На что влияет жесткий диск

Обновлено: 04.07.2024

Народ, подскажите плз, влияет ли жесткий диск на производительность компьютерных игр?

Просто у меня сейчас стоит винда 7 и там по индексу производительности системы все стоит примерно на 7.2, а жесткий диск на 5.9, просто в видеокарте стоит 7.8, а в проце 7.2.

У меня 2 жестких диска по 500 гб, больше не ничего незнаю кроме того что скорость копирования файлов поднимается максимально до 15 мб в секунду.

Влияет при загрузке игр, как только всё загрузилось - информация читается из оперативной памяти и разницы нет никакой.
А скорость чтения HDD очень высокая, поэтому разница в пару секунд будет.
А индекс производительности это бред - например, если у компьютера 2 Гб ОЗУ, то больше 5.5 он не даст. НЕ Влияет на игровую производительность, а только на скорость загрузки игр (что за идиотизм смотреть на индекс производительности это же полное фуфло он всем ЖД дает 5.9)
Лучше в этом плане SSD да очен ьсильно влияет купи SSD диск и игры воше за пару секунд загружатся будут Очень мало влияет, практически нет. Даже если купить SSD то максимум чего вы добьетесь они будут быстрее грузиться. А чисто на игровую производительность не влияют никак. 15 меггабайт что-то мало, должно быть в районе 80-100 мб минимально.. . в принципе он влияет на обмен памяти.. . но ТАКОЙ НЕЗНАЧИТЕЛЬНОЙ какая в играх не нужна да, по ходу игры периодически идет обращение к файлам на диске
для увеличения скорости обращения нужен ссд (англ буквы) 100% нет.
Жёсткий диск влияет на считывание информации (процесс обмена запросами между ним и процессором)

жесткий диск это устройство для хранения данных и только это. А не коробка передач формулы 1. вот смотри у меня стоит в компе сейчас 1 ТераБайт памяти Жесткий диск Seagate 7200 BarraCuda, скорость копирования 7,2 мегабайта в секунду. Копирую с жд все что угодно, не важно музыку, фильмы и так далее, копирую на свой переносной портативный карманный жесткий диск со скоростью 7,2 мб, все, что еще та. может быть тут. А Есть еще Максимальная скорость передачи данных 220 Мбайт/с, передача данных это то есть игры, если я хочу поиграть в игру в какую нибудь, которая уже у меня установлена на компьютере, инсталлятор примерно весит от 300 мегабайт до 5 гигов, смотря какая игра у тебя, нажал на ярлык игры и ждешь пока игра полностью запуститься у тебя, если у тебя запуск игры весит скажем 1 гигабайт памяти, это инсталлятор, я его так называю, ты называй сам ка хочешь его. Смотри дальше, если мой ЖД имеет скорость передачи данных 220 мегабайт в секунду, а инсталлятор весит 1 гигабайт, значит моя игра запуститься полностью за 4,5 - 5 секунд всего та. Как получилось это. а вот так 220 х 4,5 секунды = 1000 мегабайт, точнее 1024 мегабайта по идее. Вот и все. На производительность игры ваще никак не влияет. Никогда нигде в некуда.

Вот это мой жесткий диск, которым я сейчас пользуюсь.


Еще вот что чтобы определить с какой скорость ты скидываешь со своего жесткого диска скажем фильм который весит 2 гигабайта памяти на свой рабочий стол компа или переносного портативного жесткого диска. Портативный жесткий диск это - переносного карманное устройство. По русски говоря простая квадратная плашка. она бывает 500 гигов памяти бывает 1 терабайт и так далее. Так вот чтобы определить скорость выкачивания или перекачивая твоего фильма. Надо сделать следующее. У моего жестка диска как я и писал выше, скорость равна 7,2 мегабита, точнее 7200 мегабайт в секунду. На картинке все указано уже. Смотри туда. Теперь далее смотри, вот тут надо уметь и знать и разбираться. У меня 256 битная память, что это значит, самая минимальная битная память равна 32, потом идет 64х битная .потом 128, потом 192, потом 256 и конечно 512 битная. 32 -это одна скорость, 64 - это 2 скорость, 128 -3, 256 -4, 512 -5 передача короче. У меня 256 битная. Значит 4 скоростная потоковая передача идет. Вот теперь смотри дальше, Я умножаю скорость своего жесткого диска на 4 значение. Получается 7,2 мегабита, 7,2 мб х на 4 = получаю 28,4 мегабайта скорости в сумму. Теперь делю это по полам, получается 14,4 мегабайта в секунду. И вуаля. Пожалуйста, моя максимальная скорость потовой скачки и перекачки на устройства равна 14,4. Ты спросишь почему так та. Вот тебе тебе ответ, скачиваю со скоростью14,4 мегабайта с жесткого диска и перекачиваю на жесткий диск информацию на жесткий диск с той же скоростью .Короче все по полам. Это называется по простому двух полосная скоростная шлюзная дорога. Вот и все. Теперь понял автор. 14,4 х 140 секунд = 2 гига. Двух гигов фильм я скачаю на свой жесткий диск за 140 секунд. То есть 2 минуты 20 секунд всего. Или на оборот выкачаю скаченный фильм с жесткого диска на рабочий стол за такое же время.

Здравствуйте! Рад приветствовать постоянных читателей моего блога, а также тех, кто попал сюда впервые! Подпишитесь на новостную рассылку — и вы своевременно будете получать уведомления о новых публикациях.


Сегодня давайте обсудим, влияет ли жесткий диск на производительность в играх, и как именно. Спойлер: влияет, но не так ощутимо, как мощность видеокарты и процессора. Все, дальше можете не читать, а уже заказывайте новый HDD для вашего ПК.

Для тех, кому интересно, может ли влиять модель и параметры жесткого диска, насколько важен этот компонент при сборке мощного игрового компьютера и что можно сделать, если вы замечаете лаги, эта статья будет чертовски полезной. Гарантирую!

Как устроены видеоигры

Давайте возьмем сферический пример «в вакууме» — клиентская игра, которая требует предварительной установки на винчестере. Почти все современные игры состоят из 3D объектов, которые по-всякому взаимодействуют между собой. Рендерятся они с помощью видеокарты.

Состояние и взаимное положение этих объектов запоминает оперативная память, а процессор просчитывает все эти взаимодействия — например, траекторию полета снаряда, стрелы или пули, шанс нанести критический урон, влияние защиты цели. В общем, все то, что незаметно глазу игрока — «шевеление» пикселей внутри игры.

В онлайн играх часть этих функций берет на себя серверный процессор, но часть остается и вашему ПК. И мы переходим непосредственно к теме сегодняшней публикации — в чем роль жесткого диска во всем этом процессе.


Именно он хранит все те объекты, которые созданы разработчиками — модели оружия, персонажей, техники, игровые локации, загрузочные и прочие меню, а также текстуры. По сути, любая 3D модель — собранная из множества полигонов сложная пространственная фигура, на которую натянута текстура. Как перчатка на руку.

Почему жесткий диск важен для комфортного гейминга

Скорость чтения данных с жесткого диска почти не влияет на ФПС, однако может стать причиной лагов. Особенно это заметно, когда вы запускаете современную игру на морально устаревшем компьютере с винчестером стандарта SATA. В этом случае текстуры окружения или персонажей попросту не успевают загрузиться во время.

Проявляться это может по-разному:

  • Если резко приблизиться к другому персонажу, сначала отображается базовая модель, потом отрисовывается одетая на нем броня, затем внешка (из игрового магазина, а как же!) и лишь потом ее покраска. Занимать этот процесс может всего несколько секунд, но заметен для глаза.
  • При быстром перемещении между разными локациями в игре с открытым миром транспорт замирает на месте, терпеливо дожидаясь, пока прорисуются текстуры на окружающих объектах.
  • Загрузочная заставка отображается гораздо дольше, чем предусмотрели разработчики, так как на ее чтение с медленного винчестера требуется больше времени.

FPS при этом может проседать, однако вовсе не обязательно: ваш персонаж гоняет с той же скоростью на тех же недогруженных локациях, а счетчик кадров в секунду отображает одну и ту же цифру.


Многое зависит уже от кода, написанного разработчиками — медленная работа жесткого диска может проявляться иначе, я просто привел наиболее типичные случаи.

Закономерный вопрос — повысит ли фрейм количество кадров? Увы, но нет. Запуск игры в оконном режиме, при меньшем разрешении, может снизить нагрузку на слабую видеокарту.

На скорость чтения текстур и объектов такой режим отображения вообще не влияет.

Отдельным абзацем хочу упомянуть браузерные игры, в том числе многопользовательские. В них все «шевеление» пикселей происходит на стороне сервера и отображается с помощью Flash плеера, поэтому винчестер компьютера не задействован. Лагов, описанных выше, в таких играх не замечено.

Что можно сделать

Если у вас устаревший ПК, рекомендую провести апгрейд при первой же возможности. Иногда переход на более позднюю версию САТА требует замены материнской платы, а это уже тянет за собой новый процессор и оперативную память.

Но искусство (а видеоигры уже несколько лет признаны одним из направлений искусства, вы знали об этом?) требует жертв. В рассматриваемом нами случае — определенных затрат на апгрейд.

Также не могу молчать о том, что даже SATA III в некоторых случаях не сильно поможет: ряд игр оптимизирован настолько «шикарно», что для нормальной работы требуется накопитель ССД. Про отличие ssd от ssd m2 вы можете почитать здесь.

Навскидку вот так сразу могу вспомнить ММОРПГ Black Desert. Хотя релиз этой игры и произошел 4 года назад, она остается довольно «кусачей» в плане системных требований — быстрое перемещение по игровому миру требует быстрой загрузки текстур игрового мира.

Рекомендую ССД для комфортного запуска и последних частей Final Fantasy. Размер и качество текстур там такие, что игровой клиент занимает около 100 Гб, а для нормального чтения требуется именно SSD.

Также для вас окажется полезной статья «Лучшие производители жестких дисков». Буду очень признателен всем, кто поделится этой публикацией в социальных сетях. До завтра!

Испытателя-обозревателя жестких дисков и всякой флеши хлебом не корми, а дай позапускать какой-нибудь навороченный специфический бенчмарк, который покажет, сколько «попугаев» производительности или «ио-псов» та или иная модель покажет в нем. Всякие «иометры», «писимарки» и прочие «йо!-марки», как правило, специально спроектированы, чтобы наилучшим образом продемонстрировать разницу между дисками при тех или иных операциях непосредственно с этими дисками. И они (бенчмарки и обозреватели :)) со своим предназначением прекрасно справляются, давая нам, читателям, богатую пищу для размышлений, какую модель диска предпочесть в том или ином случае.

Но дисковые бенчмарки (да и обозреватели!) мало что говорят простому пользователю о том, как именно (и насколько) улучшится (или ухудшится) комфортность его повседневной работы с персональным компьютером, если тот или иной диск будет установлен в его систему. Да, мы будем знать, что, например, в два раза быстрее файл/директория в идеальных условиях запишется на наш диск или прочтется с него, или, скажем, на 15% быстрее станет выполняться «загрузка Выньдовс» — а точнее не она сама, на нашем конкретном компьютере, а ранее записанный на каком-то другом, совсем непонятном нам и, как правило, уже морально устаревшем ПК, специальный паттерн, который к нашему любимому ПК может иметь весьма далекое отношение. Допустим, погонимся мы за новенькой дорогой моделью диска, начитавшись всяких «авторитетных» обозревателей, потратимся, а придем домой и ровным счетом ничего, кроме сознания того, что купили крутую по чьему-то субъективному мнению вещицу, не почувствуем… То есть наш ПК как «бегал», так и продолжает «бегать», «летать» он отнюдь не стал. :)

А все дело в том, что в реальности «отдача» от быстродействия дисковой подсистемы, как правило, ощутимо маскируется отнюдь не мгновенной работой остальных подсистем нашего компьютера. В результате, даже если мы поставим втрое более шустрый (по профильным бенчмаркам) винчестер, наш компьютер в среднем по ощущениям в три раза быстрее работать вовсе не станет, и субъективно мы в лучшем случае почувствуем, что совсем чуток быстрее стали запускаться графический редактор и любимая игрушка. Этого ли мы ждали от апгрейда?

В этой небольшой статье мы, отнюдь не претендуя на всеобъемлющую полноту освещения этого многогранного вопроса, попробуем дать ответ на то, чего же все-таки в реальности ждать от дисковой подсистемы с той или иной «реперной» производительностью. Надеемся, что это позволит вдумчивому читателю сориентироваться в предмете и решить, когда и сколько тратить на очередной накопитель на «очень жестких» дисках.

Методология

К сожалению, SYSmark 2007 Preview вышел уже давно и хотя он регулярно патчился производителем (мы здесь используем версию 1.06 за июль 2009 г.), в своей основе содержит приложения отнюдь не самые свежие, образца примерно 2005 г. Но сами-то мы всегда ли «юзаем» самые последние версии программ? Многие, например, еще на Windows XP себя очень даже комфортно чувствуют (и даже тестируют новое железо под ней!), уже не говоря о том, что не воодушевлены многосотдолларовой «гонкой офисных вооружений», по сути, навязываемой нам одной небезызвестной редмонтской компанией. Таким образом, можно считать, что SYSmark 2007 до сих пор актуален для «среднестатистического» пользователя ПК, тем более что мы здесь запускаем его на последней ОС — Windows 7 Ultimate x64. Ну а компании BAPCo нам остается пожелать поскорее преодолеть последствия финансового кризиса в ИТ-индустрии и выпустить новую версию SYSmark на базе приложений образца 2010-2011 гг.

По результатам тестов SYSmark 2007 Preview в целом и по его подтестам E-Learning, VideoCreation, Productivity и 3D, которые мы в данном случае провели для двух современных системных конфигураций ПК (на базе процессоров Intel Core i7 и i3) и пяти «реперных» накопителей разной «дисковой» производительности (то есть всего 10 протестированных систем), мы в этой статье сделаем выводы о том, как сильно тот или иной диск будет влиять на комфортность работы пользователя с ПК, то есть как сильно изменится среднее время реакции компьютера на действия активного пользователя.

Но одним SYSmark мы, конечно же, не ограничимся. Помимо проверки «дискозависимости» некоторых отдельных приложений, тестов и комплексных бенчмарков, мы «присовокупим» к оценкам влияния диска на общесистемную производительность показатели системных тестов более ли менее современного пакета Futuremark PCMark Vantage. Хотя подход PCMark и более синтетический, нежели у SYSmark, тем не менее, он в различных паттернах также измеряет скорость работы «целиком» компьютера в типичных пользовательских задачах, причем при этом учитывается и производительность дисковой подсистемы (о детальном устройстве PCMark Vantage тоже написано предостаточно, поэтому вдаваться в подробности здесь не станем). Попробовали мы привлечь и новенький (этого года) интеловский тест (HDxPRT 2010). Он отчасти напоминает по подходу SYSmark, но применительно к работе с мультимедийным контентом, хотя и оценивает не среднее время реакции пользователя, а общее время выполнения того или иного комплексного сценария. Однако дискозависимость этого теста оказалась самой минимальной (почти отсутствующей) и совершенно непоказательной, поэтому «прогнали» мы этот длительный бенчмарк не для всех конфигураций, и его результаты в этой статье не демонстрируем.

Тестовые конфигурации

Для первых опытов мы выбрали две базовые системные конфигурации десктопов. Первая из них основана на одном из самых производительных «настольных» процессоров Intel Core i7-975, а вторая — на младшем (на момент написания статьи) десктопном процессоре из линейки Intel Core i3 — модели i3-530 ценой чуть выше 100 долларов. Таким образом, мы проверим влияние скорости дисковой подсистемы как для топового ПК, так и для недорогого современного десктопа. Производительность последнего, кстати, вполне сравнима с таковой для современных топовых ноутбуков, поэтому мы заодно с «двумя зайцами» «убиваем» и третьего. :) Конкретные конфигурации выглядели так:

  • процессор Intel Core i7-975 (HT и Turbo Boost активированы);
  • материнская плата ASUS P6T на чипсете Intel X58 с ICH10R;
  • 6 Гбайт трехканальной памяти DDR3-1333 (тайминги 7-7-7);
  • видеоускоритель AMD Radeon HD 5770.
  • процессор Intel Core i3-530 (2 ядра + НТ, 2,93 ГГц);
  • материнская плата Biostar TH55XE (чипсет Intel H55);
  • 4 Гбайт двухканальной памяти DDR3-1333 (тайминги 7-7-7);
  • видеоускоритель AMD Radeon HD 5770.
  1. Patriot TorqX PFZ128GS25SSD (IDX MLC SSD 128 Гбайт);
  2. Hitachi Deskstar 7K1000.C HDS721010CLA332 (1 Тбайт);
  3. Seagate Momentus 7200.4 ST950042AS (500 Гбайт);
  4. Hitachi Travelstar 7K100 HTS721010G9SA00 (100 Гбайт);
  5. Toshiba MK1246GSX (5400 об/мин, 120 Гбайт).

Подчеркнем, что наши тестовые конфигурации не нацелены на оценку влияния данных конкретных (примененных нами в этих тестах) моделей жестких дисков, но эти конфигурации фактически представляют «интересы» не только тех или иных десктопов, но также (опосредованно) медиацентров, мини-ПК и мощных ноутбуков. И пусть использованная нами модель видеокарты вас не смущает — подавляющее большинство из демонстрируемых нами здесь результатов бенчмарков несущественно зависит (или вовсе не зависит) от производительности видеоускорителя.

Быстродействие собственно накопителей

Прежде чем перейти к результатам нашего исследования дискозависимости системной производительности, кинем краткий взгляд на быстродействие самих накопителей, которое мы оценивали нашим традиционным способом — при помощи профильных дисковых бенчмарков. Средняя скорость случайного доступа к этим дискам показана на следующей диаграмме.

Понятно, что SSD вне досягаемости с типичными для себя 0,09 мс, десктопный «семитысячник» чуть шустрее шевелит «усами», чем ноутбучные «семитысячники», хотя, например, модель Hitachi 7K100 по среднему времени доступа может посоперничать с рядом 3,5-дюймовых «семитысячников» прошлых лет, имеющих сходную емкость и скорость линейного доступа. Последняя для наших реперных дисков приведена на следующей диаграмме.

«Пятитысячник» от Toshiba по этому параметру чуть быстрее, чем «семитысячник» Hitachi 7K100, однако уступает последнему по времени случайного доступа. Посмотрим, что окажется важнее для типичной работы десктопа и есть ли реальная разница от применения этих дисков, по сути, разных классов.

В качестве любопытной информации попутно приведем показатель, которым Windows 7 встроенным «в себя» бенчмарком оценивает полезность того или иного реперного накопителя.

Подчеркнем, что для обеих тестовых систем Windows 7 оценила видеоускоритель HD 5770 на 7,4 балла (по графике и игровой графике), а процессор и память получили оценки, соответственно, 7,6 и 7,9 для старшей и 6,9 и 7,3 для младшей из наших тестовых систем. Таким образом, диски — это самое слабое звено данных систем (по «мнению» Windows 7). Тем более заметным, по идее, должно быть их влияние на общесистемную производительность ПК.

Последней в этом параграфе будет диаграмма с результатами сугубо дисковых тестов PCMark Vantage, показывающая типичную диспозицию выбранных накопителей в традиционных обзорах жестких дисков, где подобными тестами оперируют обозреватели для вынесения своего сурового вердикта.

Более чем пятикратное преимущество SSD над НЖМД в этом конкретном бенчмарке (PCMark Vantage, HDD Score) — эти типичное положение на данный момент (впрочем, в ряде других десктопных бенчмарков разрыв все же поменьше). К слову, обратите внимание, что результаты дисковых тестов крайне слабо зависят от системной конфигурации — они примерно одинаковы для процессоров, в 10 раз отличающихся друг от друга по цене, а также в пределах погрешности одинаковы для x64- и x86-случаев. Кроме этого, отметим, что старший из выбранных нами НЖМД опережает младший по «чисто дисковой» производительности примерно вдвое. Посмотрим, как этот разрыв в 5-10 раз по дисковым бенчмаркам скажется на реальной работе ПК.

Результаты общесистемных тестов

Для начала — диаграмма с итоговым рейтингом всех 10 систем в тесте SYSmark 2007.

Как и «предрекал» нам индекс Windows 7, нет никакой практической разницы между системами с двумя младшими из выбранных нами реперных дисков, хотя это и диски разных классов (7200 и 5400 об/мин). Интересно и то, что производительные модели SATA-семитысячников форм-факторов 3,5 и 2,5 дюйма, причем различающиеся между собой вдвое по емкости (читай — на старшем примерно вдвое меньше перемещаются головки при выполнении одного и того же общесистемного теста), почти в полтора раза — по скорости линейно доступа и заметно — по скорости случайного доступа, так вот эти две модели в реальных ПК ведут себя практически одинаково, то есть вы при всем желании на своих «человеческих» ощущениях не почувствуете между такими системами никакой разницы в комфорте при типичной работе с приложениями. Зато после апгрейда на один из них с одной из наших младших реперных дисковых подсистем прибавка в среднем составит около 15% (напомним, что по чисто дисковой производительности они различаются примерно вдвое!). Это вполне актуальная ситуация и для ноутбука (замена устаревшего пятитысячника на емкий топовый семитысячник), и для десктопа (апгрейд старого семитысячника на новый терабайтник).

Чуть иной случай — с апгрейдом НЖМД на SSD. Тут уже в рамках старшей модели ноутбука, например, прибавка средней общесистемной производительности составит около 30%. Да, мы сможем это почувствовать. Но вряд ли при этом скажем, что система стала «летать». Даже в случае топового настольного ПК применение SSD вместо одного НЖМД даст нам лишь 20-40% уменьшения среднего времени реакции ПК на действия пользователя (это при 5-10-кратной разнице в скорости самих дисков!). Я отнюдь не хочу сказать, что на отдельных частных задачах, связанных с активным использованием диска, вы не скажете «вау!». Но в целом ситуация будет отнюдь не столько радужная, как порой описывается тестерами жестких дисков. Причем, применять SSD в слабеньких ПК, как мы видим из этой диаграммы, вряд ли очень целесообразно — средняя прибавка комфортности работы будет на уровне порога индивидуальной различимости. А наибольший эффект от SSD вы почувствуете в мощных ПК.

Впрочем, не все так уж грустно! Например, анализируя положение в разных паттернах SYSmark 2007, можно прийти к следующим выводам. Так, при выполнении задач определенного профиля (в данном случае, работа с 3D и сценарий E-Learning) действительно почти нет разницы, каким диском вы при этом пользуетесь (разница между нашим старшим и младшим реперами составляет «неразличимые» нами 5-15%). И здесь совсем нет смысла тратиться на новый быстрый диск! Однако с другой стороны, на ряде задач (в частности, сценарий VideoCreation, активно использующий редактирование видео и аудио) вы все же сможете почувствовать «ветерок в ушах»: для мощного десктопа сокращение среднего времени реакции ПК на действия пользователя от применения SSD может достигнуть заветных 2 раз (см. диаграмму ниже), да и для менее мощной десктопной системы, а также топового ноутбука польза от применения SSD в сценариях VideoCreation и Productivity совершенно очевидна (в VideoCreation, к слову, и топовые НЖМД ведут себя очень даже достойно). Таким образом, мы в очередной приходим к навязшему на зубах постулату: универсальных решений не существует, и конфигурацию своего ПК надо подбирать, руководствуясь тем, какие конкретные задачи вы на нем собираетесь решать.

Глупо отрицать очевидное — согласно методике оценки теста PCMark Vantage, преимущество систем с SSD неоспоримо и порой более чем двукратно по сравнению с младшими из наших реперных НЖМД (но все же не 10-кратно). А разница между быстрыми десктопным и ноутбучным винчестерами и здесь не так уж очевидна. И уж всяко неразличима в «реальности, данной нам», как известно, «в ощущениях». Оптимально в данном случае ориентироваться на «верхний» блок «PCMark» на этих диаграммах, показывающий «главный» индекс общесистемной производительности этого бенчмарка.

Да, можно спорить, что это в определенном смысле «синтетика», куда менее реалистичная, чем имитация работы пользователя в тестах типа SYSmark. Однако паттерны PCMark Vantage учитывают много таких нюансов, которые пока что отсутствуют в SYSmark. Поэтому тоже имеют право на жизнь. А истина, как известно «где-то рядом» (и этот перевод, как известно, неточен). :)

Заключение


Наше первое исследование дискозависимости общесистемной производительности современных ПК топового и среднего уровней на примере десятка реперных конфигураций показало, что в большинстве традиционных задач простой пользователь вряд ли почувствует (по своим ощущениям от работы компьютера) большую разницу от применения более быстрого или более медленного диска из тех, что сейчас представлены на рынке или продавались не так давно. В большинстве задач, не связанных напрямую с постоянной активной работой с диском (копирование, запись и чтение большого объема файлов на предельной скорости), дискозависимость системной производительности либо отсутствует вовсе, либо не настолько велика, чтобы мы ее реально почувствовали (ощутили) по уменьшению среднего времени отклика системы на наши действия. С другой стороны, безусловно, существует немало задач (например, обработка видео, профессиональная работа с фото и пр.), в которых дискозависимость заметна. И в этом случае применение высокопроизводительных дисков и, в частности, SSD, способно положительно повлиять на наши ощущения от работы ПК. Но шустрый диск и SSD — это не панацея. Если ваш компьютер работает недостаточно быстро, то к апгрейду имеет смысл подходить строго в соответствии с теми задачами, которые при помощи этого ПК предполагается решать. Чтобы вдруг не испытать разочарования от потраченных без реальной пользы денег.

Зачем может понадобиться HDD в 2020 году и нужен ли он вообще?

Жесткий диск в 2020 году — все еще жизненная необходимость или технологический архаизм? Разбираемся вместе и определяем, для каких целей нам все еще может понадобиться HDD.

Почему жесткие диски уходят в небытие

Магнитные накопители берут свою историю в 1956 году. Тогда компания IBM создала первый жесткий диск — модель 305 RAMAC. Огромный шкаф массой 970 килограммов был рассчитан на целых 5 мегабайт. С тех пор технология принципиально не изменилась: для хранения информации по-прежнему используются магнитные диски. Уменьшились габариты, вырос объем, цена стала доступнее.


Переломным моментом можно считать период после 2010 года, когда на рынке стали появляться твердотельные накопители SSD. С течением времени их доступность только увеличивалась, что приводило к вытеснению привычных HDD.

Во многом это стало возможным из-за нескольких принципиальных недостатков жестких дисков. Первый и самый главный — скорость записи и чтения. HDD редко когда способны предложить скорости больше 120 МБ/с. Во многом это связано с ограничением скорости вращения шпинделя. Модели для ПК остановились на 7200 оборотах в минуту, серверные HDD имеют немного большую скорость вращения шпинделя — до 15 000.

SSD не имеют движущихся деталей, поэтому не ограничены в этом плане. Соответственно, и скорости чтения/записи могут доходить до 770 МБ/с.


Естественно, такая разница ощутимо сказывается на пользовательских задачах. Установка Windows и драйверов, загрузка всех служб и открытие тяжелых файлов — с твердотельным накопителем все это происходит в 2-3 раза быстрее.


Наличие шпинделя в HDD приводит и к другим недостаткам — шуму и вибрациям. В большинстве систем они не критичны, поскольку вентиляторы кулера или блока питания, а также шум окружающей среды обычно громче работы жесткого диска. Но если вы собираете «тихоходную» систему с дорогостоящими комплектующими, то громкий винчестер может сильно раздражать.

Еще один неприятный недостаток — масса проводов, особенно, если у вас все еще устаревшие IDE. В компактных корпусах кабель-менеджмент превращается в настоящую головоломку. Многочисленные кабели становятся одной из причин плохой вентиляции корпуса, что приводит к повышению рабочих температур комплектующих.

Чем опасны и откуда берутся эти температуры, мы рассказали в этом материале.

Самые дешевые гигабайты

Несмотря на все недостатки, цена за мегабайт HDD остается самой низкой. В 1981 году стоимость 1 ГБ пространства на HDD составляла 500 000 долларов. Сейчас это всего 0,025 доллара.


Вывод — для хранения больших объемов файлов HDD со своей удельной стоимостью гигабайта остается вне конкуренции. Что это могут быть за файлы? Первое и самое важное — бэкапы. Резервные копии занимают много места и, по сути, просто хранятся, пока не понадобятся. Использовать для этих нужд место на SSD нерационально.

Если у вас есть гигабайты личных фотографий, любимые видеоролики, сериалы или архивы другой полезной информации, то жесткий диск будет незаменим. В таких случаях как раз важен объем, а не скорость записи/чтения, ведь главная задача — долго и безопасно хранить данные. Стоит отметить и тот факт, что отключенные от питания SSD уже через 6-12 месяцев могут потерять данные.

Например, при температуре хранения в 30 градусов и температуре использования 40 градусов срок хранения данных без питания — 52 недели (почти год). Как видно, SSD накопители очень придирчивы к температурному режиму, а изменения хотя бы в 5 градусов могут уменьшить время хранения в 2 раза! С HDD подобных проблем испытывать не придётся.


Также HDD будет полезен для больших игр. Вот вам парочка примеров: Middle-earth: Shadow of War — 105 ГБ, Red Dead Redemption 2 — около 112 ГБ, а всем известная Call of Duty Warzone занимает 108 ГБ. И не забывайте, что многочисленные обновления контента обычно только увеличивают объем. Если у вас SSD на 128 или 256 ГБ, то такие «гиганты» будут занимать непомерно много места.

Да, из-за невысокой скорости чтения и записи жестких дисков игроки могут испытывать небольшие подтормаживания или задержки при смене уровней, особенно, если вы играете в проект с большим открытым миром. Однако пока не существует игр, для которых в официальных системных требованиях прописан SSD.

Есть ли альтернативы?

Если в системном блоке ставить один или несколько жёстких дисков не хочется, то почему бы не воспользоваться внешними?

Самый простой и доступный вариант — купить внешний жёсткий диск, который подключается по USB. Удобно, компактно и относительно дешево. При использовании USB 3.1 скорость копирования данных будет более чем комфортной. Внешние HDD выпускаются объемом до 12 ТБ. Еще можно найти специальные ударопрочные модели, которые только повысят надежность хранения данных.

Более дорогой и эффективный вариант — док-станции. Это специальные подставки, которые позволяют подключить к системе несколько HDD-накопителей. Как правило, подсоединяются через USB 3.0, а сами диски — по SATA. В зависимости от модели можно вставить до четырех 2,5- или 3,5-дюймовых накопителей. Это позволяет быстро и удобно работать с большими объемами данных.

Развитием этой технологии стали дисковые хранилища. К их главным преимуществам относится большее число слотов, поддержка eSATA и RAID-массивов. Последние будут особенно важны для безопасного хранения каких-либо рабочих файлов (документы, мультимедиа и не только). В некоторых моделях есть даже активное охлаждение, поэтому накопители не будут сильно греться.

Наряду с дисковым стоит сетевое хранилище (NAS). Визуально они очень похожи на устройства из предыдущей категории, но имеют несколько отличительных особенностей. В NAS предусмотрен собственный процессор, ОЗУ и Ethernet-порт. Подключаются они по сети, поэтому скорость соединения может доходить до 1 Гбит\с. Здесь также включена поддержка RAID, сетевого протокола iSCSI и даже возможность настройки FTP-сервера.

NAS больше подойдет продвинутым пользователям, у которых объем хранимых данных не помещается на один жесткий диск и нужны продвинутые уровни защиты.

Облачные хранилища

Что делать, если на покупку вышеописанных «плюшек» денег нет? Тогда можно хранить данные в Интернете. Здесь помогут облачные хранилища. Очевидная выгода — вам не придется покупать носители, поскольку данные будут храниться на чужих серверах. С другой стороны, для доступа понадобится Интернет, а объемы бесплатного пространства достаточно скромные.

Подробно о тарифах и объемах мы рассказали ранее в этом материале. При выборе нужно учитывать несколько основных параметров:


В этой статье мы выясним как и в какой степени SSD влияет на работу в реальных условиях использования.

Если вы давно хотели увидеть реальную производительность SSD в сравнении с привычными HDD, или же, если вы задумывались перенести систему на SSD, но не знали стоит ли это того, эта статья для вас!

Смысла тестировать диск в идеальных условиях мало, т.к. в жизни такого не бывает, поэтому я намерено рассматриваю тесты на примерах из реальной жизни, когда диск заполнен тысячами файлов, играми, файлами кэша браузеров и программ обработки видео и тд.

В общем, запасайтесь попкорном, садитесь поудобнее, и давайте уже перейдем к делу.

В чем проблема HDD дисков?

Проблема в том, что обычные HDD диски, которые мы до сих пор используем в компьютерах, не изменялись c 1990x wiki годов, когда впервые было решено ref делать HDD, работающие на 4300 rpm и 5400 rpm (оборотов в минуту)

Шел 2016 год — 20-25 лет спустя, мы, все еще, имеем те же самые 5400 rpm диски, работающие на скорости 60-90 МБ/с, но потребности пользователей уже давно изменились, теперь мы работаем с огромными проектами и большим количеством файлов в многозадачном режиме, требующие большой пропускной способности и отзывчивости диска, даже если, на заднем плане уже выполняют работу несколько других программ.
Начиная с 2001, некоторые производители начали выпускать диски пользовательского сегмента работающие на скорости 7200 оборотов в минуту, вместо 5400, но это ничего не изменило, прирост с 90 МБ/с до 120 МБ/с (33% — 5400-7200) по-прежнему не дает значимого эффекта.

Тесты | синтетические (потенциальные скорости работы диска)

  • HDD медленее в 94 раза (0.68 МБ/с против 63.6 МБ/с), по сравнению с SSD
  • HDD медленее в 53 раза (0.36 МБ/с против 19 МБ/с), по сравнению с SSD
  • HDD медленее в 178 раз (0.78 МБ/с против 139 МБ/с), по сравнению с SSD
  • HDD медленее в 86 раз (0.64 МБ/с против 55 МБ/с), по сравнению с SSD

Почему нас интересует, в основном, результат работы диска с мелкими блоками данных?
Дело в том, что открываете ли вы браузер, или же, импортируете проект, состоящий из сотен файлов, в программу, вроде Unreal Engine, не важно, что вы делаете, во всех подобных случаях, компьютер обрабатывает огромное количество мелких блоков данных (преимущественно считывает, поэтому скорость чтения обычно важнее, чем скорость записи)
Секвенциальная скорость («Seq Q32T1» и «Seq» на скриншоте выше) важна при записи / чтении файлов больших размеров (МБ или ГБ), что происходит реже, и не влияет на отзывчивость системы, в такой же степени, как работа с тысячами мелких блоков.

Почему же Apple компьютеры намного отзывчивее обычных ПК и «никогда» не тормозят?

В мире компьютеров сложилось мнение, что вся беда в операционной системе — Mac OSX на компьютерах Apple «оптимизирована», «никогда не тормозит», «нету синих экранов сбоя системы»

Может быть, это потому, что:
Компьютеры Apple (не считая самые дешевые комплектации): имеют все те же компоненты, кроме одного — диск m.2 SSD / проприетарные аналоги:
— Работающий на скорости (700 — 1100 МБ/с) через NVMe, имея возможность обрабатывать 65000 потоков ожидания, выполняющие по 65000 команд каждый
— Имеющий системы предотвращения потери данных, системы защиты от перегрева, способствующие предотвращению появления ошибок и зависаний при работе с несколькими ГБ данных состоящих в основном из мелких блоков, в многозадачном режиме
— и тд. и тп.
В то время как, опыт работы с Windows пк формировался при работе с компьютерами, имеющими:
— Обычный HDD 5400 rpm (шумящий и вибрирующий при работе, из-за наличия движущихся частей) имеющий возможность обрабатывать 1 поток ожидания, выполняющий 32 команды
— Работающий на скорости (60 — 110 МБ/с)
— Постоянно заставляя всех пользователей наблюдать состояние — «Не отвечает», наблюдать за издевательски медленной реакцией при работе в многозадачном режиме, не только с мелкими, но и с относительно крупным блоками данных.

Оставив все остальные компоненты компьютера на местах, поменяте диски местами, поставив 5400 rpm HDD на Apple, а m.2 SSD на Windows ПК, и окажется, что диск действительно самая важная (для быстродействия и отзывчивости) часть компьютера, т.к. обычный HDD диск очень медленнен, и заставляет ждать всю систему пока он закончит обрабатывать все очереди задач от программ и ОС, что сильно замедляется при работе в многозадачном режиме, имея, к тому же, приложения, делающие работу на заднем плане, которых может быть довольно много — от авто-обновления зависимостей проектов, до задач, поставленных на обработку самим пользователем.

Теперь, перейдем к тестам!

Тестовая конфигурация | Тесты реальных условий использования

Все результаты тестов получены на ноутбуке, имеющем данные компоненты:
OS: Windows 10
CPU: i7 3610qm
RAM: 12 ГБ
Подопытные:
HDD: Toshiba MQ01ABF050 | 465 ГБ (SATA)
SSD: Kingston HyperX Fury | 120 ГБ (SATA)

| Обновление чистой Windows 7 на Windows 10

9 минут — Быстрее на 188% (в 2.9 раза)
HDD Общее время:

Первые 4 строки — процесс обновления Windows 10
Последняя строка — тест, чтобы убедиться в том, что процесс обновления закончен, и ПК готов к работе.


| Время запуска Windows 10

SSD Время запуска Windows и программ в трее: 0:16 | Общее время: 0:23 — Быстрее на 217% (в 3.17 раза)
HDD Время запуска Windows и программ в трее: 0:48 | Общее время: 1:13
PDF открывался сразу же после появления рабочего стола
Отсчет заканчивался после загрузки программ в трее и полного открытия PDF файла


| Время запуска приложений

SSD Время запуска приложений | Общее время: 1:44 — Быстрее на 274% (в 3.74 раза)
HDD Время запуска приложений | Общее время: 6:29


| Время выполнения задач в приложениях

SSD Выполнение задач в приложениях | Общее время: 2:29 — Быстрее на 175% (в 2.75 раза)
HDD Выполнение задач в приложениях | Общее время: 6:50


Результаты

Судя по тестам и ощущениям, наш подопытный HyperX Fury SSD обошел HDD по всем параметрам в 100% случаев, решив головную боль, во всех сферах, требующих высокой отзывчивости системы, таких как, создание игр, обработки видео / аудио, симуляции частиц, постобработка, работа с сотнями ГБ данных или тысячами OpenEXR.

После перехода на SSD диск, больше не заметно никаких проблем с подвисаниями, касается ли это проблемы скорости обработки в AE, из-за того, что ваш sublime text загружает апдейты зависимостей, используя 100% диска в это время, или же, остановки работы из-за того, что у вас на заднем плане просчитывается BVH перед рендером в blender, или же, пока Maya, в течении нескольких часов, создает alembic файлы кэша, не давая зайти даже в интернет без зависания.
Не заметно больше и никаких ожиданий пока отвиснет Audacity, после уменьшения звуковой дорожки, каждые 2 минуты и никаких ожиданий пока прогрузятся все HDR или EXR в папке каждый раз по 1-3 минуты (!). Больше не приходится останавливать работу одного приложения, для того, чтобы ускорить отзывчивость других, т.к. оно загружало диск под 100%. Не приходится и ждать по несколько секунд после каждого действия в Unreal Engine, при любом аспекте работы, от импорта фалов, до применения и тестирования ассетов.
Не говоря уже о скорости перезагрузки системы после обновлений, которая происходит за секунды, вместо минут, и открытии приложений, что происходит теперь «относительно» мгновенно.

И тд и тп., если вы со всем этим сталкивались, вы меня хорошо понимаете и смысла продолжать писать разрешенные проблемы, не имеет, если же вы не понимаете о чем речь, скорее всего вам станет скучно читать еще пару сотен проблем, разрешенных с помощью SSD, в любом случае.

По личному опыту, я заметил, что пока работаешь на компьютере с HDD, не замечаешь на сколько не продуктивна и раздражительна работа из-за постоянных ожиданий, и статуса «не отвечает», особенно если ваша работа за компьютером не ограничивается лазанием по интернету.

Читайте также: