напряжения двухполупериодного выпрямителя.

Для зарядки накопительного конденсатора требуется (при одной и той же потребляемой мощности) тем больший ток, чем больше соотношение T/t з. Он обычно многократно превышает средний потребляемый ток.

Посмотрим как это выглядит при работе нескольких компьютеров включенных в общую сеть.

Здесь: синим цветом показаны импульсы тока, заряжающие накопительный конденсатор, а красным характер изменения напряжения в сети. Проседание напряжения в момент зарядки обусловлено сопротивлением цепей разводки сетевого напряжения, поскольку она (сеть) имеет сопротивление.

Обычно сети рассчитывается исходя из средней мощности потребляемых нагрузками и не учитывает многократно большие импульсные токи.

Стандартная схема питания десятка компьютеров при средней потребляемой мощности порядка 250 Вт на компьютер, может иметь суммарные импульсные токи в цепи подачи питания превышающие 50 - 70 А.

Как говорилось выше, это приводит к появлению множества спецефических проблем, в сетях переменного тока, которые описаны в статье "Компьютер в нагрузку".

Эти явные недостатки присущи не только офисам, но домашним сетям питания электроники.

Применение постоянного тока для питания компьютеров и
бытовой электроники это решение проблемы перегрузки сетей
и влияния нагрузки емкостного характера

Поэтому на вопрос: Так нужен ли компьютеру переменный ток?

Совсем не обязательно,

компьютер и другую современную электронику можно питать постоянным током!

Посмотрите на рис. 1. напрашивается простое решение - питать компьютеры и другую электронику постоянным током. даже не меняя схему самого блока питания. Для этого необходимо просто подать на блок питания постоянное напряжение соответствующей полярности и величины.

Предостерегу от непродуманных шагов!

Это не только снимает проблему больших импульсных токов и искажения формы напряжения питающей сети, но и позволяет упростить схему электронных блоков питания и снизить их цену без ухудшения характеристик.

Необходимо только, чтобы инвертор блока питания устойчиво запускался на постоянном токе.

При этом постоянным током можно питать обычные (имеющемся в массовом использовании) электронные блоки питания. Для этого необходимо соответствующим образом скорректировать питающее напряжение и определить необходимую полярность напряжения.

Система питания компьютеров большого офиса постоянным током

Если в офисе более 10 - 15 компьютеров, в таком случае уже целесообразно (возможно даже повышение экономической эффективности) применять питание этих компьютеров постоянным током. Это позволит снизить токи протекающие в сети до близких к рассчитанным по средней мощности.

Общий источник питания для такой сети имеет небольшие габариты (которые определяются применяемой элементной базой), высокий КПД (до 95%) может быть построен на основе шестифазной мостовой схемы Ларионова, которая имеет вид:

Система построенная по такой схеме имеет коэффициент пульсаций до 1,4%, при соблюдении симметрии схемы и симметрии питающего напряжения. Наихудшее значение коэффициента пульсаций, в случае не соблюдения требований симметрии, может быть в 2-3 раза хуже.

Данная схема работает без фильтрующих конденсаторов. Применение дросселя фильтра L снизит коэффициент пульсаций до еще меньших величин и защитит первичную сеть от помех.

К достоинству данной схемы можно отнести компенсацию емкостной составляющей нагрузки.

Сравним

Я думал данная статья вызовет интерес, но его не заметно.

Поэтому для наглядности приведу две схемы вытекающее из статьи и опирающиеся на рис. 1 и 4.

Упрощенная схема типового блока питания компьютера, которую сравним с рис.4 и обратим свои взоры к рис.6, который практически полностью соответствует рис.5.

В красной рамке, здесь та часть схемы которая может быть удалена из БП. Правда, в большинстве случаев, необходима замена примененного симметричного фильтра на более простой П - образный.

Продолжая рассуждения, посмотрим рис. 6.

На рис 6 показана упрощенная схема подключения нескольких компьютеров (число ограниченно только потребностями и допустимой нагрузкой сети) для питания от трехфазной сети переменного тока.

Здесь общая для вторичной электрической сети, выпрямительная установка, собранная по многофазной схеме Ларионова служит для ее обеспечения постоянным током нужной мощности всех потребителей. Она имеет хорошие параметры качества напряжения и полностью заменяет входные выпрямители блока питания компьютера. Это позволяет вывести блоки питания компьютеров из синхронного режима зарядки их накопительных конденсаторов, что означает снижение импульсных токов в сети и приближение их к токам рассчитанным по средней мощности. Это в свою очередь снижает их влияние на первичные цепи и полностью исключает эффекты описанные в статье "Компьютер в нагрузку" и повышает качество напряжения в первичной сети.

И как уже говорилось выше, это позволит использовать имеющиеся блоки питания, но даст возможность их упростить в дальнейшем. Последнее позволит снизить стоимость.


Переменное апряжение это наши розетки 220V, а постоянное напряжение в батарейках, аккумуляторах, блоках питания и т.д. Одним из вариантов узнать постоянное напряжение или переменное можно при помощи индикаторной отвертки, а замерить переменное и постоянное можно мультиметром.

Индикаторная отвертка

Первое что мы делаем, это касаемся по очереди каждого провода индикаторной отверткой.
При постоянном напряжении индикаторная отвертка гореть не буд е т к какому проводу ее не приложи.
Затем, если она не засветилась, выставляем на мультиметре значения постоянного напряжения и замеряем его выставив в максимальное значение. На моем мультиметре максимальное значение постоянного и переменного напряжения равняется 500V.

А вот с переменным напряжением на одном контакте точно начнет светиться, при условии что подано питание. Замерить его можно аналогичным способом, выставив мультиметр в положение переменного напряжения на максимальное значение.

И нужно помнить о том, что в большинстве случаев нельзя при постоянном напряжении путать плюс и минус, иначе подключаемое устройство может выйти из строя.

Теперь усложним задачу, мы выяснили что у нас постоянное напряжение, но на китайском адаптере нет обозначений плюса и минуса и два провода одинакового цвета, как быть в этой ситуации?

Данная проблема решается просто, мы прикладываем контакты нашего мальтиметра (выставив его в максимальное положение) к проводам и смотрим показатели. Если на экране мультиметра значение со знаком минус ( - 12 ), то СОМ разъем касается провода с плюсом. Поменяв их местами минус исчезнет, но значение останется прежним ( 12 ). На черном СОМ кабеле нашего мультиметра будит минус, а на красном плюс.

Характеристики блока питания

Итак, каждый отдельный блок питания обладает своими характеристиками и параметрами. Ниже перечислим их основные параметры.

Тип выходного напряжения

В основном радиоэлектронные устройства питаются переменным и постоянным током. Поэтому, блоки питания могут выдавать переменное или постоянное напряжение. В большинстве случаев используется именно постоянное напряжение.

К блокам питания с постоянным выходным напряжением можно отнести компьютерные блоки питания

Блок питания

а также различные зарядные устройства для ваших гаджетов.

блок питания постоянного тока

К блокам питания с переменным напряжением можно отнести трансформаторы

однофазный трансформатор

Выходное напряжение

Например, для зарядки наших смартфонов требуется блок питания с постоянным напряжение в 5 Вольт, а для того, чтобы горела автомобильная лампочка, нам потребуется блок питания с напряжением в 12 Вольт.

Выходная мощность

Те, кто занимается компьютерами, знают, что на самом компьютерном блоке питания на этикетке написана мощность, которую может выдать блок питания. Поэтому, геймеры берут очень мощный блок питания, так как железо мощного компьютера потребляет очень много электрической энергии.

Трансформаторный блок питания

Трансформаторный блок питания уже почти не используется в современной электронике, так как состоит из громоздкого трансформатора, что делает такой блок питания тяжелым и крупногабаритным. Схема трансформаторного блока питания до боли простая.

трансформаторный блок питания

На такой схеме в давние времена собирались почти все блоки питания во всем мире. Такая схема отличалась своей надежностью и неприхотливостью. Здесь мы видим трансформатор, диодный мост и конденсатор. Как работает эта схема, я писал еще в этой статье.

На базе этой схемы можно собрать себе самый простой блок питания с регулировкой от 1,2 Вольта и до 37 Вольт и с выходной силой тока до 1,5 Ампер. Его я описывал еще в этой статье.

блок питания схема


У меня он до сих пор лежит на рабочем столе и служит верой и правдой

трансформаторный блок питания

Также этот же самый принцип я применил при сборке самого простого зарядного устройства для автомобиля. Подробнее можете ознакомиться по этой ссылке.

схема зарядного устройства для автомобиля

Импульсный блок питания

Импульсный блок питания строится намного сложнее, но зато обладает также своими плюсами. Это меньшие массо-габаритные свойства, по сравнению с трансформаторным блоком питания. Но здесь также есть и свои минусы. Это большее количество радиоэлементов, по сравнению с трансформаторным блоком питания, а также могут быть шумы на выходе. Поэтому, качественные акустические системы и усилители питаются на трансформаторном блоке питания. Да, там есть некоторые пульсации, но их намного проще отфильтровать, чем высокочастотные шумы импульсного блока питания.

Хотя в импульсном блоке питания и имеются трансформаторы, но они здесь рассчитаны на высокую частоту, что делает их небольшими и недорогими.

импульсный блок питания

Лабораторный блок питания

Мой лабораторник выглядит вот так.

лабораторный блок питания

Итак подробнее, обратите внимание на обозначение в правом верхнем углу. Там написано PS-1502DD. Как же расшифровать данную запись?

Описание лабораторного блока питания

лабораторный блок питания

Крутилки слева направо:

Как применять в работе

вентилятор от компьютера

нагрузка на лабораторный блок питания

И он у нас начинает вращаться. Смотрим на показания. Ну да! Все сходится! Вентилятор у нас потребляет ровнехонько 180 миллиампер!

Блок питания

Хотелось бы отметить, что некоторые электронщики сами делают блоки питания для собственных нужд. Например, вот схемка простого блока питания, собранного лично мной.

Где купить лабораторный блок питания

Также вы всегда можете приобрести сразу готовый на Алиэкпрессе 30 Вольт 5 Ампер, что вполне хватит начинающему и среднему электронщику. Очень приятные отзывы вот у такого.

купить лабораторный блок питания

Также я находил очень неплохой по этой ссылке:

Выдает также 30 Вольт 5 Ампер.

В наших магазинах я встречал такие блоки с ценником только более 5000 руб.

Maneki Neko

В данном разделе представлены блоки питания (сетевые адаптеры) и зарядные устройства, распределенные по следующим подгруппам:

НЕСТАБИЛИЗИРОВАННЫЕ блоки питания - самые распространенные трансформаторные блоки питания. Обеспечивают выходное напряжение ПОСТОЯННОГО ТОКА. Такой блок питания содержит сетевой трансформатор и выпрямитель. В нестабилизированных блоках питания выходное напряжение соответствует номинальному только при номинальном сетевом напряжении (220V) и номинальном токе нагрузки.

Эти блоки пригодны для питания осветительных и нагревательных приборов, электромоторов и любых устройств со встроенным стабилизатором напряжения (например, большинство радиотелефонов и автоответчиков).

Такие блоки питания как правило имеют значительный уровень пульсаций сетевого напряжения и не пригодны для питания звуковой техники (радиоприемников, плееров, музыкальных синтезаторов). Для этих устройств следует применять стабилизированные блоки питания.

СТАБИЛИЗИРОВАННЫЕ блоки питания. Обеспечивают СТАБИЛИЗИРОВАННОЕ выходное напряжение ПОСТОЯННОГО ТОКА. Такой блок питания содержит сетевой трансформатор, выпрямитель и стабилизатор. СТАБИЛИЗИРОВАННЫЙ - означает, что выходное напряжение не зависит (или почти не зависит) от изменения сетевого напряжения (в разумных пределах) и от изменения тока нагрузки. В отличие от нестабилизированных блоков питания в стабилизированных выходное напряжение будет одинаковым как на холостом ходу так и при номинальной нагрузке. Кроме того, в таких блоках питания как правило достаточно малы пульсации напряжения переменного тока на выходе.

Стабилизированный блок питания практически всегда может заменить нестабилизированный (но разумеется не наоборот). Поэтому, если Вы не знаете, какой блок питания постоянного тока нужен для Вашей бытовой аппаратуры - стабилизированный или нестабилизированный, то используйте СТАБИЛИЗИРОВАННЫЙ или ИМПУЛЬСНЫЙ блок питания.

  • Большой КПД
  • Незначительный нагрев
  • Малый вес и габариты
  • Как правило бОльший допустимый диапазон сетевого напряжения
  • Как правило имеют встроенную защиту от перегрузки и замыканий на выходе

ИМПУЛЬСНЫЕ блоки питания получают все большее распространение т.к. сейчас затраты на изготовление даже сложной электронной начинки ниже чем на массивный сетевой трансформатор из меди и железа. Стоимость импульсных блоков питания даже малой мощности (около 5Вт) для такой бытовой техники как, например, радиотелефоны и автоответчики, вплотную приближается к стоимости трансформаторных. Следует также учитывать экономию на транспортных расходах при доставке - импульсные блоки питания легче трансформаторных.

Некоторые люди имет предубеждение против применения импульсных блоков питания. С чем оно может быть связано?

  1. Импульсные блоки питания схемотехнически сложнее трансформаторных. Самостоятельный ремонт их пользователем вряд ли возможен;
  2. Блоки питания самодельщиков и мелких кооперативов 90-х годов прошлого века отличались малой надежностью. Сейчас это не так - по нашему опыту процент отказов (по различным причинам, в т.ч и из-за перегрузок и перепадов сетевого напряжения) у импульсных блоков питания не превышает этого показателя у трансформаторных .

Современные ИМПУЛЬСНЫЕ блоки питания достаточно надежны. Например, на все блоки питания Robiton® дается гарантия 1 год.

ПЕРЕМЕННЫЕ - блоки питания с выходным напряжением переменного тока. Применяются для питания осветительных и нагревательных электроприборов, а также для тех бытовых приборов, которые содержат внутренний выпрямитель напряжения (например многие радиотелефоны Siemens, Toshiba, ряд автоответчиков). Значок напряжения переменного тока указывается на корпусе приборов в виде символов: АДАПТЕРЫ 220V-110V AC (автотрансформаторные) - эти изделия хоть и похожи по выходным характеристикам на блоки питания с ПЕРЕМЕННЫМ выходным напряжением, но выполнены по автотрансформаторной схеме. Это дает возможность снизить габариты и вес устройства, и обеспечить относительную стабильность выходного напряжения 110V на холостом ходу. При этом гальваническая развязка выходной цепи от входной не обеспечивается. Данные адаптеры применяются для питания техники из США и некоторых других стран.

Таким образом, будем относить к ЗАРЯДНЫМ УСТРОЙСТВАМ, например, устройство заряда аккумуляторов для фотоаппарата, если аккумуляторы при этом вынимаются из него и вставляются в зарядное устройство. А сетевой адаптер, подключаемый к фотоаппарату (и при этом также обеспечивающий заряд аккумуляторов, но уже внутри него) отнесем к БЛОКАМ ПИТАНИЯ.

Читайте также: