Крышка процессора из чего сделана

Обновлено: 07.07.2024

Если Вы посмотрите на современный процессор, то Вы не увидите на нем кристалла. Он скрыт под металлической крышкой. Это и есть теплораспределительная крышка или как ее еще называют специалисты IHS (integrated heatsink) - интегрированная теплораспределяющая пластина. Она изготавливается из меди, на поверхность которой нанесен тонкий слой гальванического покрытия., Производители считают, что она выравнивает температуру по поверхности кристалла.

Введение

Еще осенью 2002 года компания AMD выпустила обновлённую версию ядра Thoroughbred (ревизия B0). Старшая модель Athlon XP на ядре Thoroughbred ревизии B0 работала на частоте 2200 МГц. (частота процессора на ядре Thoroughbred первой версии, составляла 1800 МГц).

Вторая версия процессора с ядром Thoroughbred -B отличалась от первой введением на кристалле дополнительных фильтрующих конденсаторов и дополнительного медного слоя, который наряду с ролью обкладки конденсатора фильтра играл и роль теплопроводящего слоя выравнивающего температуру по поверхности. Это была первая попытка повысить частоту процессора за счет, в том числе, и выравнивания температуры

В 2003, разбираясь с тепловыделением различных участков чипа процессора было обнаружено, что их нагрев существенно отличается.

Исследовательской лабораторией корпорации Intel под руководством Ram Krishnamurthy проводились исследования, с целью определить, какие конкретно участки микропроцессора выделяют больше тепла, а какие - меньше. Для этого они использовали широко известную технологию "тепловидения". Исследователи ядра процессора обнаружили, что совсем небольшой его участок – а точнее, место сосредоточия модулей логических и арифметических операций – ALU (Arithmetic and Logic Unit) – нагревается до 127 °C, в то время как область кеш-памяти – существует при вполне приемлемой температуре 65 °C, а остальные и того меньше.

На рис.1 показана термограмма сопровождающая обсуждения исследования Ram a Krishnamurthy.


Данная термограмма также подтверждает приводимое мной ранее данные, что эффективная теплопроводность IHS обеспечивается на расстоянии равном 5-7 ее толщин.

Результатом работы Ram Krishnamurthy было изменение конструкции ALU с целью снижения его тепловыделения (температуры).

Правда зная подход Intel и историю развития процессоров можно с уверенностью утверждать, что в результате работ температура ALU снизилась незначительно , поскольку после этого была максимально увеличена загрузка ALU процессора.

Такой же характер носит распределение температур по поверхности кристалла CPU и GPU других моделей и производителей.

И даже у Intel после переделки организации и структуры ALU которые были выполнены по результатам описанный работы Ram Krishnamurthy проблема не пропала, потому что Intel сразу же дополнительно нагрузил ALU с целью повысить общую производительность процессора.

Назначение IHS

Если вам в руки попадет современный процессор, то с одной его стороны Вы увидите ряды контактных ножек, а с другой примерно то что изображено на рис.1 (хотя конструкция может меняться даже у одного производителя)


Это и есть IHS (integrated heatsink) - интегрированная теплораспределяющая пластина.

IHS выполняет множество задач.

Главная, (для чего она и создавалась) это выравнивание (распределение) температуры по поверхности кристалла.

Как мы видим из термограммы процессора показанной на рис.1, на поверхности кристалла имеются области с температурой:

  • более 120°С - ALU
  • около 65°С - область кеш-памяти,
  • менее 60°С - остальные области.

Этот перепад температур создает на поверхности кристалла, в областях максимальных градиентов температур, механические напряжения. Для снижения градиентов температур и применяется теплораспределительная пластина - крышка.

некоторое увеличение контактной (кристалл-радиатор) поверхности - до 20-30%.

зашита кристалла от механического воздействия охлаждающих конструкций,

Принцип работы

Тепловой поток от кристалла распространяется через крышку к кулеру "растекаясь" за счет высокой теплопроводности вдоль поверхности крышки. Это "растекание" составляет около 3-7 h .

То вдоль IHS пластины тепловое сопротивление растет и эффективное ослабление теплового потока начинает сказываться уже на расстоянии примерно 3 h ( h -толщина IHS пластины), а на расстоянии (5-7 )h тепловой поток вдоль пластины можно считать существенно меньшим его перпендикулярной составляющей.


С точки зрения распространения теплового потока в направлении от источника тепла к кулеру (перпендикулярно IHS пластине) любая прослойка должна иметь как можно меньшую толщину. Это касается и материалов с высокой теплопроводностью.

А с точки зрения ее основной функции (выравнивания температуры на контактной поверхности кристалла) ее толщина ( h ) должна быть максимальна.

Функцию теплораспределительной пластины несет только ее плоская часть, которая одной стороной контактирует с кристаллом процессора, а другой с подошвой кулера. Все контактирующие поверхности должны быть плоскими для обеспечения контакта по всей поверхности.


Она так же должна быть больше, чтобы исключить тепловые градиенты на ТР пластине и соответственно деформации IHS пластины.

Причины термической деформации.

Что дает применение IHS

Что ни говори, а хоть как-то но теплораспределительная пластина выполняет свою задачу. Она распределяет температуру точечных источников тепла на 3-4 мм от его центра. Но самое главное она защищает кристалл от механического воздействия.

Недостатки

Практика показывает, что при принятых толщинах IHS ее тепло выравнивающая эффективность низка и она служит в основном для механической защиты кристалла процессора.

Термоинтерфейс кристалл - пластина

Как это ни странно большинство процессоров имеющих теплорапределительную пластину используют в качестве термоинтерфейса между пластиной и кристаллом теплопроводящую пасту, а не пайку. От этого не только растет тепловое сопротивление, но и снижается срок службы процессора при больших его производительностях. Это происходит из-за циклической деформации теплораспределительной пластины, что "жует" термоинтерфейс, засасывает в него воздух. В результате со временем термоинтерфейс превращается в пористую губку и теряет свои теплопроводящие свойства.

Применение припоев в качестве термоинтерфейса снижает температуру кристалла процессора на 4-7°С, уменьшает неравномерность нагрева поверхности кристалла процессора,

Выводы

Для нормального выполнения своей функции (с точки зрения физики) IHS (integrated heatsink) - интегрированная теплораспределяющая пластина должна иметь толщину 1/2 -:- 1/3 минимального линейного размера кристалла. В этом случае она обеспечит равномерное распределение температуры по поверхности кристалла и исключит механические деформации IHS .


Процессоры, в первую очередь работающие при больших нагрузках, должны иметь металлический термоинтерфейс между кристаллом и IHS . Особенно это относится к процессорам для разгона, которые работают в режиме термоциклирования (чередования максимально допустимых - минимальных температур). Это позволит снизить примерно на 5°С температуру процессора, повысить его ресурс.

Коллеги с сайта PC Watch Impress решили напомнить о существовании решений для тех энтузиастов, которые не довольствуются простой заменой штатного интерфейса процессоров после снятия крышки теплораспределителя. Во-первых, специализированные магазины предлагают и альтернативные крышки – например, с покрытием из серебра. Во-вторых, некоторые энтузиасты изготавливают медные крышки по индивидуальному проекту. Есть, однако, и серийные изделия подобного рода, и одним из производителей является компания Rockit Cool.

реклама


Источник изображения: PC Watch Impress

Особенности её продукции японские коллеги разобрали на примере медных крышек для процессоров Intel в исполнении LGA 2066. "Сменные" крышки от штатных отличаются не только лучшим качеством полировки контактной поверхности, но и иной высотой "потолка" с внутренней стороны. "Родные" крышки современных процессоров тоже изготавливаются из меди, но покрываются слоем никеля.


Источник изображения: PC Watch Impress

MSI RTX 3070 сливают дешевле любой другой, это за копейки Дешевая 3070 Gigabyte Gaming - успей пока не началось

Когда снимается штатная крышка теплораспределителя, пользователь нередко удаляет слой герметика, нанесённого по периметру на печатную плату. Восстановить идентичный слой герметика в домашних условиях проблематично, а потому величина зазора между кристаллом и крышкой процессора после такой манипуляции изменяется. Производители альтернативных крышек пытаются компенсировать это изменение. Rockit Cool, кстати, предлагает не только герметик для восстановления процессора после "скальпирования", но и оснастку для точного базирования крышки на печатной плате. В случае с процессорами в исполнении LGA 2066 альтернативные крышки с иным термоинтерфейсом позволяют выиграть до 4-6 градусов Цельсия, а вариант для LGA 1151 обеспечивает выигрыш до 7 градусов Цельсия. Для мастеров экстремального разгона и такая разница может стать существенной.

Задумывались ли вы зачем на процессорах нужны металлические крышки, скрывающие под собой микросхему-кристалл? Кто-то верит, и убеждает других в том, что она лучше отводит тепло , снижая нагрев, а кто-то - в защиту от скола хрупкого кремния. Давайте подискутируем на эту тему в комментариях, а пока я расскажу свою точку зрения.

Теплораспределительная крышка лучше охлаждает процессор

Бытует мнение, что крышка лучше забирает тепло от кристалла и отдает его радиатору системы охлаждения. На самом деле это не так. Убедиться в этом можно взяв в пример десктопный Intel Core i7-8700 с 65 Вт TDP и мобильный Intel Core i7-8705G с аналогичным показателем: один закрыт металлом, а другой нет. Если бы этот миф был правдой, то на ноутбуках не использовали бы открытые процессоры, так как в них большая проблема с охлаждением.

Второй способ - найти тестирования процессоров с крышкой и без неё.

Позволю себе спойлернуть - разница в температурах будет 1-4 градусов, в пользу открытого кристалла.

Крышка защищает процессор от сколов кристалла

В утверждении, что крышка защищает кристалл процессора от сколов есть частичка правды. Не все домашние сборщики компьютеров проявляют аккуратность в установке комплектующих. Зачастую, по незнанию и определенного опыта работы, могут сильно прижать кулер под углом, либо уронить его на поверхность процессора - это в них не вызывает ни грамма ужаса последствий.

Справедливости ради, стоит отметить, что чтобы отколоть часть кристалла понадобится доля "неудачи" и сила воздействия.

Крышка процессора распределяет вес системы охлаждения по всей поверхности микросхемы

С развитием технологий, мощности вычислительной техники возрастают в разы, требуя при этом больше электричества. Как следствие, возрастает тепловыделение, что заставляет улучшать показатели системы охлаждения путем увеличения площади рассеивания (размеры радиатора) и активных систем (вентиляторов), повышая тем самым общий вес. Но это лишь часть беды - самое плохое в утончении и ухудшении свойств текстолита под кристаллом, который при высокой температуре и давлении на него начинает гнуться, обрывая в своих слоях токоведущие проводники. Металлическая крышка же, распределяет нагрузку на всю площадь микросхемы , не давая кулеру давить в одну точку - пластину кремния.

Чтобы создать сверхмощный процессор, достаточно простого.

Песок. В наших компьютерах в буквальном смысле песок, вернее — составляющий его кремний. Это основной элемент, благодаря которому в компьютерах всё работает. А вот как из песка получаются компьютеры.

Что такое процессор

Процессор — это небольшой чип внутри вашего компьютера или телефона, который производит все вычисления. Об основе вычислений мы уже писали — это транзисторы, которые собраны в сумматоры и другие функциональные блоки.

Если очень упрощённо — это сложная система кранов и труб, только вместо воды по ним течёт ток. Если правильным образом соединить эти трубы и краны, ток будет течь полезным для человека образом и получатся вычисления: сначала суммы, потом из сумм можно получить более сложные математические операции, потом числами можно закодировать текст, цвет, пиксели, графику, звук, 3D, игры, нейросети и что угодно ещё.

Кремний

Почти все процессоры, которые производятся в мире, делаются на кремниевой основе. Это связано с тем, что у кремния подходящая внутренняя атомная структура, которая позволяет делать микросхемы и процессоры практически любой конфигурации.

Самый доступный источник кремния — песок. Но кремний, который получается из песка, на самом первом этапе недостаточно чистый: в нём есть 0,5% примесей. Может показаться, что чистота 99,5% — это круто, но для процессоров нужна чистота уровня 99,9999999%. Такой кремний называется электронным, и его можно получить после цепочки определённых химических реакций.

Когда цепочка заканчивается и остаётся только чистый кремний, можно начинать выращивать кристалл.

Кристалл и подложка

Кристаллы — это такие твёрдые тела, в которых атомы и молекулы вещества находятся в строгом порядке. Проще говоря, атомы в кристалле расположены предсказуемым образом в любой точке. Это позволяет точно понимать, как будет вести себя это вещество при любом воздействии на него. Именно это свойство кристаллической решётки используют на производстве процессоров.

Самые распространённые кристаллы — соль, драгоценные камни, лёд и графит в карандаше.

Большой кристалл можно получить, если кремний расплавить, а затем опустить туда заранее подготовленный маленький кристалл. Он сформирует вокруг себя новый слой кристаллической решётки, получившийся слой сделает то же самое, и в результате мы получим один большой кристалл. На производстве он весит под сотню килограмм, но при этом очень хрупкий.


Готовый кристалл кремния.

После того, как кристалл готов, его нарезают специальной пилой на диски толщиной в миллиметр. При этом диаметр такого диска получается около 30 сантиметров — на нём будет создаваться сразу несколько десятков процессоров.

Каждую такую пластинку тщательно шлифуют, чтобы поверхность получилась идеально ровной. Если будут зазубрины или шероховатости, то на следующих этапах диск забракуют.


Готовые отполированные пластины кремния.

Печатаем транзисторы

Когда диски отполированы, на них можно формировать процессоры. Процесс очень похож на то, как раньше печатали чёрно-белые фотографии: брали плёнку, светили сверху лампой, а снизу клали фотобумагу. Там, куда попадал свет, бумага становилось тёмной, а те места, которые закрыло чёрное изображение на плёнке, оставались белыми.

С транзисторами всё то же самое: на диск наносят специальный слой, который при попадании света реагирует с молекулами диска и изменяет его свойства. После такого облучения в этих местах диск начинает проводить ток чуть иначе — сильнее или слабее.

Чтобы так поменять только нужные участки, на пути света помещают фильтр — прямо как плёнку в фотопечати, — который закрывает те места, где менять ничего не надо.

Потом получившийся слой покрывают тонким слоем диэлектрика — это вещество, которое не проводит ток, типа изоленты. Это нужно, чтобы слои процессора не взаимодействовали друг с другом. Процесс повторяется несколько десятков раз. В результате получаются миллионы мельчайших транзисторов, которые теперь нужно соединить между собой.

Соединяем всё вместе

То, как соединяются между собой транзисторы в процессоре, называется процессорной архитектурой. У каждого поколения и модификации процессоров своя архитектура. Все производители держат в секрете тонкости архитектуры, потому что от этого может зависеть скорость работы или стоимость производства.

Так как транзисторов много, а связей между ними нужно сделать немало, то поступают так: наносят токопроводящий слой, ставят фильтр и закрепляют проводники в нужном месте. Потом слой диэлектрика и снова токопроводящий слой. В результате выходит бутерброд из проводников, которые друг другу не мешают, а транзисторы получают нужные соединения.


Токопроводящие дорожки крупным планом. На фото они уже в несколько слоёв и не мешают друг другу.

В чём сложность

Современные процессоры производятся на нанометровом уровне, то есть размеры элементов измеряются нанометрами, это очень мало.

Если, например, во время печати очень толстый мальчик упадёт на пол в соседнем цехе, еле заметная ударная волна прокатится по перекрытиям завода и печатная форма немного сдвинется, а напечатанные таким образом транзисторы окажутся бракованными. Пылинка, попавшая на пластину во время печати — это, считай, загубленное ядро процессора.

Поэтому на заводах, где делают процессоры, соблюдаются жёсткие стандарты чистоты, все ходят в масках и костюмах, на всех воздуховодах стоят фильтры, а сами заводы находятся на сейсмических подушках, чтобы толчки земной коры не мешали производить процессоры.

Крышка и упаковка

Когда дорожки готовы, диск отправляют на тесты. Там смотрят на то, как работает каждый процессор, как он греется и сколько ему нужно энергии, заодно проверяют на брак.

После тестов диск разрезают на готовые процессорные ядра.

Пластина со множеством одинаковых процессорных ядер. Робот вырезает ядра из готовой пластины.

После этого к ядру процессора добавляют контакты, чтобы можно было вставить его в материнскую плату, и накрывают крышкой. Чёрный или металлический прямоугольник, из которого торчат ножки, — это как раз крышка.

Крышка выполняет две функции: защищает сам кристалл от повреждений и отводит от него тепло во время работы. Дело в том, что миллионы транзисторов при работе нагреваются, и если процессор не остужать, то он перегреется и кристалл может испортиться. Чтобы такого не произошло, на крышку процессора ставят воздушные кулеры или делают водяное охлаждение.

Система на чипе

Чипы процессоров уже настолько маленькие, что под одной крышкой можно поместить какое-нибудь ещё устройство. Например, видеосистему — то, что обсчитывает картинку перед выводом на экран. Или устройство радиосвязи с антенной.

В какой-то момент на маленьком чипе площадью около 1 см 2 уже можно было поместить процессор, видео, модем и блютус, сделать всё нужное для поддержки памяти и периферии — в общем, система на чипе. Подключаете к этому хозяйству экран, нужное количество антенн, портов и кнопок, а главное — здоровенную батарею, и у вас готовый смартфон. По сути, все «мозги» вашего смартфона находятся на одном маленьком чипе, а 80% пространства за экраном занимает батарея.

От песка до процессора

Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» — монокристалл высотой со взрослого человека. Вес соответствующий — на производстве такая буля весит порядка 100 кг.

От песка до процессора

Слиток шкурят «нулёвкой» :) и режут алмазной пилой. На выходе – пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (

12 дюймов; именно такие используются для техпроцесса в 32 нм с технологией HKMG, High-K/Metal Gate). Когда-то давно Intel использовала диски диаметром 50 мм (2"), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450 мм – это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии — все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.
Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.

Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру. Сложно рассказать о всех операциях, которые выполняются в ходе изготовления процессора. Поэтому совсем коротко и лишь о самых важных этапах.
Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать? Вообще, нанесение различных слоев на процессорную подложу это целая наука, ведь даже в теории такой процесс непрост (не говоря уже о практике, с учетом масштабов)… но ведь так приятно разобраться в сложном;) Ну или хотя бы попытаться разобраться.

Читайте также: