Нормальная латентность оперативной памяти ddr4 для ryzen

Обновлено: 07.07.2024

Сегодняшний материал об оперативной памяти: кратко и без лишней воды пробежимся по основным её характеристикам, расскажем о том, на что может повлиять её неверный выбор, и о том, как этой ошибки избежать. Ну а в конце приведём список моделей, за которые ручаемся головой. Словом, это простой текст для тех, кто хочет быстро разобраться, купить и забыть.

Но и о тех, кому нужен более скрупулёзный и исчерпывающий подход к вопросу оперативки, мы не забыли: большая статья на эту тему уже в работе.

Основные характеристики оперативной памяти

Итак, давайте для начала определимся с тем, какая вообще оперативная память есть на рынке и чем планки могут отличаться друг от друга. Если отбросить в сторону бренды и цены, то обращать внимание имеет смысл на следующие нюансы: производителя самих чипов памяти, наличие или отсутствие у неё XMP и пассивного охлаждения в виде радиатора, на ранговость, на требуемое для работы напряжение и на частоту с таймингами. В этот список можно было бы включить заодно и стандарт памяти (DDR3 или DDR4), но поскольку речь идёт об актуальных на 2021 год компьютерах, то вариант всего один: DDR4. DDR3 уже отжила свой век. Ну что же, все основные характеристики перед нами — подробнее разберём каждую из них.

Производитель чипов памяти

Как выбрать оперативную память и не ошибиться? Топ-5 планок по версии Игромании

При выборе планки можно вообще не обращать внимание на изготовителя той или иной модели оперативной памяти. На этикетке может быть указана, например, HyperX, но эта компания не имеет своих мощностей по производству памяти. Фирма просто закупает чипы, припаивает их к печатной плате, придумывает дизайн и наклеивает сверху свой лейбл.

На что реально нужно смотреть, так это на чипы памяти, которые, как правило, скрыты от любопытных глаз. Скажем, Samsung B-Die (Samsung — производитель, B-Die — компоновка кристалла) — это лучшее, что есть на сегодняшний день. А ешё есть Nania, Spectek и Elpida, которые уже не очень. Проблема вот в чём: никто из производителей вам, конечно, не скажет, что из перечисленного стоит под красивым радиатором. Чтобы это выяснить, придётся копать форумы или читать отзывы на крупных торговых площадках. Также можно воспользоваться программой Thaiphoon Burner, но это так себе решение, поскольку предполагает то, что память уже у вас на руках. Тем не менее, вариант вполне рабочий при покупке б/у модулей.

Ещё есть сайт B-Die Finder: с его помощью можно отыскать практически все существующие модули памяти на базе чипов Samsung B-Die. Опытные пользователи, конечно, и по косвенным признакам могут догадаться, что стоит «под капотом» того или иного модуля. Скажем, память с частотой 3200 МГц и CL таймингом 14 — это абсолютно точно Samsung B-Die. А вот два с виду одинаковых модуля с частотой 3600 Мгц и CL 16 могут быть сделаны как Samsung, так и Hynix (Это уже намного лучше, чем Elpida, Spectek и Nania, но все еще не Samsung B-Die или, например, Micron E-Die).

Xtreme Memory Profile, или XMP

Как выбрать оперативную память и не ошибиться? Топ-5 планок по версии Игромании

Xtreme Memory Profile — профиль настроек, которые сохраняются в SPD-модуле оперативной памяти. Он представляет из себя определённые частоты и тайминги, на которых должен функционировать модуль после успешной активации XMP в BIOS. И это, кстати, стоит учитывать: покупка модулей с поддержкой XMP ещё не значит, что она сразу же будет работать на заявленных частотах. Без активации профиля память запустится на базовой для DDR4 частоте — 2133 МГц.

Словом, XMP — это заводской разгон памяти, не требующий от пользователя ничего, кроме пары кликов мышкой. Однако есть нюанс, которого стоит опасаться. XMP — это не всегда гарант стабильности: нередки случаи, когда после активации профиля заводского разгона компьютер попросту не запускается. В 99,9% случаев эту проблему можно решить, однако это уже требует знаний, поскольку придётся вручную устанавливать все необходимые напряжения, частоты и тайминги. Что делать, если у вас этих знаний нет или вы попросту не хотите этим заниматься? Обращаться к QVL.

QVL, или Qualified Vendors List (квалифицированный список поставщиков) — это список протестированных на конкретной материнской плате модулей оперативной памяти с указанием всех частот, напряжений и таймингов. Если выбранная вами память есть в QVL интересующей вас материнки, смело приобретайте. QVL для нужной платы находится легко: заходите на официальную страничку материнской платы, ищете разделы Support или Downloads и там находите что-то вроде Memory Support List.

Тут же ответим на весьма популярный вопрос: «Что делать, если я хочу купить память с XMP 4400 МГц CL 17, она есть в QVL моей материнской платы, но на официальном сайте Intel (или AMD) указана поддержка лишь 2133 МГц?»

Корни этой проблемы кроются в неверной трактовке спецификаций процессоров. Те 2133 МГц, что вы видите, — всего лишь на 100% гарантированная частота модулей оперативной памяти, с которыми ваш процессор запустится обязательно. Это вовсе не означает, что встроенный в ЦП контроллер памяти не в состоянии работать с более высокими частотами. У Intel все процессоры Core, начиная с 6-го и заканчивая 10-м поколением, способны работать с комплектами оперативки, частоты которых лежат далеко за пределами 4 ГГц. В 11-м поколении (из-за изменений по части контроллера) поддерживаемые частоты существенно снизились, но это всё ещё внушительные 3733-3800 МГц. Примерно тот же предел и у современных процессоров AMD Ryzen, но в крайне редких случаях он может достигать 4000 МГц.

Радиаторы. Нужны или нет?

Как выбрать оперативную память и не ошибиться? Топ-5 планок по версии Игромании

Нужна ли модулям памяти система пассивного охлаждения? И да, и нет. Всё зависит от нескольких факторов.

Если речь идёт о низкочастотной оперативке (в пределах от DDR4-2133 МГц до DDR4-3000 МГц) с низким напряжением до 1,35 В, то никакой радиатор не потребуется. А вот если вы планируете эту память разгонять или речь идёт об изначально высокочастотных модулях, работающих на напряжениях от 1,35 В, то радиатор и его обдув холодным воздухом строго необходимы. Без этих условий работать память, конечно, будет, но нестабильно. Синие экраны (BSOD), внезапные перезагрузки и вылеты приложений на рабочий стол — вот к чему ведёт её перегрев.

Ранг оперативной памяти

Память в основном бывает одноранговой и двухранговой (крайне редко встречается память с четырьмя рангами). В Сети ходит миф о том, что двухранговая память работает якобы быстрее, чем одноранговая (на одинаковых частотах), однако это не совсем так. Всё дело во второстепенных таймингах. Но мы сейчас не будем углубляться в теорию того, что они из себя представляют. Главное, что нужно понять: если вы не планируете вручную настраивать оперативку, лучше выбирать два ранга (как правило, это модули, у которых чипы памяти распаяны с двух сторон печатной платы, но бывают и исключения). Если же вы можете вручную выставить агрессивные второстепенные тайминги, то никакой разницы между одноранговой и двухранговой памятью не будет (или же разница составит 0,5-1%).

Куда важнее обращать внимание на канальность памяти. Никогда не покупайте в пару к современному процессору один модуль оперативки: так вы вынудите ЦП работать с памятью в одноканальном режиме, и это существенно снизит общую производительность вашего ПК. Всегда берите два модуля.
Но можно ли ставить больше: например, четыре или восемь?

Да, можно. Однако следует понимать, что процессор, рассчитанный на работу с двумя каналами памяти (Dual Channel), не будет работать в четырёхканальном режиме, даже если вы установите четыре модуля. Для активации четырёхканального режима (Quad Channel) необходим ЦП, поддерживающий его. Как правило, такие процессоры принадлежат к высшей (HEDT) ценовой категории либо к серверным решениям (десктопные Intel Core X и серверные Xeon от Intel, а так же Ryzen Threadripper наряду с серверными EPYC у AMD). То, со сколькими каналами памяти может работать непосредственно ваш процессор, уточняйте в официальных спецификациях изготовителя.

Частоты и тайминги

Как выбрать оперативную память и не ошибиться? Топ-5 планок по версии Игромании

О том, что, такое частоты и тайминги, мы в подробностях расскажем в отдельном материале, о котором упоминали в начале этой статьи. Сейчас же обойдёмся общими положениями.

Итак, за правило можно взять одно: чем выше частота оперативки и чем ниже её тайминги, тем лучше. Например, если вы видите перед собой два комплекта памяти, один на 3200 МГц с таймингами 14-14-14-14-34 и второй на 3600 МГц с такими же таймингами, выбирать всегда следует второй. Однако такие высокоскоростные решения, как правило, не слишком привлекают своими ценами, и в реальной жизни приходится идти на компромиссы. Тогда наши рекомендации таковы: выбирайте комплекты на 3000 МГц с CL таймингом 15 и комплекты на 3200 МГц с CL таймингом 16. Это не самое быстрое решение, что можно найти на рынке, но далеко и не самое медленное — некий оптимум, идеально подходящий для любого современного процессора. Да, с такой памятью вы не выжмете из своего ЦП всех соков в плане производительности (а именно он и выигрывает от роста эффективности работы памяти), но и много не потеряете. Причём последнее касается не только производительности, но и денег.

Но ни в коем случае не покупайте в пару к современным процессорам память с частотой от 2133 до 2666 МГц, если хотите получить от них достойную производительность. Сегодняшние ЦП эффективны и упираются не столько в вычислительную мощность своих ядер, сколько в подсистему памяти. Именно по этой причине следующие поколения процессоров от Intel и AMD работать будут уже с DDR5. Ну а такая низкочастотная память, как в примерах выше, просто замедлит работу вашего ЦП до неприличия — она годится только для установки в ПК, предназначенные для решения лёгких офисных задач.

5 лучших планок оперативной памяти

Итак, какую оперативную память советуем мы сами? Разумеется, любая память, какую бы вы ни купили, будет нормально работать в вашей системе. Другое дело — разгонный потенциал модулей: качественные чипы охотно реагируют на повышение напряжения и позволяют наращивать частоту, сохраняя низкие задержки (тайминги). В отдельных случаях (если память попалась отборная) вполне реален рост частот с попутным уменьшением таймингов.

Так вот: выбирать заведомо медленную память, которая практически никак не разгоняется, не стоит. Даже если вы не хотите настраивать память сразу после покупки, всё равно лучше выбрать модель с хорошим потенциалом, чтобы к моменту появления у вас такого желания результат не заставил себя ждать. В связи с этим мы не советуем выбирать модули, собранные на базе чипов от Hynix, Nania, Elpida и Spectek. Если первые (Hynix) ещё худо-бедно разгоняются, хоть и с неизбежным и чаще всего значительным повышением таймингов, то чипы от остальных производителей попросту ужасны.

Что же тогда выбрать? Память с чипами производства Samsung (выпускается как и самой Samsung, так и целым рядом сторонних производителей) и Micron (выпускается компанией Crucial и сторонними вендорами). Особенно интересен второй вариант, поскольку чипы Micron умеют 80% от того, что умеют B-Die, но при этом обходятся куда дешевле. Ну и вот краткий список того, что мы готовы рекомендовать:

Как выбрать оперативную память и не ошибиться? Топ-5 планок по версии Игромании

  • Samsung 4 ГБ DDR4, 2666 МГц CL19, M378A5244CB0-CTD (4000 рублей за комплект 2х 4 ГБ). Бюджетная память с неприглядным зелёным текстолитом без радиаторов. Дешёвая, но неплохо разгоняется. Берёт 3200 МГц CL 16 при напряжении 1,4 В.

Как выбрать оперативную память и не ошибиться? Топ-5 планок по версии Игромании

  • 8 ГБ DDR4 3200 CL16 Crucial Ballistix BL2K8G32C16U4B (8000 рублей за комплект 2х 8 ГБ). Недорогой вариант от Crucial на базе их фирменных чипов Micron E-Die. Шикарная память, которая, повторимся, может 80% того, что умеют чипы Samsung B-Die. Разница только в том, насколько сильно можно зажать tRCDRD, tRC и tRFC. Как правило, спокойно покоряет 3600 МГц CL 14 при напряжении 1,45 В.
  • 8ГБ DDR4 3000 CL15 Crucial BallistixBL2K8G30C15U4B (7500 рублей за комплект 2х 8 ГБ). Абсолютно такая же память с таким же разгонным потенциалом, но чуть дешевле и с чуть более медленным XMP.

Как выбрать оперативную память и не ошибиться? Топ-5 планок по версии Игромании

8ГБ DDR4 Patriot Memory VIPER 4 BLACKOUT 4000MHz CL19 PVB416G400C9K (10000 рублей за комплект 2х 8 ГБ). Память на базе чипов Samsung B-Die, но низкого биннинга (биннинг — процесс, при котором завод-изготовитель сортирует выпущенные чипы памяти по качеству: выше качество — выше потенциал). Гарантированный результат — 4000 МГц CL 17.


G.Skill Trident Z RGB 3200 МГц CL 14 (16000 рублей за комплект 2х 8 ГБ)


G.Skill Ripjaws V 3200 МГц CL 14 (14000 рублей за комплект 2х 8 ГБ).


G.Skill Flare X 3200 МГц CL 14 (13000 рублей за комплект 2х 8 ГБ).


G.Skill Trident Z Neo 3600 МГц CL 14 (19000 рублей за комплект 2х 8 ГБ)

Все эти G.Skill — комплекты, собранные на одних и тех же чипах Samsung B-Die, но уже высокого биннинга (самые отборные чипы, как правило, попадают в модули G.Skill Trident Z Neo). Все предложенные модули — рекордсмены разгона, спокойно работающие при напряжениях до 1,6 В. Гарантированно берут 3600 МГц CL14, 3733 МГц CL 14, 3800 МГц CL 15, 4000 МГц CL 16 и выше. Если повезёт с экземпляром (высочайший биннинг), можно даже рассчитывать на что-то вроде 4000 МГц CL 14. Кроме того, любой из предложенных выше комплектов позволит зажать абсолютно все второстепенные тайминги до минимума.

Постскриптум

Важный момент, на который стоит обращать внимание при активации XMP абсолютно любой оперативной памяти. Почти все материнские платы (неважно, Intel у вас или AMD) при активации профиля заводского разгона завышают требуемое напряжение на встроенный в процессор контроллер памяти. В некоторых случаях такое завышение приводит к выводу контроллера памяти из строя. Чтобы избежать этого, следует зайти в BIOS вашей материнки (обычно это осуществляется за счёт нажатия клавиш Del или F2 во время старта компьютера) и вручную выставить следующие параметры:

  • Для процессоров Intel с 6-го по 10-е поколение:
    • VCCIO — 1,15 – 1,25 В
    • VCCSA — 1,15 – 1,35 В
    • Для процессоров AMD Ryzen:
      • VSOC — 1,1 – 1,2 В

      ***

      Будьте внимательны, выбирайте хорошую и быструю память. Удачи в покорении высоких частот и новых вершин производительности — и до встречи на Игромании!

      Привет, Гиктаймс! Мы продолжаем изучать взаимодействие Ryzen с оперативной памятью. Сегодня займемся практическими исследованиями и ответим на все главные вопросы.

      Давно известно, что AMD Ryzen с медленной и быстрой «оперативкой» — это две совершенно разные в плане производительности системы. Давайте определим, какая DDR4-память лучше всего подходит игровым ПК на базе «красных» процессоров.


      Особенности игровой платформы AMD AM4

      На сегодняшний день для платформы AMD AM4, которая поддерживает процессоры Ryzen 3, Ryzen 5 и Ryzen 7, предусмотрено несколько чипсетов: A320, B350 и X370. Главной ее особенностью, несомненно, является тот факт, что высокочастотная оперативная память поддерживается всеми материнскими платами без исключения — от самых дешевых до самых дорогих устройств. И этим надо пользоваться.

      Двухканальный контроллер памяти DDR4, встроенный непосредственно в центральный процессор, поддерживает ОЗУ стандартов DDR4-2133, DDR4-2400 и DDR4-2666. Но есть один нюанс: работа на частоте 2666 МГц и выше возможна только для одноранговых модулей при условии их установки по одной планке в каждом канале.


      В то же время, начиная с версии микрокода AGESA 1.0.0.6, материнские платы для чипов Ryzen поддерживают оперативную память с эффективной частотой вплоть до 4000 МГц. Когда-нибудь мы будем вспоминать этот стандарт с улыбкой на лице и думать, какими же медленными были компьютеры в тем времена, но сейчас, на закате 2017 года, наиболее оптимальными (в том числе и в плане цены) вариантами смотрятся киты ОЗУ, работающие в диапазоне частот 2666-3200 МГц. Именно с такими наборами памяти процессоры Ryzen проявляют свои лучшие качества. Об этом говорит сама AMD. Об этом говорят производители материнских плат.


      Надо понимать, что рекомендации — это всего лишь рекомендации. Никто не запрещает использовать и более быстрые комплекты ОЗУ вместе с платформой AM4. Например, наш комплект памяти Kingston HyperX Predator HX433C16PB3K2/16 великолепно работает вместе с Ryzen. Используя материнскую плату ASUS ROG Crosshair VI Extreme, нам даже удалось «завести» этот набор ОЗУ на эффективной частоте 3466 МГц, не изменяя напряжения и таймингов.


      Хочется того или нет, но высокочастотная оперативная память потихоньку становится неотъемлемой частью любого производительного ПК. Особенно, если этот компьютер собран на базе компонентов AMD Ryzen. Некоторые важные характеристики архитектуры Zen, применяемой в процессорах Ryzen, описаны в этой статье.

      Во-первых, у чипов Ryzen очень медленно работает TLB-буфер. Во-вторых, частота работы встроенного северного моста Data Fabric жестко привязана к частоте работы оперативной памяти. Для лучшей синхронизации в Ryzen он всегда работает на частоте вдвое ниже эффективной частоты памяти. Получается, если в компьютере используется комплект оперативной памяти DDR4-2133, то Data Fabric работает на частоте 1066 МГц. Северный мост является одним из самых главных компонентов процессора Ryzen, так как именно он отвечает за взаимодействие CCX (CPU Complex) — кластеров, в которых размещены ядра и кеш. Чем меньше частота Data Fabric — тем хуже межъядерное взаимодействие в кристалле.


      На сегодняшний день абсолютное большинство приложений используют несколько потоков, поэтому ускорение работы северного моста в процессорах Ryzen положительно сказывается в задачах любого рода — в том числе и в играх. Надо понимать, что AMD сама позиционирует платформу AM4 как игровую. Современные игры спокойно задействуют больше четырех потоков, а потому использование быстрой ОЗУ положительно сказывается на количестве FPS. К тому же все Ryzen-чипы — будь то четырехъядерные Ryzen 3, шестиядерные Ryzen 5 или восьмиядерные Ryzen 7 — оснащены двумя кластерами CCX, а потому использование высокочастотной оперативной памяти положительно скажется на быстродействии всех моделей без исключения. Пруфы предоставлены далее в статье.


      Тестирование

      Для проведения нашего небольшого эксперимента использовался стенд с процессором AMD Ryzen 7 1700, разогнанным до 3,9 ГГц, набором памяти Kingston HyperX Predator HX433C16PB3K2/16 и видеокартой NVIDIA GeForce GTX 1080. Кит ОЗУ запускался со следующими настройками:


      В стенде использовалась операционная система Windows 10 x64 Pro. Все игры запускались в разрешении Full HD с использованием пресета качества графики «Высокое» и отключенным сглаживанием. На графиках указан минимальный и средний FPS, замеренный при помощи программы FRAPS.

      Основная тема заметки — игры, но давайте для большей наглядности добавим результаты тестирования в бенчмарках x265 и CINEBENCH R15. Как видите, увеличение частоты ОЗУ несколько ускоряет выполнение этих задач. Например, при переходе с DDR4-2133 до DDR4-3200 система при рендеринге в анимационном пакете CINEMA 4D стала быстрее на 3% при задержках CL16. В бенчмарке x265 наблюдается точно такая же ситуация. Вообще большой прирост производительности виден в таких задачах, которым необходимы большие объемы данных. К ним относятся архиваторы и графические редакторы. В этих приложениях разница между системами с разной «оперативной» может достигать 6-10 процентов.


      Все, расходимся? Как бы не так! В играх наблюдается более интересная ситуация, особенно если в системе установлена производительная игровая видеокарта. Например, в GTA V, если сравнить систему с памятью DDR4-2133 CL16 с системой с DDR4-3200 CL16, наблюдается разница в 14% и 22% в среднем и минимальном FPS соответственно. Приличная разница, согласитесь.

      Обратите внимание, какие просадки минимального фреймрейта появились в Battlefield 1 при использовании низкочастотной памяти с высокими таймингами (CL16, CL18). Вывод напрашивается сам: хотите комфортно играть в многопользовательские шутеры и избегать лагов в самые ответственные моменты — используйте хотя бы комплект ОЗУ DDR4-2666.

      Задержки памяти тоже заметно влияют на производительность в играх, поэтому нельзя не учитывать этот момент. Однако на графиках видно, что в ряде случаев прибавка частоты ОЗУ работает эффективнее снижения таймингов.

      Идеальный вариант для систем на базе чипов AMD Ryzen — это использование высокочастотной памяти с задержками не выше CL17/CL18.




      Если в систему установить менее производительные четырехъядерный процессор Ryzen 5 1400, так же разогнанный до 3,9 ГГц, то вместе с видеокартой GeForce GTX 1080 эффект процессорозависимости будет наблюдаться заметно сильнее. Смотрите сами: система с DDR4-2133 уступает компьютеру с DDR4-3200 при одинаковых таймингах целых 15% в GTA V. В «Ведьмак 3» эта разница достигает 21%, а в «Assassin’s Creed: Истоки» — 23%. Получается, что игровым ПК с более бюджетными процессорами Ryzen использование высокочастотной ОЗУ даже важнее, так как нагрузка на ядра и кеш увеличивается.




      Выводы

      Надеемся, наш мини-эксперимент наглядно показал, что при сборке игрового ПК на базе платформы AMD AM4 и процессоров Ryzen в частности нельзя пренебрегать таким компонентов, как оперативная память. Даже в бюджетные системы необходимо устанавливать комплекты, работающие хотя бы на частоте 2666 МГц. Если же вы хотите получить максимум от своего игрового компьютера, то вам потребуется набор DDR4-3000+. Как видите, все очень просто.

      Дальше будет ещё круче! Подписывайтесь и оставайтесь с нами!

      Для получения дополнительной информации о продукции Kingston и HyperX обращайтесь на официальный сайт компании.

      Влияние частоты DDR4 2133-4000 МГц на производительность процессоров AMD Ryzen 5 5600X и AMD Ryzen 9 5950X

      Архитектура Zen 3 в процессорах AMD Ryzen 5000 сделала заметный рывок производительности благодаря увеличению показателя выполнения операций за такт на 19% и повышения рабочих тактовых частот.


      Основным нововведением архитектуры Zen 3 стала перекомпоновка внутренних «модулей» со значительными микроархитектурными изменениями. Инженеры объединили два CCX-комплекса внутри каждого восьмиядерного кристалла в единый блок. Это позволило всем восьми ядрам в одном CCX-комплексе иметь полный доступ к кеш-памяти, что ускорило работу всей подсистемы памяти и снижает задержки при обмене данными. Благодаря такому шагу в шести- и восьмиядерных процессорах Zen 3 основная шина Infinity Fabric стала полностью разгружена от межъядерного траффика и стала отвечать лишь за взаимодействие с контроллерами интерфейсов DRAM DDR4 и PCI Express 4.0. Однако она не потеряла полностью своего предназначения со старшими двенадцати- и шестнадцатиядерными процессорами, где связь между двумя CCD-чиплетами сохранена.


      Второй важной особенностью является принцип работы шины Infinity Fabric. Она имеет собственный тактовый домен, синхронизируемым с физической частотой памяти. Благодаря оптимизациям и некоторой разгрузке межъядерного обмена данными стабильной работы можно добиться в режиме DDR4-3600 в синхронном режиме и более в асинхронном режиме.

      Однако в общий алгоритм работы вмешивается еще один участник – непосредственно контроллер памяти DRAM DDR4. Поскольку он независим от процессорных ядер, то также имеет свою рабочую частоту. В совокупности мы получаем, что работа подсистемы памяти процессоров семейства Ryzen 5000 имеет три независимых параметра – частоту оперативной памяти, частоту шины Infinity Fabric и частоту контроллера памяти. Инженеры AMD постарались согласовать все три генератора в соотношении 1:1:1 в режиме до DDR4-3600 включительно, после чего работа каждого компонента изменяются согласно таблице.

      Частота памяти (MCLK) Частота Infinity Fabric (FCLK) Частота контроллера памяти (UCLK)
      До DDR4-3600 до 1800 МГц FCLK = MCLK UCLK = MCLK
      DDR4-3600 MCLK = 1800 МГц FCLK = MCLK UCLK = MCLK
      После DDR4-3600 выше 1800 МГц FCLK = 1800 МГц UCLK = ½ MCLK

      Поэтому в разгоне важно следить за частотой оперативной памяти выше 3600 МГц, вручную активируя частоту шину Infinity Fabric равную половине показателя DDR4 и не забывать выставлять режим UCLK=MemCLK.

      Для нашего тестирования мы будем использовать младший процессор AMD Ryzen 5 5600X с единственным CCD-чиплетом и самую старшую модель Ryzen 9 5950X, имеющую два полноценных CCD-чиплета, что позволит наглядно и в полной мере изучить влияние частоты оперативной памяти на показатели быстродействия процессоров с обменом данных, обработки информации и игровую производительность.


      В качестве основной платформы выступит материнская плата MSI MEG B550 Unify-X, установившая несколько рекордов разгона оперативной памяти.

      MSI MEG B550 Unify-X построена на шестислойном текстолите черного цвета с увеличенной толщиной медных слоев. В дизайне применим строгий внешний вид с минимальным количеством пластика и отличным охлаждением цепей питания. Последняя насчитывает 16 фаз (14+2) с мосфетами Infineon TDA21490 (по 90А), управляемые полноценным шестнадцатиканальным контроллером Infineon XDPE132G5C.


      Важнейшей особенностью материнской платы MSI MEG B550 Unify-X является переработанная оптимизированная разводка линий и только два слота DIMM DDR4 для достижения наилучшей производительности и уменьшения задержек.


      Производителем предусмотрены индикаторы POST-кодов, кнопки включения и перезагрузки, кнопки прошивки BIOS и сброса настроек на задней панели, а также простой доступ к важным перемычкам на плате. В наборе с MSI MEG B550 Unify-X имеется специальный пак DIY Stands Set с подставками для превращения платформы в открытый стенд с возможностью обдува снизу и легкой доступностью к компонентам.


      Завещающим основной «треугольник» комплектующих становится набор оперативной памяти Team T-Force Xtreem 8Pack 4500MHz 16Gb.



      В качестве графической составляющей выступает видеокарта MSI Radeon RX 6700 XT Gaming X.


      Тестовый стенд

      • Материнская плата: MSI MEG B550 Unify-X;
      • Процессоры:
        • AMD Ryzen 5 5600X;
        • AMD Ryzen 9 5950X;

        Методика тестирования

        BIOS материнской платы MSI MEG B550 Unify-X обновлен до последней стабильной версии A30 (7D13vA3).


        Для мониторинга показателей системы использовалась утилита HWINFO64.

        Процессоры AMD Ryzen 5000 работают на стоковых частотах.


        Оперативная память Team Xtreem 8Pack оснащена XMP-профилем с высокой тактовой частотой:

        Пределом стабильной работы для процессоров в синхронном режиме стала частота оперативной памяти 4000 МГц, контроллера памяти и шины Infinity Fabric – 2000 МГц. Тайминги понижены до «16-16-16 32-Т1», уменьшены вторичные тайминги. Остальные параметры выставлены в режиме «Auto», включая напряжения SoC, VDDP, VDDG.

        Частота оперативной памяти 4000 МГц и тайминги будет отправной точкой для нашего тестирования. Другие частоты будут достигаться уменьшением множителя с указанными параметрами, включая шину Infinity Fabric и контроллер памяти, кроме частоты 2133 МГц с автоматическими настройками по умолчании.

        Режим MCLK:FCLK:UCLK = 1:1:1


        Для максимальной стабильной частоты DDR4-4000 и демонстрации производительности добавлен асинхронный режим MCLK:FCLK:UCLK = 1:1:2.


        Результаты тестирования

        В первую очередь взглянем на AIDA64 бенчмарк кэша и памяти на системе с различной частотой памяти DDR4.




        Наблюдаем взрывной рост производительности до частоты DDR4-3600, заявленной компанией AMD как наиболее оптимальной для высокоэффективного быстродействия процессоров AMD Ryzen 5000 в независимости от компоновки CCX-комплексов и чипсетов. Дальнейшее повышение частоты ведет к менее значительному росту.

        Латентность оперативной памяти.


        Задержки памяти также заметно снижаются, но до порога DDR4-3200. Отметим, что асинхронный режим в значительной степени пока лишь продемонстрировал падение в данном тесте.

        Тест быстродействия обработки данных WinRAR.


        В обработке потока данных тест быстродействия WinRAR демонстрирует прирост производительности на 34% для младшего процессора AMD Ryzen 5 5600X с одним CCX при разгоне от 2133 МГц до 4000 МГц в синхронном режиме и на внушительные +52% для двух комплексного CCX старшего процессора Ryzen 9 5950X.

        Игровую производительность оценивали в «Ведьмак 3: Дикая Охота» с минимальными настройками графики в разрешении 720p для уменьшения влияния графической составляющей.



        Игра The Witcher 3: Wild Hunt блестяще реагирует на многоядерность системы, и мы снова наблюдаем как частота памяти и шины Infinity Fabric влияет на взаимосвязь в старшем процессоре Ryzen 9 5950X. При стоковой частоте DDR4-2133 она даже ниже младшей модели, но по мере оверклокинга наблюдается ошеломительный прирост до отметки DDR4-3600 МГц.


        Графические пакеты бенчмарки 3DMark Fire Strike и Time Spy, показатели Physics Score и CPU Score соответственно.


        Тест 3DMark Fire Strike практически не замечает разгона оперативной памяти.

        Однако пакет Time Spy значительно лучше демонстрирует связь частоты и влияния связи шины Infinity Fabric между CCX-комплектами: напомним, что Ryzen 5 5600X имеет один блок CCX с шестью ядрами, а Ryzen 9 5950X – два блока CCX, соединенные шиной IF. Прирост составляет 13,5% и потрясающие 42,4%% соответственно. Для моделей Ryzen 7 5800X и Ryzen 9 5900X ситуация будет аналогичная (один и два CCX).


        Результаты бенчмарков Cinebench R20 и Cinebench R23 от компании Maxon.


        Текущие тесты, наоборот, продемонстрировали небольшой спад производительности при многоядерном прогоне. Перегрев был исключен. Возможно, с ростом частот значительнее возрастает нагрузка на контроллер памяти, который сказывался на системе процессора по удержанию заданного лимита (CPU функционировали в стоке), поэтому, как и на решениях Intel чем сильнее разгон оперативной памяти, тем сильнее нагрузка на соответствующие блоки и тем выше нагрев и потребление.


        Заключение

        Влияние частоты оперативной памяти на процессоры AMD Ryzen 5000 неоспоримо и как мантра повторяется уже чуть ли не по телевидению. Однако нам хотелось подробнее изучить данный вопрос с обновлением прошивок BIOS, последней версией AGESA и драйверами, влияющие на оптимизации и быстродействия конечных продуктов, и конечно же на взаимосвязь младшего и старшего процессоров с различной компоновкой.

        AMD Ryzen 5 5600X остается бодрым шестиядерным процессором c одним CCD-чиплетом и IOD-чиплетом, где основная связь возлагается на шину Infinity Fabric. Как мы убедились последняя зависит от частоты оперативной памяти, как и контроллер памяти, поэтому отправной точкой для Ryzen 5 5600X и, следовательно, для Ryzen 7 5800X является частота в режиме DDR4-3200, а более благоприятная отметка достигается при DDR4-3600. Дальнейший рост наблюдается, однако, каждый шаг достигается все более высокими жертвами и меньшей выручкой. В общем итоге средний прирост составляет +28,5%! Если вы приобрели подобную систему и неуверенно разбираетесь в «железе», то нашей рекомендацией будет текущая проверка на какой частоте памяти DDR4 работает ваша система: нередко пользователи и сборщики забывают активировать хотя бы профиль XMP и работают на пониженной частоте 2133-2400 МГц, когда нашим минимумом является 3200 МГц!

        Для топового процессора AMD Ryzen 9 5950X справедливы все вышесказанные утверждения. Но не стоит забывать, что у него и версии Ryzen 5 5900X один блок CCX стоит особняком и там связь держится на той же шине IF, которая чувствительна к любому «чиху». Поэтому даже после частоты DDR4-3600 мы наблюдаем менее линейный, но прирост быстродействия: здесь стоит побороться хотя бы за частоту памяти 3800 МГц, а отметка ниже DDR4-3200 карается наказанием самого себя потерей драгоценных FPS в играх и лишних минутах при обработке больших потоков данных! Средний прирост производительности от 2133 МГц к 4000 МГц составляет аж +48%!

        Каждый компонент персонального компьютера вносит свой вклад в уровень итоговой производительности системы. Это и процессор, и видеокарта, и жёсткий диск, и конечно оперативная память. Главными характеристиками памяти является её тип, частота и тайминги.

        Тайминги памяти — величина довольно абстрактная, это не секунды или миллисекунды. Это такты. Но главное (с чем напрямую связаны тайминги памяти) — это латентность памяти. Латентность памяти — время, затрачиваемое процессором на получение байта информации из оперативной памяти. В этой статье мы разберемся как понизить латентность оперативной памяти DDR4 для Ryzen.

        Латентность оперативной памяти для Ryzen может быть вычислена с помощью специальных тестов производительности. На этикетке продаваемых модулей памяти величина затрачиваемого на обмен информацией времени между процессором и модулем памяти показана в виде набора таймингов. Основные из них: CL, TRCD, TRP и TRAS (для DDR4 TRAS неактуален), иногда к ним ещё добавляется пятый параметр — Command rate.

        Частота влияет на пропускную способность памяти. Если для выполнения задачи достаточно и просто пропускной способности с запасом, то ещё больше ускорить выполнение такой задачи может помочь лишь снижение латентности памяти.

        Также латентность играет важную роль в задачах, в которых нужен максимально быстрый отклик на действия пользователя или других программ.

        Как уменьшить латентность памяти Ryzen

        Лучше покупать разогнанные модули памяти с предустановленными в них профилями XMP. Такой профиль сразу позволит использовать минимальные тайминги для данного модуля, активировав его в настройках BIOS материнской платы.

        Вариант посложнее — купить обычную неразогнанную память с хорошими чипами от Samsung, Hynix или Micron и самому настроить тайминги памяти. Для процессоров Ryzen имеется утилита DRAM Calculator for Ryzen, позволяющая подобрать тайминги памяти и тем самым снизить латентность (см. статью об утилите: Как пользоваться Ryzen DRAM Calculator).

        Попробуем добиться некоторого снижения латентности памяти в обычных модулях, без XMP.

        1. Тестирование до снижения латентности

        Ещё до коррекции таймингов памяти проведём тестирование времени отклика (латентности) с помощью Теста кэша и памяти утилиты AIDA64:

        uploaded-post-1586078396_html_28d72a10d0d5f31e.jpg

        И ещё сделаем это с помощью теста MEMbench (MEMbench mode: Easy) утилиты DRAM Calculator for Ryzen:

        uploaded-post-1586078396_html_2a2bbc4535a2beaa.jpg

        2. Технические особенности модулей памяти

        С помощью программы Thaiphoon Burner мы можем более подробно посмотреть характеристики модулей памяти. Данные модули используют микросхемы Micron MT40A1G8SA-062E:J.

        uploaded-post-1586078396_html_d228eeea26fad4c8.jpg

        Для этих микросхем есть техническая документация в Интернет. В ней имеются интересующие нас технические характеристики:

        uploaded-post-1586078396_html_dedb82d3765a349d.jpg

        Электрические спецификации данных чипов памяти следующие:

        • VDD: от -0,4 В до 1,5 В;
        • TSTG: от -55 о С до 150 о С.

        При этом рекомендуемая температура не должна превышать 85 о С.

        uploaded-post-1586078396_html_c3b5fd53df639aff.jpg

        Из показанного выше следует: мы можем аккуратно повышать напряжение до 1,4 В, если при этом будем соблюдать безопасный температурный режим памяти.

        Внимание: повышение напряжения влечёт за собой серьёзный нагрев чипов! Для того, чтобы избежать этого, необходимо купить для них специальные радиаторы и установить их на модули памяти. В противном случае из-за повышенных температур возможна деградация чипов памяти и, соответственно, выход модулей из строя.

        В процессе изучения спецификаций чипов памяти сравнивались чипы B-die и J-die, в следствие чего были сделан вывод, что отличаются данные чипы только диапазоном температур (у J-die диапазон более широкий) и разными токами, но незначительно. В интерфейсе утилиты DRAM Calculator for Ryzen нет опции выбора чипов J-die, поэтому мы выберем в разделе Memory Type чипы Micron E/H-die, так как они в данной серии являются, судя по документации, наиболее некачественными.

        3. Подбор таймингов — профиль V1

        Как было сказано выше, подбирать тайминги чтобы снизить латентность памяти мы будем с помощью утилиты DRAM Calculator for Ryzen. Перейдите на вкладку Main, выберите характеристики вашего оборудования:

        • Processor: ZEN + AM4. Процессор в моём компьютере Ryzen 2700.
        • Memory Type: Micron E/H-die.
        • Profile version: V1.
        • Memory Rank: 1. Данные модули памяти одноранговые.
        • Frequency (MT/s): 2933 МГц. Чипы могут функционировать и при гораздо более высоких частотах. Однако, так как нашей целью является уменьшение задержек, выбрана именно данная частота — для неё не нужно дополнительно настраивать контроллер памяти в процессоре (см. статью о разгоне памяти: Как разогнать память на Ryzen).
        • BCLK (100-104.8): 100 МГц.
        • DIMM Modules: 2 модуля.
        • Motherboard: B350/X370.

        Нажимаем на кнопку Calculate FAST для выполнения расчёта таймингов. Программа выдаёт следующие результаты для выбранных нами стартовых параметров:

        uploaded-post-1586078396_html_6dd68276a686cf3f.jpg

        Теперь необходимо зайти в настройки BIOS (UEFI) компьютера и установить вычисленные нами ранее значения.

        После установки этих значений наш стендовый компьютер, к сожалению, отказался загружаться. Вычисленные тайминги не подошли. С помощью джампера сбрасываем настройки BIOS до заводского состояния (см. статью: Как сбросить BIOS на заводские настройки). Затем надо попытаться подобрать тайминги по втором профилю. Данная версия профиля рекомендуется для менее качественных чипов памяти.

        4. Подбор таймингов — профиль V2

        Перезагрузив Windows, вновь запускаем утилиту DRAM Calculator for Ryzen, выбрав ваши параметры:

        Нажимаем на кнопку Calculate FAST для выполнения расчёта таймингов. Получаем следующие результаты:

        uploaded-post-1586078396_html_2e2bd2ebdb55e843.jpg

        Перезагружаем компьютер, вносим изменения в значения таймингов, опять перезагружаем компьютер, загружаем настройки BIOS. Теперь компьютер работоспособен.

        5. Тонкий подбор таймингов памяти

        Так как между сформированными с помощью профилей V1 и V2 наборами таймингов может быть достаточное количество промежуточных вариантов, непосредственно в BIOS пробуем потихоньку уменьшать значения, взятые из рассчитанных для профиля V2, до значений аналогичных таймингов, рассчитанных для профиля V1.

        Есть основные тайминги: tCL, tRCDWR, tRCDRD, tRP, tRAS и CL. Их сначала не трогаем. Остальные тайминги устанавливаем в значения, рассчитанные для V1. Проверяем работоспособность компьютера. Если компьютер работает корректно, меняем по одному указанные выше тайминги и проверяем каждый раз работоспособность. В случае, если работоспособность оказалась нарушена, откатываемся на шаг назад.

        Опытным путём выясняем, что тайминги для профиля V1 работоспособны с отличием всего в одном параметре: значение tRP — вместо 14 должно равняться 15. Именно к настройкам, рассчитанным для профиля V1, следует стремиться максимально приблизиться — они наиболее интересны в плане производительности, в то время как тайминги для профиля V2 — скорее усреднённые, более безопасные.

        Скриншоты с выполненными настройками:

        uploaded-post-1586078396_html_da6bd2f73c5e4467.jpg

        uploaded-post-1586078396_html_3eec35fa19d796cc.jpg

        uploaded-post-1586078396_html_eafc7f29b2f047e8.jpg

        uploaded-post-1586078396_html_b47845b2a1fa36c0.jpg

        uploaded-post-1586078396_html_30fd3c2fc7c4c2b4.jpg

        uploaded-post-1586078396_html_a046a51c5be4f3d0.jpg

        Теперь вы знаете как понизить латентность памяти, сделаем ещё немного тестов.

        6. Проверка табильности

        После завершения настройки параметров памяти конечно же необходимо протестировать стабильность её работы. Для этого можно использовать Тест стабильности системы утилиты AIDA64, его составляющие:

        • Stress CPU;
        • Stress FPU;
        • Stress cache;
        • Stress system memory.

        Нажимаем кнопку Start. Тест пройдён не был.

        uploaded-post-1586078396_html_9b21b0676297655f.jpg

        Перезапускаем компьютер, заходим в настройки BIOS и повышаем параметр напряжения DRAM Voltage до 1,36 В.

        uploaded-post-1586078396_html_84ff87a7e57fbc85.jpg

        Сохраняем настройки BIOS и перезагружаемся. Вновь запускаем Тест стабильности системы утилиты AIDA64. Тест вновь завершён с ошибкой.

        Опять в настройках BIOS немного повышаем значение параметра DRAM Voltage, но не выше чем максимальное возможное для ваших чипов памяти. В данном случае до 1,39 В, опять перезагружаемся и запускаем тест.

        uploaded-post-1586078396_html_2d1fcc68b24334fc.jpg

        Опять ошибка. После этого перезагружаем компьютер и немного увеличиваем в настройках BIOS значения для таймингов tRCDWR и tRCDRD, например:

        uploaded-post-1586078396_html_9a94c345f0f5769b.jpg

        Перезагружаемся и запускаем тот же тест. Стресс-тест выполнялся 7 минут, ошибок обнаружено не было. Далее попробуем снизить значение параметра напряжения питания памяти DRAM Voltage, например, к значению 1,34 В.

        uploaded-post-1586078396_html_347c1f9b3ef03855.jpg

        Перезагрузка и выполнение теста. Процесс длился 7 минут, ошибок не было.

        uploaded-post-1586078396_html_714d99b114877080.jpg

        7. Тестирование после снижения латентности

        После выполнения всех тестов необходимо оценить результаты выполнения всех настроек функционирования оперативной памяти для снижения задержек чтобы понять насколько снизилась латентность оперативной памяти для Ryzen Для этого выполним вновь Тест кэша и памяти утилиты AIDA64:

        uploaded-post-1586078396_html_f4e7c48baa01ad42.jpg

        Кроме этого выполним ещё и тест MEMbench (MEMbench mode: Easy) утилиты DRAM Calculator for Ryzen:

        uploaded-post-1586078396_html_b2649a20801ba1fc.jpg

        Для сравнения с другими процессорами можно дополнительно выполнить тест Задержка памяти утилиты AIDA64:

        uploaded-post-1586078396_html_200a8fba3c6a18de.jpg

        Сравним полученный уровень латентности памяти до и после подбора таймингов.

        Наглядно это видно на скриншоте:

        Итак, по данным утилиты AIDA64 нам удалось уменьшить латентность памяти Ryzen на 8,91 %, а по данным утилиты DRAM Calculator for Ryzen — на 10,23 %.

        В тесте Задержка памяти утилиты AIDA64 наш процессор AMD Ryzen 7 2700 по латентности оперативной памяти обошёл занесённый в базу процессор AMD Ryzen 7 2700X и почти догнал Intel Core i7-5820K.

        Выводы

        Сегодня на практике мы изучили такое понятие, как латентность памяти для Ryzen. Фактически был построен новый профиль XMP для использованных нами конкретных модулей памяти. Используя эту инструкцию, вы также можете понизить латентность оперативной памяти DDR4 для Ryzen на своем компьютере, если желаете иметь максимальную отзывчивость системы. Также данная инструкция будет полезна тем, кто уже разогнал память по параметру частоты. В таком случае дальнейший рост производительности возможен только при снижении уровня латентности памяти (уменьшении таймингов памяти).

        Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

        Читайте также: