На каком сокете раньше появились 6 ядерные 12 поточные процессоры

Обновлено: 03.07.2024

Муки апгрейда: сколько ядер нужно играм, есть ли смысл переплачивать?

Оптимальный выбор

6-ти ядерный современный процессор — оптимальный вариант до 2024 года для комфортной игры с высокими настройками* на 16:9 монитора и даже в 4К разрешении (если позволит видеокарта и монитор), и достаточно для VR (требование игры Half-Life: Alyx).

Сравнительные тесты и обзоры 8 - 16 ядерных процессоров показывают, что играм 2019 года с избытком хватает 8 ядер. И горячие 8 ядерные процессоры, выигрывают у 12 и 16 ядер, т.к. игры просто не используют эти ядра и им важна мощность самого ядра, а не их кол-во.

Считаем кол-во ядер

4 ядра — базовое требование большинства игр выпущенных до 2020 года;

+2 ядра — для игр с 2020 г. на API Directx 12 или Vulkan. А также для VR, 1440p и 4К-монитора (2060р при 16:9);
+2 ядра — для стриминга +1 монитор;
+2 ядра — если широкоформатный монитор 21:9 (на экране больше объектов);
+4 ядра — если игра на 3 мониторах по 16:9 или супер широкоформат 32:9;

Речь идёт о современных процессорах, выпускаемых с 2018 года, таких как: AMD Ryzen 5/7/9 – 2XXX / 3XXX и Intel i5/i7/i9 – 9ХХХ / 10ХХХ.
6-ти ядерный процессор 2016 года, будет равен производительности 4 ядерному процессору из 2019 года. Поэтому не стоит рассчитывать на старые процессоры.

Б) Для игр с монитором 21:9
4 + 2 + 2 = 8 ядер

В) Монитор 21:9 + стриминг
4 + 2 + 2 = 10 ядер

6 ядер

Отличный выбор для современных и будущих игр на «стандартных» 16:9 мониторах.

Если планируется выжимать больше 100 FPS на игровых мониторов 144гц то стоит выбрать 6 ядерный процессор с более высокой частотой:
Intel Core i5 – 9600KF или Intel Core i5-9600K

Ноутбук: на конец 2019 года единственным доступным современным 6-ти ядерным процессором для ноутбуков является Intel Core i7 9750H, например ноутбук MSI GS65 Stealth 9SF

Кому 8 ядерный?

А) Cтримить игры и работа со вторым монитором
Б) Широкоформатный экран 21:9. Дело не в разрешении экрана, а в том, что игрок видит на 30% больше объектов и процессору нужны дополнительные ресурсы для расчета дополнительных объектов для видеокарты.

А 10-12 ядерный?

А) Игра на сверхшироком мониторе 31:9 или на 3 мониторах;
Б) Стриминг на 1440p разрешении;

Intel Core i9-10900 - 10 ядер, но высокая частота позволит играть >100FPS на высокой графике (процессор ожидается во 2 квартале 2020 года)

16 и более?

На конец 2019 г. нет таких игр, которые могли бы задействовать столько ядер. И в ближайшие годы не предвидится.
Возможно в 2025 году такие игры и появится, но процессоры, память и видеокарты выпускаемые сегодня устареют для таких игр.

Можно ознакомиться с тестами и обзорами 16 ядерного AMD Ryzen 3950X. Из которых видно, что разрыв между 8, 12 и даже 16 ядрами в играх незначительная (на начало 2020 года) и картина врядли изменится в ближайшей перспективе. Разботчики игр в первую очередь будут подстравиваться под консоли, а новое поколение консолей 2020 года будет строится на 8 ядерных AMD.

Есть ли смысл брать ядра на запас?

Нет - так показал опыт с момента появления первых 4 и 6 ядерных процессоров.

Кроме количества ядер есть наиболее важные показатели: объем и скорость кеш-памяти, инструкции, алгоритмы «предсказаний», тип и скорость оперативной памяти, тип и кол-во полос на PCIE, тактовая частота. Поэтому 10 - 12 ядерный процессор из 2020 года будет проигрывать 8 ядерному процессору из 2025 года.

Но удачно выбранный современный процессор способен «пережить» одну замену видеокарты. Купив современный процессор и видеокарту 2019-2020 года, можно провести модернизацию в 2023 году, поменяв видеокарту и увеличить объем оперативной памяти. И только в 2025 поменять процессор с мат.платой и памятью.

«Топовые» видеокарты каждые 3 года обновляют требования к процессорам и памяти, поэтому лучший процессор 2020 года не сможет на 100% загрузить «топовую» видеокарту 2025 года.

«Лишние ядра» имеет смысл брать:
А) В ближайший год планируется смена 16:9 монитора на 21:9 или играть в три монитора;
Б) Дополнительные ядра реально пригодятся в софте для работы;

Нужны ли потоки играм?

В играх от них толку нету или прибавка на уровне погрешности. Игра сильно нагружает ядро и второй виртуальный поток этого ядра обычно замораживается.

Потоки полезны для работы, тем у кого одновременно запущено более 5 разных программ и все они активны (открыты на экране) и/или работают в фоне.

Мнения и гипотезы:
Бытует мнение, что для игр с API Directx 12 все же потоки дают прибавку до 3% производительности. Одни тесты это доказывают, другие опровергают. Все же это связано в первую очередь с оптимизацией игры и приложениями которые открыты вместе с игрой или работают на соседнем мониторе.

На старых играх с API Directx 11/10/9 виртуальные потоки не влияют на производительность или даже тормозят. И тому есть гипотеза: большинство топ игр изначально готовились для приставок XBOX и PS, где установлены процессоры AMD без виртуальных потоков, а значит игры заточены под физические ядра и после переноса на PC игровой движок ошибочно воспринимает потоки, думая, что это физические ядра.

Почему не подходят старые 6 и 8 ядерные процессоры?

Старые процессоры, выпущенные до 2017 года завершают свой жизненный цикл (особенно на DDR3 памяти). Каждые два года игры и софт становится более требовательным к таким показателям процессора:
- объем и скорость кэш-памяти;
- набор инструкций и алгоритмов в процессоре (ускоряют сложные расчёты);
- скорость и объем оперативной памяти;

Проще говоря ядра старых процессоров не достаточно быстры как у новых и они банально не смогут успевать прорабатывать игровые сцены и расчеты для современных видеокарт.

Такая же ситуация обстоит и со старыми Intel Xeon процессорами с алиэкспресс. Ядер много, электричества ест много, а толку в современных играх все меньше и меньше.

AMD или Intel?

Каждый бренд имеет свои незначительно плюсы и минусы. Выбор зависит от фанатизма, опыта и разочарований в прошлом и кошелька.

Аргументы в пользу AMD:
- AMD инноватор: первый массовый 64 битный процессор, первые многоядерные процессоры (и «народные»). Благодаря этим инновациям, AMD толкает зазевавшийся Intel развиваться и заставляет ощутимо снижать цены;
- Процессоры и видеоускорители этого бренда используются в игровых приставках XBOX и PS;
- Системы на базе AMD немного дешевле при одинаковой производительности (средней) с конкурентом;

На начало 2020 года, AMD лучше подходит для сборки системного блока с будущей поэтапной модернизацией, например если хотите сейчас собрать дешевую систему под 16:9 монитор, но потом перейти на 21:9 монитор.
Можно взять AMD Ryzen 2600X с материнской платой X470 или B450 (платы Х570* не совместимы с AMD 1ХХХ/2ХХХ), через год-два вместе с монитором 21:9 и возможно видеокартой взять подешевевший AMD Ryzen 7 3700X, но на +20% более производительный чем 2600Х. Или даже 12 ядерный AMD Ryzen 9 3900X, который совместим с этими платами, только потребуется установить более производительное охлаждение.


На начало 2020 года на базе Intel моделей 2019 года можно собрать хорошую производительную систему, но не более 8 ядер и без потенциала дальнейшей модернизации. Лучше дождаться середины 2020 года, когда на рынок выйдет обновленная платформа, которая позволит устанавливать процессоры до 10 ядер и поддерживающая более производительную память.

Размер процессора по сравнению с монеткой. Есть процессоры и крупнее, есть и гораздо мельче.

Размер процессора по сравнению с монеткой. Есть процессоры и крупнее, есть и гораздо мельче.

Что такое процессорное ядро и многоядерность

Разновидности многоядерных процессоров

Сколько бывает ядер внутри процессора?

Был эксперимент компании AMD создавать и 3-ядерные процессоры, но это уже в прошлом. Получилось весьма неплохо, однако их время прошло.

Кстати, компания AMD также производит многоядерные процессоры, но, как правило, они ощутимо слабее конкурентов от Intel. Правда, и цена у них значительно ниже. Просто следует знать, что 4 ядра от AMD почти всегда окажутся заметно слабее, чем те же 4 ядра производства Intel.

Частота многоядерных процессоров

Виртуальная многоядерность, или Hyper-Threading

Отметим, что наиболее дорогие и производительные процессоры класса Core i7 в обязательном порядке оснащены Hyper-Threading. В них 4 физических ядра и 8 виртуальных. Получается, что одновременно на одном процессоре работают 8 вычислительных потоков. Менее дорогие, но также мощные процессоры Intel класса Core i5 состоят из четырёх ядер, но Hyper Threading там не работает. Получается, что Core i5 работают с 4 потоками вычислений.

Нужно ли компьютеру много ядер? Сколько ядер нужно в процессоре?

Все современные процессоры достаточно производительны для обычных задач. Просмотр интернета, переписка в соцсетях и по электронной почте, офисные задачи Word-PowerPoint-Excel: для этой работы подойдут и слабенькие Atom, бюджетные Celeron и Pentium, не говоря уже о более мощных Core i3. Двух ядер для обычной работы более чем достаточно. Процессор с большим количеством ядер не принесёт значительного прироста в скорости.

Для игр следует обратить внимание на процессоры Core i3 или i5. Скорее, производительность в играх будет зависеть не от процессора, а от видеокарты. Редко в какой игре потребуется вся мощь Core i7. Поэтому считается, что игры требуют не более четырёх процессорных ядер, а чаще подойдут и два ядра.

Для серьёзной работы вроде специальных инженерных программ, кодирования видео и прочих ресурсоёмких задач требуется действительно производительная техника. Часто здесь задействуются не только физические, но и виртуальные процессорные ядра. Чем больше вычислительных потоков, тем лучше. И не важно, сколько стоит такой процессор: профессионалам цена не столь важна.

Есть ли польза от многоядерных процессоров?

В первые годы существования технологии многоядерности далеко не все программы умели работать даже с двумя ядрами процессора. К 2014 году подавляющее большинство приложений отлично понимают и умеют пользоваться преимуществами нескольких ядер. Скорость обработки задач на двухядерном процессоре редко увеличивается в два раза, но прирост производительности есть почти всегда.

Многоядерные процессоры в мобильных телефонах и планшетах

Как выбрать многоядерный процессор и не ошибиться?

Практическая часть сегодняшней статьи актуальна на 2014 год. Вряд ли в ближайшие годы что-то серьёзно поменяется. Речь пойдёт только о процессорах производства Intel. Да, AMD предлагает неплохие решения, но они менее популярны, да и разобраться в них сложнее.


…в процессе развития количество ядер будет становиться всё больше и больше.
Разработчики Intel

• 1999 г. – анонсирован первый в мире 2-ядерный CPU – серверный RISC-процессор IBM Power 4.

Стартовала эпоха многоядерных процессоров!

• 2001 г. – начались продажи 2-ядерных процессоров IBM Power 4.

• 2002 г. – о перспективах использования двух ядер в своих процессорах архитектуры K8 заявила компания AMD. Практически одновременно с аналогичным заявлением выступила Intel.

• Декабрь 2002 г. – вышли первые десктопные Intel Pentium 4, поддерживающие «виртуальную» 2-ядерность – технологию Hyper-Threading.

• 2004 г. – IBM выпустила второе поколение своих 2-ядерных процессоров – IBM Power 5. Каждое из ядер Power 5 поддерживает одновременное выполнение двух программных потоков (то есть снабжено аналогом Hyper-Threading).

• 18 апреля 2005 г. – Intel выпустила первый в мире настольный 2-ядерный процессор Pentium Extreme Edition 840 (кодовое название – Smithfield). Выполнен с использованием 90-нм технологии.

• 21 апреля 2005 г. – AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Toledo) с тактовой частотой от 2,0 до 2,4 ГГц. Выполнены с использованием 90-нм технологии.

• 1 августа 2005 г. – AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Manchester) с тактовой частотой от 2,0 до 2,4 ГГц. Выполнены с использованием 90-нм технологии.

• В течение второго полугодия 2005 г. Intel выпускает:

– линейку 2-ядерных процессоров Pentium D 8** (кодовое название – Smithfield) с тактовой частотой от 2,8 до 3,2 ГГц. Выполнены с использованием 90-нм технологии. 2-ядерные процессоры Pentium D – это два независимых ядра, объединенных на одной кремниевой пластине. Ядра процессоров базируются на архитектуре NetBurst процессоров Pentium 4;

– линейку 2-ядерных процессоров Pentium D 9** (кодовое название – Presler) с тактовой частотой от 2,8 до 3,4 ГГц. Выполнены с использованием 65-нм технологии (следует отметить, что инженеры Intel воспользовались преимуществом 65-нм технологического процесса, который позволяет либо уменьшить площадь кристалла, либо увеличить количество транзисторов).

• 23 мая 2006 г. – AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Windsor) с тактовой частотой от 2,0 до 3,2 ГГц. Выполнены с использованием 90-нм технологии.

• 27 июля 2006 г. – компания Intel представила линейку 2-ядерных процессоров Intel Core 2 Duo (кодовое название – Conroe) с тактовой частотой 1,8 – 3,0 ГГц. Выполнены с использованием 65-нм технологического процесса.

• 27 сентября 2006 г. – Intel продемонстрировала прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс (предположительно, в 2010 г.).

• Ноябрь 2006 г. – Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q6*** (кодовое название – Kentsfield) с тактовой частотой 2,4 – 2,6 ГГц. Выполнены с использованием 65-нм технологии. Фактически представляют собой сборку из двух кристаллов Conroe в одном корпусе.

• 5 декабря 2006 г. – AMD представила линейку 2-ядерных процессоров Athlon 64 X2 (кодовое название – Brisbane) с тактовой частотой от 1,9 до 2,8 ГГц. Выполнены с использованием 65-нм технологии.

• 10 сентября 2007 г. – AMD выпустила нативные (в виде одного кристалла) 4-ядерные процессоры для серверов AMD Quad-Core Opteron (кодовое название – Barcelona). Выполнены с использованием 65-нм технологии.

• 19 ноября 2007 г. – AMD выпустила 4-ядерный процессор для домашних компьютеров AMD Quad-Core Phenom. Выполнен с использованием 65-нм технологии.

• Ноябрь 2007 г. – компания Intel представила линейку 2-ядерных процессоров Penryn с тактовой частотой от 2,1 до 3,3 ГГц. Выполнены с использованием 45-нм технологии.

• 6 января 2008 г. – компания Intel выпустила (под марками Core 2 Duo и Core 2 Extreme) первые партии 2-ядерных процессоров Penryn, выполненных с использованием 45-нм технологии.

• Февраль 2008 г. – всемирно известный производитель коммуникационного оборудования, компания Cisco Systems, разработала QuantumFlow – 40- ядерный процессор, предназначенный для установки в сетевое оборудование. Процессор, на разработку которого ушло более 5 лет, способен выполнять до 160 параллельных вычислений. Чип будет использоваться в новых сетевых устройствах.

• Март 2008 г. – одноядерные процессоры семейства Pentium 4 (661, 641 и 631) и 2-ядерные семейства Pentium D (945, 935, 925 и 915) сняты с производства.

• Март 2008 г. – компания AMD выпустила 3-ядерные процессоры Phenom X3 8400, 8600, 8450, 8650 и 8750 с тактовой частотой от 2,1 до 2,4 ГГц. Выполнены по 65-нм технологии. Фактически эти процессоры представляют собой 4-ядерные Phenom с одним отключенным ядром. Анонсированы эти процессоры были в сентябре 2007 г. По словам разработчика, подобные чипы рассчитаны на тех, «кому двух ядер мало, но за четыре он платить не готов».

Основное достоинство 3-ядерных процессоров заключается в том, что они имеют более низкую по сравнению с 4-ядерными чипами стоимость, но работают быстрее 2-ядерных, таким образом, заполняя ассортиментное пространство между теми и другими. Главный конкурент AMD – корпорация Intel – такие процессоры не выпускает. Впервые о намерении приступить к производству подобных чипов AMD объявила в 2007 г.

• Март 2008 г. – компания AMD на выставке CeBIT 2008 в Ганновере представила свои первые процессоры, изготовленные на базе 45-нм технологического процесса. 4-ядерные чипы под кодовым названием Shanghai для серверов и Deneb для настольных систем были изготовлены на фабрике Fab 36 в Дрездене, Германия. Для их производства использовались 300-мм подложки. Техпроцесс с топологическим уровнем 45 нм был разработан компанией AMD совместно с ее партнером, корпорацией IBM. Новые процессоры Shanghai и Deneb, как и Phenom X4, являются «по-настоящему» 4-ядерными, так как все четыре ядра размещены на одной кремниевой подложке.

• Апрель 2008 г. – компания AMD выпустила 4-ядерные процессоры Phenom X4 – 9550, 9650, 9750 и 9850 – с тактовой частотой 2,2–2,5 ГГц. Выполнены по 65-нм технологии.

• Сентябрь 2008 г. – компания Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q8*** (кодовое название – Yorkfield) с тактовой частотой 2,3 – 2,5 ГГц. Выполнены с использованием 45-нм технологии.

• Сентябрь 2008 г. – компания Intel выпустила линейку 4-ядерных процессоров Intel Core 2 Quad Q9*** (кодовое название – Yorkfield) с тактовой частотой 2,5 – 3,0 ГГц. Выполнены с использованием 45-нм технологии.

• 15 сентября 2008 г. – на конференции VMworld, организованной компанией VMware, корпорация Intel официально сообщила о выходе первого в отрасли массового 6-ядерного серверного процессора Xeon 7400 (кодовое название чипов – Dunnington). Фактически представляет собой три 2-ядерных кристалла, объединенных в одном корпусе. Создан по 45-нм технологии, работает на частоте 2,66 ГГц. Может работать с несколькими операционными системами одновременно. Имеет аппаратную поддержку технологии виртуализации (Intel Virtualization Technology).

• Октябрь 2008 г. – компания Intel разработала 80-ядерный процессор. Изготовлен он по 65-нм технологии, что позволило уменьшить его размеры, но, тем не менее, он остается еще слишком большим для коммерческого использования. Скорее всего, в ближайшие 7 лет процессор будет находиться в стадии доработки. На данный момент существующие технологии не позволяют снизить его энергопотребление и размеры. По мнению специалистов, массовое производство станет возможно только после 2012 г., когда Intel освоит 10-нм техпроцесс. На данный момент известно, что компания планирует введение 32-нм технологии производства процессоров в конце 2009 г., а 22-нм – в 2011 г.

Сейчас процессор не способен даже запустить операционную систему, но это не смущает разработчиков. Происходит масштабная «обкатка» новых функций, которые будут применяться в будущем в процессорах, одной из которых станет smart-функция по отключению неиспользуемых ядер, что положительно скажется на потреблении электроэнергии и тепловыделении.

• 17 ноября 2008 г. – Intel представила линейку 4-ядерных процессоров Intel Core i7, в основу которых положена микроархитектура нового поколения Nehalem. Процессоры работают на тактовой частоте 2,6 – 3,2 ГГц. Выполнены по 45-нм техпроцессу. Их главной особенностью является то, что контроллер памяти стал составной частью процессора. Это позволило увеличить скорость работы чипа с модулями оперативной памяти и сделало ненужной фронтальную системную шину FSB.

• Декабрь 2008 г. – начались поставки 4-ядерного процессора AMD Phenom II 940 (кодовое название – Deneb). Работает на частоте 3 ГГц, выпускается по техпроцессу 45-нм.

• Февраль 2009 г. – компания AMD продемонстрировала первый 6-ядерный серверный процессор. Выполнен с использованием 45-нм технологии. Кодовое название процессора – Istanbul, он придет на смену серверным процессорам Opteron с кодовым названием Shanghai, которые имеют только 4 ядра. Массовый выпуск таких чипов планируется начать во II половине 2009 г.

• Февраль 2009 г. – компания AMD объявила о начале поставок новых моделей:

– 3-ядерный Phenom II X3 (кодовое название чипа – Toliman) с тактовой частотой 2,8 ГГц. Выполнен по 45-нм технологии;

– 4-ядерный Phenom II X4 810 (кодовое название чипа – Dragon) с тактовой частотой 2,6 ГГц. Выполнен по 45-нм технологии.

• Апрель 2009 г. – компания Intel начала поставки 32-нм центральных процессоров Westmere производителям ПК, как мобильных систем, так и десктопов. Пока речь не идет о готовых коммерческих решениях, а лишь о первых тестовых экземплярах, основное предназначение устройств – их тестирование для выявления некоторых особенностей работы, чтобы производители смогли отладить конструкцию своих систем, и выпустить в продажу полностью совместимые с новым поколением процессоров компьютеры.

По своей сути, процессоры Westmere представляют собой изготовленную по 32-нм техпроцессу архитектуру Nehalem. Семейство включает в себя две категории микрочипов: решения для настольных компьютеров (кодовое обозначение – Clarkdale), и устройства для мобильных систем (кодовое обозначение – Arrandale).

«Мобильные» процессоры Arrandale включают не только само процессорное ядро, но и интегрированную графику. Согласно заверениям разработчиков, такая архитектура позволяет существенно снизить энергопотребление связки процессор–системная логика с интегрированной графикой. Помимо этого, за счет перехода на более прецизионный технологический процесс, снизится стоимость изготовления самих микрочипов, а за счет интеграции большего количества элементов на одном «кристалле» снижается и стоимость готовых мобильных компьютеров.

Поставки серийных экземпляров процессоров Westmere должны стартовать к концу 2009 г.

• Апрель 2009 г. – компания AMD выпустила две новые модели 4-ядерных центральных процессоров для ПК – Phenom II X4 955 Black Edition и Phenom II X4 945. Выполнены по 45-нм технологии.

• 14 мая 2009 г. – компания Fujitsu объявила о создании самого производительного в мире процессора, способного выполнять до 128 млрд. операций с плавающей запятой в секунду. Процессор SPARC64 VIIIfx (кодовое название Venus) работает примерно в 2,5 раза быстрее, чем самый мощный чип крупнейшего в мире поставщика микросхем корпорации Intel.

Увеличение скорости работы стало возможным за счет более плотной интеграции схем процессора и перехода на 45-нм технологию. Ученые смогли расположить на кремниевой пластинке площадью 2 см 2 8 вычислительных ядер, вместо 4-х в предыдущих разработках. Снижение уровня топологии также привело к сокращению потребления электроэнергии. В Fujitsu заявляют, что их чип потребляет в 3 раза меньше энергии, чем современные процессоры Intel. Помимо 8 ядер, чип включает в себя контроллер оперативной памяти.

Процессор SPARC64 VIIIfx планируется использовать в новом суперкомпьютере, который будет построен в институте естественных наук RIKEN в Японии. В него войдут 10 тыс. таких чипов. Суперкомпьютер планируется использовать для прогнозирования землетрясений, исследований медицинских препаратов, ракетных двигателей и прочих научных работ. Запустить компьютер планируется до весны 2010 г.

• Май 2009 г. – компания AMD представила разогнанную версию графического процессора ATI Radeon HD 4890 с тактовой частотой ядра, увеличенной с 850 МГц до 1 ГГц. Это первый графический процессор, работающий на частоте 1 ГГц. Вычислительная мощность чипа, благодаря увеличению частоты, выросла с 1,36 до 1,6 терафлоп (следует заметить, что видеокарты на базе разогнанной версии Radeon HD 4890 не нуждаются в жидкостном охлаждении – достаточно вентилятора).

Процессор содержит 800 вычислительных ядер, поддерживает видеопамять GDDR5, DirectX 10.1 , ATI CrossFireX и все другие технологии, присущие современным моделям видеокарт. Чип изготовлен на базе 55-нм технологии.

• 27 мая 2009 г. – корпорация Intel официально представила новый процессор Xeon под кодовым названием Nehalem-EX. Процессор будет содержать до 8 вычислительных ядер, поддерживая обработку до 16 потоков одновременно. Объем кэш-памяти составит 24МБ.

Nehalem-EX способен обеспечить в 9 раз более высокую скорость работы оперативной памяти по сравнению с Intel Xeon 7400 предыдущего поколения.

Новый чип подходит для объединения серверных ресурсов, виртуализации, запуска приложений с интенсивной обработкой данных и для проведения научных исследований. Его массовое производство планируется начать во второй половине 2009 г. Чип будет изготовлен на базе 45-нм технологии с применением формулы транзисторов hi-k. Число транзисторов – 2,3 млрд. Первые системы на базе Nehalem-EX ожидаются в начале 2010 г.

• 1 июня 2009 г. – компания AMD объявила о начале поставок 6-ядерных серверных процессоров Opteron (кодовое название Istanbul)для систем с двумя, четырьмя и восемью процессорными гнездами. По данным AMD, 6-ядерные процессоры примерно на 50% быстрее по сравнению с серверными процессорами с четырьмя ядрами. Istanbul будет конкурировать с 6-ядерными процессорами Intel Xeon под кодовым названием Dunnington, появившимися в продаже в сентябре 2008 г. Процессор изготавливается с использованием 45-нм технологии, работает на частоте 2,6 ГГц и обладать 6МБ кэш-памяти третьего уровня.

• 22 сентября 2009 г. – компания AMD заявила о намерении выпустить первые 6-ядерные центральные процессоры для ПК. Новинки будут базироваться на 6-ядерной архитектуре серверных процессоров AMD Opteron Istanbul, их кодовое обозначение – Thuban. Как и серверные процессоры Istanbul, Thuban будут представлять собой устройства на основе единого кристалла, при этом изготовление интегральных микросхем будет осуществляться по 45-нм техпроцессу. 6-ядерные процессоры, как и их серверные аналоги, будут состоять из 904 млн. транзисторов, при этом площадь микросхемы составит 346 кв. мм. Предположительно, на рынке процессоры появятся под брендом AMD Phenom II X6.

Примечания

1. Кодовое название (обозначение, наименование) – это название ядра процессора.

2. Линейка – это модельный ряд процессоров одной серии. В рамках одной линейки процессоры могут значительно отличаться друг от друга по целому ряду параметров.

3. Чип (англ. chip) – кристалл; микросхема.

4. Под технологическим процессом (техпроцесс, технология, технология производства микропроцессоров) подразумевается размер затвора транзистора. Например, когда мы говорим – 32-нм технологический процесс, – это означает, что размер затвора транзистора составляет 32 нанометра.

5. Канал – это область транзистора, по которой проходит управляемый ток основных носителей заряда.

Исток – это электрод транзистора, из которого в канал входят основные носители заряда.

Сток – это электрод транзистора, через который из канала уходят основные носители заряда.

Затвор – это электрод транзистора, служащий для регулирования поперечного сечения канала.

6. Фактически, транзисторы – это миниатюрные переключатели, с помощью которых реализуются те самые «нули» и «единицы», составляющие основу цифровой информации. Затвор предназначен для включения и выключения транзистора. Во включенном состоянии транзистор пропускает ток, а в выключенном – нет. Диэлектрик затвора расположен под электродом затвора. Он предназначен для изоляции затвора, когда ток проходит через транзистор.

Более 40 лет для изготовления диэлектриков затвора транзистора использовался диоксид кремния (благодаря легкости его применения в массовом производстве и возможности постоянного повышения производительности транзисторов за счет уменьшения толщины слоя диэлектрика). Специалистам Intel удалось уменьшить толщину слоя диэлектрика до 1,2 нм (что равнозначно всего 5 атомарным слоям!) – такой показатель был достигнут в 65-нанометровой технологии производства.

Однако дальнейшее уменьшение толщины слоя диэлектрика приводит к усилению тока утечки через диэлектрик, в результате чего растут потери тока и тепловыделение. Рост тока утечки через затвор транзистора по мере уменьшения толщины слоя диэлектрика из диоксида кремния является одним из самых труднопреодолимых технических препятствий на пути следования закону Мура. Для решения этой принципиальной проблемы корпорация Intel заменила диоксид кремния в диэлектрике затвора на тонкий слой из материала high-k на основе гафния. Это позволило уменьшить ток утечки более чем в 10 раз по сравнению с диоксидом кремния. Материал high-k диэлектрика затвора несовместим с традиционными кремниевыми электродами затвора, поэтому в качестве второй составляющей «рецепта» Intel для ее новых транзисторов, создаваемых на основе 45-нанометрового техпроцесса, стала разработка электродов с применением новых металлических материалов. Для изготовления электродов затвора транзистора применяется комбинация различных металлических материалов.

7. Приведенная в статье хронология создания многоядерных процессоров не претендует на всеобъемлющий охват.

Всем привет, дорогие друзья. Рад вас видеть! Сегодня я затрону несколько необычную тему, а именно - двухъядерные процессоры intel, так как на форумах (да и от некоторых своих знакомых), периодически слышу, что на 478 сокете были процессоры, которые имели два вычислительных (или физических, кому как угодно) ядра, при этом еще и с HT, то есть - четырехпоточные камни на 478 сокете.

Не забудь подписаться на мой ютуб-канал , там намечается кое-что нереальное)

Сказка - ложь.

Если считать ноутбучный 478 сокет, то, безусловно, двухъядерники тут точно были. Но мы все же говорим про десктопный 478 Если считать ноутбучный 478 сокет, то, безусловно, двухъядерники тут точно были. Но мы все же говорим про десктопный 478

Для того, чтобы это понять, достаточно вспомнить то, какие процессоры выходили под этот сокет. Celeron, как и Celeron D, нас не интересуют, ибо у них было по одному физическому ядру. Pentium 4, в зависимости от архитектуры, мог иметь от 1 до 2 потоков, однако физическое ядро все также было одно.

Флагман затащит?

Особо прошаренные вспомнят, что "пеньки" имели и свои "версии для энтузиастов" - Pentium 4 Extreme Edition. И на 478 сокете такие камешки были, так что это значит, такой процессор все-таки был?

Вот что выдает гугл, если загуглить "первый двухъядерный процессор" Вот что выдает гугл, если загуглить "первый двухъядерный процессор"

Немного вернемся назад, в начало статьи, и вспомним дату, когда был создан первый двухъядерный процессор. Дата эта - 9 мая 2005 года, когда был представлен Athlon 64 X2. Возникает закономерный вопрос - intel сознательно выпустили такой проц под устаревший сокет?

А ведь такой процессор действительно был. Только на 775.

Если посмотреть на спецификации 478 сокета, то можно увидеть, что процессоры Pentium 4 Extreme на нем производились по архитектуре Galllatin. Это серверная архитектура, на которой производились процессоры для серверов - Xeon.

Зато был вот такой интересный процессор P4 478, который имел 64-битный набор инструкций. Насколько помню, это единственный процессор на 478, который мог в 64 бит, и, кстати, он поставлялся только OEM-сборщикам, на прилавки он не попал Зато был вот такой интересный процессор P4 478, который имел 64-битный набор инструкций. Насколько помню, это единственный процессор на 478, который мог в 64 бит, и, кстати, он поставлялся только OEM-сборщикам, на прилавки он не попал

Такие пни отличались от "богомерзких" P4 шиной, кэшем (не всегда), брали более высокие частоты, но есть тут одно НО: среди списка этих процессоров нет ни одного, у которого было бы 2 физических ядра. И тут возникнет вопрос: а откуда тогда взялись эти комментарии под разными статьями, дескать такой процессор реально был, и что это за процессор?

Тут надо понимать, что то, что недоступно уже по умолчанию обрастает кучей тайн. Так вышло и в этот раз, когда комментаторы, видимо, начитавшись википедии, спутали процессор Pentium 4 Extreme Edition 955 с каким-то другим таким "гиперпнем".

Это - CPU-Z "старшего брата" того процессора, о котором я говорю. По сути из отличий - только частота Это - CPU-Z "старшего брата" того процессора, о котором я говорю. По сути из отличий - только частота

955-й я до сих пор мечтаю где-нибудь найти, да собрать на его базе какую-нибудь лютую сборку контента ради, так что если есть желание помочь - буду очень благодарен. Фишка в чем? У этого процессора 2 физических ядра с HT, то есть - 4 потока.

И это в 2005 году! Понятно, что тогда данный проц оброс бахромой из мифов, вот только почему они даже сегодня "форсятся" - не ясно. Ведь в 2005 году у intel был куда более перспективный 775 сокет.

Что это за процессор?

P EE 955 строился на ядре Presler по 65-нм техпроцессу. Частота FSB равнялась 1066 МГц, тогда как частота процессора приближалась к 3.5 ГГц (3.46, если точнее). На борту было и 4 мегабайта кэш-памяти, а поставлялся он в красивой черной коробке.

Сравнение двух топов тех лет, по совместительству - мечты каждого школьника, который фанател от компов Сравнение двух топов тех лет, по совместительству - мечты каждого школьника, который фанател от компов

Найти его проблематично по простой причине - популярности он не сыскал от слова совсем. В то время большинство приложений лучше работали на двух, а то и вообще одном физическом ядре, что давали более дешевые Pentium D. Чтобы в то время не отставать, владельцам 955-х требовалось отключать HT, то есть сидеть на 2 физических ядрах.

Отсюда и мифы и про "загадочный" 4-ядерный Pentium (а они даже сегодня двухъядерные), и про двухъядерный процессор на 478 сокете, и так далее. Кстати, цена на P4 955 составляет мать его 100 долларов, или 7 тысяч рублей. Совсем недавно мы на эти деньги игровой комп собрали, пусть и условно-игровой, но все-таки целый комп на 6 ядрах и 8 гб оперативки.

Вот так и получается, что хороша сказка была, да именно, что сказка.

Если статья понравилась - не забудь поставить лайк, подписаться на канал , а также на нашу группу ВК . До скорого!

Хорошая новость: у меня появился еще один канал, на сей раз - игровой. Вот ссылка!

Читайте также: