Направьте луч от источника света на рабочую поверхность компакт диска зарисуйте опишите и объясните

Обновлено: 02.07.2024

Цель: экспериментально изучить явления интерференции, дифракции и поляризации света.

(выполняется дома)

Оборудование: мыль­ный рас­твор, узкая трубочка [1] , компакт-диск, 2 листа плот­ной бу­ма­ги, лезвие, кусок ка­про­но­вой ткани

Опыт 1. Выдуйте мыльный пузырь и внимательно рассмотрите его. При освещении его белым светом наблюдается образование цветных интерференционных полос. По мере уменьшения толщины пленки полосы, расширяясь, перемещаются вниз. Запишите в тетради для лабораторных работ ответы на вопросы:

1. Почему мыльные пузыри имеют радужную окраску? 2. Какую форму имеют радужные полосы? 3. Почему окраска пузыря все время меняется?

Опыт 2. Рассмотрите внимательно под разными углами рабочую поверхность компакт-диска [2] (на которую производится запись). Что вы наблюдаете? Объясните наблюдаемые явления. Опишите интерференционную картину.

Опыт 3. Дифракция света на малой узкой щели.

Если взять плотный лист бумаги и сделать бритвой разрез, то, поднеся этот разрез бумаги вплотную к глазу, можно наблюдать дифракцию света.

Зарисуйте наблюдаемую картину.

Опыт 4. Ди­фрак­ция света на малом от­вер­стии.

Чтобы про­на­блю­дать такую ди­фрак­цию, нам по­тре­бу­ет­ся плот­ный лист бу­ма­ги и бу­лав­ка. С по­мо­щью бу­лав­ки де­ла­ем в листе ма­лень­кое от­вер­стие. Затем под­но­сим от­вер­стие вплот­ную к глазу и смотрим на ис­точ­ник света. Наблюдаем дифракционную картину.

Зарисуйте наблюдаемую картину.

Опыт 5. Дифракция света на кусочке плотной прозрачной ткани (капрон, батист).

Возьмем кусок капроновой ткани и, расположив его на небольшом расстоянии от глаз, посмотрим сквозь ткань на яркий источник света (лампочку. Не направлять на солнце. Лампочка не должна быть протяженной). Мы увидим дифракционную картину, т.е. разноцветные полосы.

Зарисуйте наблюдаемую картину. Объясните наблюдаемую картину.

Сделайте вывод: Что общего между явлениями интерференции и дифракции света?

(выполняется в классе)

Задание 1. Наблюдение поляризованного света. Исследование зависимости интенсивности плоско поляризованного света, прошедшего через поляризатор, от угла между плоскостями поляризатора и анализатора.

Оборудование: источник света, экран, поляроиды в оправах (2 шт).

1. Между лампой и экраном поместите два поляроида на расстоянии 4-5см друг от друга. Поляроиды должны располагаться параллельно друг другу, а их центры устанавливают на одной высоте с нитью накала лампы и на одной линии, идущей от лампы к экрану. На экране при этом наблюдают светлое пятно равномерной освещенности.

2. Поверните поляроид на первой оправе на 90 о относительно горизонтальной оси и определите, как при этом изменится яркость светового пятна на экране.

3. Определите, как изменится яркость экрана при повороте второго поляроида также на 90 о .

4. Поверните поляроид на первой оправе на 360 о и определите, сколько раз при этом менялась яркость пятна на экране.

5. Повторите опыт со вторым поляроидом и сделайте вывод о влиянии взаимной ориентации поляроидов на интенсивность прошедшего через них светового потока.

Результаты наблюдений и вывод запишите в тетрадь.

[1] В качестве узкой трубочки можно использовать трубочку для коктейля, трубочку, прикладывающуюся к коробке с соком или обычную шариковую ручку (точнее, ее часть – ту, что имеет бо́льшую длину).

[2] Рабочая поверхность компакт-диска – это та сторона диска, на которую производится запись.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

2.1.2. Фокусирующее действие компакт-диска.


Применительно к компакт-диску теория позволяет отождествить его с одновременно с вогнутым и выпуклым зеркалами, каждое из которых также имеет несколько фокусов. На рисунке 4 показано, как преобразуется параллельный пучок света, нормально падающий на диск. Отраженные лучи образуют с осью диска два действительных фокуса, которые можно наблюдать на малом экране диаметром около 3 см.

При перемещении экрана вдоль оптической оси установки, фокусы легко обнаруживаются, как места с максимальной концентрацией света. Наиболее ярким является самый дальний из них (первый фокус). Если на диск падает белый свет, то легко наблюдается хроматическая аберрация – зависимость фокусного расстояния от длины волны. В данном случае для красного цвета фокусы располагаются ближе к диску, чем для синего.

2.2. Экспериментальная часть .

Вместо масок, выделяющих кольцевой фрагмент компакт диска, можно использовать узконаправленный луч лазера. При нормальном падении на поверхность диска наблюдается нормально отраженный луч, по которому можно проверить, действительно ли луч падает на диск перпендикулярно поверхности. Четыре других луча, наблюдаемых в отражении, позволяют найти два действительных и два – мнимых фокуса.

Экспериментально фокусные расстояния компакт-дисков наблюдаются на установке, показанной на рисунке 5. На плоском основании перпендикулярно к нему жестко укреплен компакт-диск так, что его центр располагается над плоскостью основания на высоте, примерно равной 1 см. Лазер-брелок закреплен на рейсшине на такой же высоте и так направлен, что луч падает на диск перпендикулярно его поверхности.





При перемещении рейсшины с лазером вдоль грани основания пятно должно следовать строго вдоль диаметра диска, а отраженный прямой луч - возвращаться в выходное окошко лазера. Проверив нормальность падения луча на диск, отметим ход отраженных от него косых лучей. В местах их пересечения с геометрической осью диска располагаются действительные фокусы.

2.2.1. Методика и результаты измерений.

Наблюдения в монохроматическом свете.

Проверив правильность юстировки лазера, положите на основание лист белой бумаги (формат А4) короткой стороной вплотную к диску и закрепите его кнопками. Проведите на нем осевую линию – перпендикуляр, проходящий через центр диска. Перемещая рейсшину, направьте луч в точку, отстоящую от центра диска на расстояние R1 и отметьте точками направление косых лучей. В местах их пересечения с осью отметьте точки фокусов. Такие действия и измерения следует проделать не менее четырех раз – дважды с левой, и дважды с правой стороны диска. При этом точки падения лучей слева и справа по возможности следует выбирать симметрично. Результаты занесите в таблицу 2.

Рабочая тетрадь по биологии 5 класс Пасечник, Швецов, Демичева Дрофа 2020. Линейный курс

Научный метод «наблюдение» представляет собой комплекс целенаправленных восприятий явлений объективной действительности, в процессе которых наблюдатель может получать знания о внешних сторонах, свойствах, реакциях изучаемого конкретного объекта.

№ 2. Какие увеличительные приборы вы знаете? Для чего их применяют?

Увеличительные приборы позволяют увеличить изображение в несколько сотен раз, чтобы более детально изучить их внешние характеристики. Я знаю такие увеличительные приборы:

Лупа – это простой прибор, который позволяет получить увеличенное до 20 раз изображение. С его помощью можно только увидеть клетки, но вот изучить их строение не удастся;

Микроскоп – это более сложный прибор, позволяющий не только рассмотреть, но и изучить самые мелкие предметы, так как его увеличительная способность достигает нескольких тысяч раз;

Телескоп – это прибор, который предназначен для наблюдения за небесными телами, однако под таким понятием еще подразумевают оптическую телескопическую систему, применяющуюся не обязательно для астрономических целей.

Стр. 51. Лабораторная работа «Устройство лупы и рассматривание с её помощью клеточного строения растений»

Рассматриваем ручную лупу. Это достаточно простой прибор, который позволяет увидеть предмет, увеличенным в 20 раз. Лупа состоит из ручки, необходимой для удерживания прибора в руке, и оправы, на которой крепится увеличительное стекло. При помощи лупы легко можно рассмотреть некоторые части и клетки исследуемого предмета, однако строение этих клеток увидеть не получится.

Рассматриваем невооружённым глазом мякоть полуспелого плода томата, арбуза, яблока. Невооруженным глазом можно увидеть, что мякоть плода томата и арбуза рыхлая, мягкая. Мякоть плода яблока немного плотнее, но также имеет рыхлую структуру. У всех плодов она состоит из мелких крупинок, которые словно «кирпичики» образовывают структуру плода.

Рассматриваем кусочки мякоти плодов под лупой. Для этого ручную лупу держим близко к глазу, а биологический объект приближаем к лупе (или лупу к объекту) до тех пор, пока не получим чёткого изображения. Рассматривая кусочки мякоти плодов арбуза, яблока и томата под лупой, можно увидеть разное строение их клеток. Например, у мякоти плода помидора и арбуза клетки округлые, прозрачные, бледно-розовые. У мякоти яблока клетки бесцветные. В мякоти всех плодов клетки имеют оболочку, которая не придает им определенную форму, не дает растекаться цитоплазме и внутри которой находятся органеллы.

Зарисовываем увиденное в тетрадь, рисунки подписываем.

A picture containing text Description automatically generated

Вывод:

Невооруженным глазом разглядеть клетки, из которых состоит мякоть плодов арбуза, яблока или томата, невозможно. Удается лишь оценить ее структуру: рыхлая, мягкая, в виде зернышек. При помощи лупы можно увидеть клетки, которые у каждой мякоти разные. Например, у яблока они светлые, полупрозрачные. А у арбуза и томата – бледно-розовые, округлые. Также с помощью лупы можно увидеть, что все клетки имеют клеточную стенку, которая держит форму.

Стр. 53. Лабораторная работа. «Устройство микроскопа и приёмы работы с ним».

Рассматриваем микроскоп. Находим тубус, окуляр, объектив, штатив с предметным столиком, зеркало, винты. Выясняем, какое значение имеет каждая часть.

Тубус представляет собой зрительную трубку, в которую вставляются увеличительные стекла.

Окуляр – это верхняя часть тубуса, через которую можно увидеть изображение в микроскопе.

Штатив – это специальное приспособление, которое служит соединяющим и удерживающим креплением для всех частей микроскопа.

Объектив – это нижняя часть тубуса, позволяющая еще больше увеличивать рассматриваемый объект при помощи дополнительных увеличительных стекол.

Винты – это механизмы, которые нужны для того, чтобы настраивать в окуляре максимально четкое изображение.

Зеркало – это еще одна деталь микроскопа, которая предназначена для улавливания солнечных лучей и направления их на располагающийся на предметном столике объект.

Предметный столик – это подставка, у которой по центру есть отверстие, предназначенная для размещения стеклянной пластины (предметного стекла) с изучаемым объектом.

Определяем, во сколько раз микроскоп увеличивает изображение объекта. В среднем микроскоп может увеличить изображение объекта до 3600 раз. Чтобы узнать, какое увеличение дает тот или иной прибор, необходимо перемножить увеличительные возможности объектива (это обычно подписано на соответствующих частях микроскопа) на увеличительные возможности окуляра.

Знакомимся с правилами пользования микроскопом.

Отрабатываем последовательность действий при работе с микроскопом: установка микроскопа, чищение от пыли окуляра и зеркала, начало работы с малого увеличения, изучение объекта при большом увеличении, уборка прибора в места его хранения.

Вывод:

Микроскоп является важным оптическим прибором, который необходим для проведения биологических исследований. Он имеет сложное строение и требует соблюдения правил при обращении с ним. С его помощью можно увидеть детальное строение клетки, ее состав.

Стр. 53. Вопросы после параграфа

№ 1. Какие увеличительные приборы используются для изучения микроскопических объектов?

Для изучения микроскопических объектов используются такие увеличительные приборы, как лупа и микроскоп.

№ 2. Что представляет собой лупа и какое увеличение она даёт?

Лупа является самым простым из увеличительных приборов. Она бывает двух видов – ручная и штативная. Ручная лупа состоит из ручки, за которую нужно держать прибор при использовании, и увеличительного стекла. Увеличительное стекло имеют выпуклую с двух сторон форму и вставлено в оправу.

Для изучения объекта лупу берут за ручку (рукоятку) и подносят к предмету на то расстояние, при котором его изображение будет видно максимально четко. Такая лупа позволяет увеличить изображение предмета в 2 – 20 раз.

Штативная лупа – это аналог ручной лупы. Ее конструкция немного сложнее: в оправу вставлены два увеличительных стекла, которые крепятся на штативе. К штативу также присоединен предметный столик, на котором есть зеркало и отверстие. Такая лупа позволяет увеличить изображение предмета в 10 – 25 раз.

№ 3. Как устроен световой микроскоп?

Световой микроскоп состоит из таких основных элементов, как объектив и окуляр, которые закреплены в подвижном тубусе. Тубус располагается на металлическом основании или штативе. Также к штативу крепится предметный столик. В тубус вставляются линзы.

На верхнем конце тубуса находится окуляр, состоящий из оправы и двух увеличительных стекол. На нижнем конце тубуса – объектив, который состоит из оправы и нескольких увеличительных стекол.

У современных моделей светового микроскопа также есть специальная осветительная система, которая состоит из нескольких линз. В учебном приборе ее роль выполняет вогнутое зеркало.

Предметный столик у микроскопа выполняет роль поверхности, на которой располагается микроскопический препарат. В центре у него есть отверстие, которое пропускает свет, отражаемый зеркалом.

№ 4. Как узнать, какое увеличение даёт микроскоп?

Микроскоп позволяет получить максимальное увеличение изучаемого предмета до 3600 раз. Чтобы точно узнать, какое же увеличение дает микроскоп, нужно умножить число, которое указано на окуляре, на число, которое указано на используемом объективе.

Пример: на окуляре написано «10», а на объективе «20». Это значит, что: 10 умножаем на 20 и получаем 200. Микроскоп дает увеличение в 200 раз.

Стр. 53. Подумайте

Почему с помощью светового микроскопа нельзя изучать непрозрачные предметы?

При помощи светового микроскопа можно изучать только прозрачные объекты, например, тонкий срез растительной или животной ткани. Все потому, что под стеклом прибора располагается источник света или зеркало, лучи которого проходят сквозь изучаемый предмет и попадают на систему линз объектива. Эти линзы и позволяют получить увеличенное изображение. Если предмет будет непрозрачным, то лучи от зеркала или источника света просто не смогут пройти сквозь него, а значит, не удастся получить нужное изображение.

Стр. 54. Задание

Выучите правила работы с микроскопом.

Работу с микроскопом нужно проводить только сидя.

Перед началом работы прибор нужно осмотреть, протереть от пыли окуляр, зеркало, объективы мягкой салфеткой.

Устанавливается микроскоп на ровной поверхности, примерно за 5 – 10 см от края.

Начинать работу с микроскопом нужно с малого увеличения. Для этого объектив опускают в рабочее расстояние – примерно на 1 см от предметного стекла.

На предметный столик положить микропрепарат. Далее вращать винт наводки на себя, плавно поднимая при этом объектив до тех пор, пока в окуляр не будет хорошо видно изображение объекта.

Для изучения при большем увеличении настроить объектив.

После завершения исследования установить малое увеличение, поднять объектив, убрать препарат с предметного столика, протереть все части микроскопа и убрать его в место хранения.

Читайте также: