Оперативная память это память для хранения параметров конфигурации компьютера

Обновлено: 04.07.2024

Как и в любой другой микропроцессорной системе, память персонального компьютера состоит из двух частей: оперативной памяти и постоянной памяти . Обе части расположены в адресном пространстве памяти, к обеим компьютер может обращаться одинаковым образом. Обе памяти допускают обращения к отдельным байтам, 16-разрядным словам (имеющим четные адреса), к 32-разрядным двойным словам (имеющим адреса, кратные четырем) и к 64-разрядным учетверенным словам (имеющим адреса, кратные восьми). Различие только в том, что оперативную память используют для временного хранения программ и данных, а в постоянной памяти хранятся программы начального запуска, начального самотестирования компьютера, а также набор программ ввода/вывода нижнего уровня, то есть то, что не должно теряться при выключении питания компьютера. Объем оперативной памяти гораздо больше, чем постоянной памяти .

7.3.1. Оперативная память

Оперативная память занимает значительную часть адресного пространства компьютера. Ее установленный объем и быстродействие оказывают огромное влияние на быстродействие персонального компьютера в целом (порой даже большее, чем скорость процессора). Надежность ее работы во многом определяет надежность всего компьютера. Поэтому всеми разработчиками ей уделяется большое внимание.

Все персональные компьютеры используют оперативную память динамического типа ( DRAM — Dynamic Random Access Memory), основным преимуществом которой перед статической оперативной памятью ( SRAM — Static RAM ) является низкая цена. Это связано с тем, что если элемент статической памяти (триггер) требует 4—6 транзисторов, то элемент динамической памяти — это интегральный конденсатор, для обслуживания которого требуется 1—2 транзистора. Отсюда же следуют два основных недостатка динамической памяти: она требует регенерации (то есть постоянного возобновления заряда на разряжающемся конденсаторе) и имеет в несколько раз меньшее быстродействие по сравнению со статической памятью. К тому же во время регенерации динамическая память недоступна для обмена, что также снижает быстродействие компьютера. Отметим, что сейчас обычно применяют встроенную регенерацию, не требующую внешнего обслуживания, но опять-таки занимающую время.

Переход на полностью статическую память слишком сильно повысил бы стоимость компьютера в целом (к тому же необходимый объем оперативной памяти компьютера все увеличивается), поэтому статическую память применяют только в самых "узких" местах, там, где без высокой скорости не обойтись, например, для кэш-памяти. Что касается динамической памяти, то ее развитие идет по пути снижения времени доступа благодаря структурным и технологическим усовершенствованиям. Например, второе поколение динамической памяти EDO RAM (Extended Data Output RAM) имело быстродействие примерно на 20—25% выше, чем у обычной памяти. Это достигается за счет того, что следующее обращение к памяти возможно еще до завершения предыдущего обращения. Третье поколение динамической памяти — SDRAM ( Synchronous DRAM ) — еще на столько же быстрее (рабочая частота в настоящее время достигает 133 МГц). Еще более быстродействующая память — DDR SDRAM (частота до 400 МГц) и память RDRAM (частота до 1 ГГц и даже выше).

Для упрощения установки оперативной памяти в компьютер ее выполняют в виде небольших модулей — печатных плат с ножевым (печатным) разъемом, на которые установлены микросхемы памяти ( SIMM — Single In-Line Memory Module ). Эти модули устанавливаются в специальные SIMM -разъемы на материнской плате , что позволяет пользователю легко менять объем памяти компьютера, учитывая при этом необходимый уровень быстродействия, сложность решаемых задач и свои финансовые возможности. Широко применяются 72-контактные SIMM -модули разного объема. Отметим, что не рекомендуется одновременно использовать несколько модулей с разным быстродействием: в некоторых компьютерах это приводит к сбоям. В современных компьютерах на базе процессоров Pentium применяются также модули DIMM ( Dual In-Line Memory Module — модуль памяти с двусторонними печатными выводами), имеющие 64 бита данных.

Модули памяти иногда поддерживают проверку содержимого памяти на четность. Для этого к 8 битам данных каждого адреса памяти добавляется девятый бит четности. Он записывается при каждой записи информации в соответствующий байт памяти и проверяется при чтении информации из соответствующего байта памяти. Если обнаруживается несоответствие бита четности байту информации, то вырабатывается сигнал, вызывающий немаскируемое прерывание NMI .

Все адресное пространство памяти компьютера разделяется на несколько областей, что связано, в первую очередь, с необходимостью обеспечения совместимости с первыми компьютерами семейства. В компьютере IBM PC XT на процессоре i8088 процессор мог адресовать 1 Мбайт памяти (20 адресных разрядов). Но все программные и аппаратные средства строились исходя из предположения, что доступное адресное пространство — только младшие 640 Кбайт (тогда это казалось вполне достаточным). Данная область памяти получила название стандартной памяти ( Conventional memory ). Именно в пределах этих 640 Кбайт (адреса 0…9FFFF) работает операционная система MS DOS и все ее прикладные программы.

Первые 1024 байта (адреса 0…3FF) хранят таблицу векторов прерывания ( Interrupt Vectors ) объемом 256 двойных слов, формируемую на этапе начальной загрузки. Однако если процессор работает в защищенном режиме, таблица векторов может располагаться в любом другом месте памяти.

Адреса 400…4FF отводятся под область переменных BIOS (BIOS Data Area ). Подробнее о BIOS будет рассказано в следующем разделе.

Адреса 500…9FFFF включают в себя область операционной системы DOS (DOS Area) и память пользователя (User RAM).

Оставшиеся от 1 Мбайта памяти 384 Кбайта (адреса A0000…FFFFF), зарезервированные под другие системные нужды, называются UMA ( Upper Memory Area ) — область верхней памяти или UMB ( Upper Memory Blocks ) — блоки верхней памяти или High DOS Memory .

Пространство видеопамяти (адреса A0000…BFFFF) содержит области для хранения текстовой и графической информации видеоадаптера.

Пространство памяти с адресами E0000…FFFFF отведено под системную постоянную память компьютера ROM BIOS.

В этой же области выделено окно размером в 64 Кбайта (page frame) с адресами D0000…DFFFF, через которое программы могли получать доступ к дополнительной (отображаемой) памяти ( Expanded memory ) объемом до 32 Мбайт, оставаясь в пределах того же 1 Мбайта адресуемой памяти. Это достигается путем поочередного отображения четырех страниц по 16 Кбайт из дополнительной памяти в выделенное окно. При этом положение страниц в дополнительной памяти можно изменять программным путем. Понятно, что работать с дополнительной памятью менее удобно, чем с основной, так как в каждый момент компьютер "видит" только окно в 64 Кбайт. Поэтому сейчас она применяется довольно редко.

В настоящее время область памяти с адресами C0000…DFFFF чаще используется для оперативной и постоянной памяти , входящей в состав различных адаптеров и плат расширения компьютера.

В результате логическая организация адресного пространства в пределах 1 Мбайт получилась довольно сложной (рис. 7.10). И такую же организацию должны поддерживать все персональные компьютеры семейства IBM PC для обеспечения совместимости с предшествующими моделями.


Рис. 7.10. Распределение адресного пространства памяти.

При дальнейшем расширении адресуемого пространства памяти в последующих моделях компьютеров вся память объемом свыше 1 Мбайт получила название расширенной памяти ( Extended memory ). Для доступа к ней микропроцессор должен переходить из реального режима в защищенный и обратно. Общий объем памяти персонального компьютера (верхняя граница расширенной памяти) может доходить до 16 Мбайт (24 разряда адреса) или до 4 Гбайт (32 разряда адреса).

Особого упоминания заслуживает так называемая теневая память ( Shadow RAM ), представляющая собой часть оперативной памяти , в которую при запуске компьютера переписывается содержание постоянной памяти , и заменяющая эту постоянную память на время работы компьютера. Необходимость данной процедуры вызвана тем, что даже сравнительно медленная динамическая оперативная память оказывается все-таки быстрее, чем постоянная память . Постоянная память часто заметно сдерживает быстродействие компьютера. Поэтому было предложено выделять часть оперативной памяти для исполнения обязанностей как системной постоянной памяти ROM BIOS, так и постоянной памяти , входящей в состав дополнительных адаптеров, которые подключаются к компьютеру. Переписывание информации обычно предусмотрено в программе начального пуска.

В связи с особенностями работы динамической памяти для сокращения времени доступа к ней применяются специальные режимы работы оперативной памяти : режим расслоения ( интерливинг ) и страничный режим.

Использование режима интерливинга предполагает не совсем обычное разбиение памяти на банки (части). Если при обычном разбиении ( последовательной адресации) адреса следующего банка начинаются после окончания адресов предыдущего, то при интерливинге адреса банков чередуются. То есть, например, после первого адреса первого банка следует первый адрес второго банка, затем второй адрес первого банка и второй адрес второго банка и т.д. Получается, что в одном банке четные слова, а в другом — нечетные. Таких чередующихся банков может быть не только два, а четыре, восемь, шестнадцать. Объемы банков при этом должны быть одинаковыми. В результате такого подхода появляется возможность начинать обращение к следующему слову еще до окончания процесса доступа к предыдущему.

Страничный режим предполагает постраничную работу микросхем памяти, когда выбор страницы производится один раз на всю страницу, а выбор ячейки внутри страницы может происходить гораздо быстрее. Для поддержки обоих режимов применяются специальные технологические решения.

Здесь же отметим, что при замене памяти компьютера или при установке дополнительных банков памяти надо строго следовать рекомендациям изготовителей системных плат, так как порядок заполнения банков может быть далеко не очевиден.

7.3.2. Постоянная память

Системная постоянная память (ПЗУ) занимает сравнительно небольшой объем (обычно 64 Кбайта). Однако ее значение для компьютера очень велико. Само ее название ROM BIOS (ROM Basic Input/Output System) — базовая система ввода/вывода — говорит о том, что в ней находится функционально полный набор программ нижнего уровня для управления устройствами ввода/вывода. Поэтому даже до загрузки в оперативную память исполняемых программ с диска компьютер имеет возможность обслуживать клавиатуру, дисплей, подавать звуковые сигналы, общаться с дисками и т.д. Важно отметить, что большинство современных видеоадаптеров, а также контроллеров накопителей имеют собственную систему BIOS, которая дополняет или даже заменяет системную BIOS во время основной работы. Вызов программ BIOS осуществляется через программные или аппаратные прерывания , для чего BIOS формирует соответствующую таблицу векторов прерываний . Но этим функции постоянной памяти не ограничиваются.

В принципе, под память ROM BIOS отведено 128 Кбайт адресного пространства памяти. В первых компьютерах (IBM PC XT) она занимала всего 8 Кбайт, сейчас обычно занимает 64 Кбайт. Если же нужно использовать системную постоянную память большего объема, то она поочередно отображается на окно системной памяти размером 64 Кбайт (адреса F0000…FFFFF). Это связано со стремлением сэкономить пространство верхней памяти для других целей.

При старте компьютера после включения питания, нажатия кнопки на передней панели RESET или после программного перезапуска начинает выполняться программа начального запуска, также хранящаяся в постоянной памяти (начальный адрес FFFF0) . Эта программа включает в себя:

  • программу самотестирования компьютера (POST — Power On Self Test);
  • программу начальной загрузки операционной системы с соответствующего дискового накопителя компьютера;
  • программу задания текущих параметров компьютера (Setup).

Кроме программы начального запуска ROM BIOS также обслуживает аппаратные прерывания от системных устройств (таймера, клавиатуры, дисков), а также отрабатывает базовые программные обращения к системным устройствам .

Отметим, что в последнее время ROM BIOS выполняется не на микросхемах собственно постоянной памяти , а на микросхемах, допускающих многократную перезапись информации пользователем EPROM (Erasable Programmable ROM) с электрической перезаписью — типа флэш (flash), что позволяет более гибко настраивать компьютер. Пользователь может легко модернизировать BIOS своего компьютера с помощью программы перезаписи флэш-памяти. При использовании же микросхем ПЗУ с ультрафиолетовым стиранием для этого требовались специальный программатор и стирающее устройство (ультрафиолетовая лампа).

Программа самотестирования POST позволяет производить простейшую диагностику основных узлов компьютера, включая определение полного объема установленной оперативной памяти . Информация о ее результатах выводится тремя способами:

Звуковые сигналы не отличаются особым разнообразием, но, тем не менее, позволяют обнаружить и идентифицировать основные ошибки. Для примера в табл. 7.2 приведены звуковые сигналы об ошибках, используемые BIOS компании IBM (для BIOS других фирм сигналы могут быть иными).

Использование специальных диагностических приборов особенно эффективно: по некоторым оценкам, с их помощью можно обнаружить до 95% неисправностей. Однако их применяют только специальные сотрудники сервисных служб.

Начиная с компьютеров на процессоре 80286 (IBM PC AT) постоянная память ROM BIOS обязательно дополняется небольшой энергонезависимой оперативной памятью CMOS RAM, которая выполнена на микросхемах с пониженным энергопотреблением с технологией КМОП ( CMOS ) и при выключении питания компьютера подпитывается от батарейки или аккумулятора (эта память, как правило, входит в состав других микросхем). В CMOS -памяти хранится информация о текущих показаниях часов (дате и времени), о значении времени для будильника, о конфигурации компьютера: приоритете загрузки с разных накопителей, количестве памяти, типах накопителей, режимах энергопотребления, о типе дисплея, об установках клавиатуры и т.д. CMOS RAM отличается от постоянной памяти тем, что записанная в нее информация легко меняется программным путем.

Задавать все параметры компьютера, сохраняемые в CMOS RAM, позволяет программа BIOS Setup , вызвать которую можно путем нажатия назначенных клавиш во время процедуры начальной загрузки компьютера (информация об этом всегда выводится на экран). В современных компьютерах данная программа предлагает довольно удобный и наглядный интерфейс пользователя с привычными меню.

Описание работы с BIOS Setup любого компьютера обязательно поставляется вместе с ним. Иногда с помощью этой программы удается значительно повысить быстродействие компьютера благодаря выбору оптимальных (или даже предельных) для данной конфигурации параметров: частоты системной шины, количества тактов задержки при обмене с системной памятью и кэш-памятью.

Программа Setup позволяет также разрешить или запретить использование теневой (Shadow) памяти как для системного BIOS, так и для BIOS используемых адаптеров (по отдельным сегментам памяти). При использовании теневой памяти в выбранную область оперативной памяти копируется содержимое BIOS ROM, эта область определяется как доступная только для чтения, и производится переадресация памяти. То есть при любых обращениях по адресам ROM чтение данных будет производиться из соответствующих адресов Shadow RAM , а постоянная память уже не используется. Такой подход может существенно (иногда в 4 — 5 раз) ускорить выборку команд для программ обмена с видеоадаптером и с дисковыми накопителями.

В программе Setup всегда предусмотрена возможность установки параметров компьютера по умолчанию (Default Setting). Это особенно удобно в случае разряда или повреждения батареи или аккумулятора.

В новых компьютерах, поддерживающих режим экономии потребляемой электроэнергии, можно также задавать переход компьютера в режимы Doze (спящий), Standby (ожидания или резервный) и Suspend (приостановки работы) при отсутствии обращений к узлам компьютера в течение заданного времени. Режимы перечислены в порядке снижения потребления электроэнергии. Компьютеры (а также их системные платы), где применяются такие режимы, называются иногда "зелеными".

Для реализации функции хранения информации в компьютере используются следующие основные типы памяти: кэш память, ПЗУ, оперативная память (ОЗУ), долговременная (внешняя) память. Первые три типа памяти образуют внутреннюю (системную) память компьютера. Основными характеристиками любого типа памяти являются объем, время доступа и плотность записи информации.

Внутренняя память

Кэш-память является элементом микропроцессора. Физически кэш-память основана на микросхемах статической памяти SRAM (Static Random Access Memory). Для создания ячейки статической памяти используется от 4 до 8 транзисторов, которые в совокупности образуют триггер.

Постоянное запоминающее устройство (ПЗУ) — энергонезависимая память, используемая только для чтения. Данный вид памяти используется для хранения только такой информации, которая обычно не меняется в ходе эксплуатации компьютера. Типичным примером использования ПЗУ является хранение в нем базового программного обеспечения, используемого при загрузке компьютера (BIOS). Микросхемы ПЗУ располагаются на материнской плате.

Оперативное запоминающее устройство (ОЗУ) — энергозависимая память, применяемая для временного хранения команд и данных, необходимых процессору для выполнения текущих операций.

Наименьшей частицей памяти является бит, в котором хранится либо 0, либо 1. Отдельные биты объединяются в ячейки, каждая из которых имеет свой адрес, поэтому процессор при необходимости может обратиться к любой ячейке за одну операцию. Минимальной адресуемой ячейкой оперативной памяти является байт. Для выбора нужной ячейки используется ее адрес, передаваемый по адресной шине. Адресация байтов начинается с нуля.

Несмотря на то, что минимальной адресуемой ячейкой оперативной памяти является байт, физически по шине передаются не отдельные байты, а машинные слова. Размер машинного слова зависит от разрядности процессора. То есть размер машинного слова определяется количеством битов, к которым процессор имеет одновременный доступ. Например, для 16-разрядного процессора размер машинного слова будет равен 2 байтам. Адрес машинного слова равен адресу младшего байта, входящего в состав это слова.

Физически ОЗУ строится на микросхемах динамической памяти DRAM (Dynamic Random Access Memory). В динамической памяти ячейки построены на основе областей с накоплением зарядов (конденсаторов), занимающих гораздо меньшую площадь, чем триггеры, и практически не потребляющих энергии при хранении. При записи бита в такую ячейку в ней формируется электрический заряд, сохраняющийся в течение 2-4 миллисекунд. Но для сохранения заряда ячейки необходимо постоянно регенерировать (перезаписывать) ее содержимое. В связи с этим скорость доступа к ячейкам ОЗУ ниже, чем к статической памяти. Для создания ячейки динамической памяти достаточно всего одного транзистора и одного конденсатора, поэтому она дешевле статической памяти и имеет большую плотность упаковки.

Оперативная память изготавливается в виде небольших печатных плат с рядами контактов, на которых размещаются интегральные схемы памяти (модули памяти, рисунок 1).


Рисунок 1 - Схема состава микропроцессора

Модули памяти различаются по размеру и количеству контактов (в зависимости от типа используемой памяти), а также по быстродействию и объему. Объемы оперативной памяти современных компьютеров могут измеряться несколькими гигабайтами (в среднем от 1 до 4 Гбайт).

Мы часто встречаем такие термины ОЗУ и RAM. ОЗУ означает- оперативно запоминающее устройство. И RAM- Random Access Memory. Порой многие совсем не понимают, что они означают. В сущности, это термины означают одно и то же, оперативную память компьютера, а попросту говоря оперативку. Наверное, вы обращали внимание, что при установке на компьютер какой-либо программы или игры, обязательно указывается минимальные требования ПК. Например, при установке программы указаны минимальные требования. Что это значит?

  1. CPU 1,8 ГГц- это тактовая частота процессора.
  2. 512 МБ это есть требования к оперативной памяти вашего компьютера.
  3. HDD-3 ГБ именно столько свободного дискового пространства должно быть на вашем компьютере при установке данной программы.

Оперативная память вашего компьютера не должна быть ниже указанных минимальных системных требованиях, иначе после установки и запуска такой программы, ваш компьютер будет сильно тормозить или произойдет сбой. Оперативная память по сути, один из главных элементов компьютера. Это память для временного хранения информации о программах, службах и процессах, которые запущены на вашем компьютере. С помощью оперативной памяти осуществляется связь между процессором, жестким диском и с внешними устройствами ПК.

Как известно любая программа выполняется в процессоре ПК. Файлы в программе считываются с жёсткого диска, а оперативная память в данном случае служит посредником между процессором и жестким диском. То есть, в оперативной памяти хранятся программы, которые выполняются в данный момент времени. От объема оперативки и её скорости, зависит быстрота выполнения программ, а также то, какое количество программ она может хранить у себя в памяти одновременно. Все данные, которые содержатся в оперативной памяти, доступны только при включенном компьютере. При выходе из программы, стираются все файлы из оперативной памяти. Поэтому, при выходе из программы, обязательно нужно сохранить сделанные изменения на диске или другом устройстве внешней памяти с помощью команды СОХРАНИТЬ(SAVE).

Оперативная память компьютера состоит из ячеек. В этих ячейках хранится информация и при каждой новой записи предыдущий информация автоматически стирается и записываться новая информация. Поэтому, чем больше объем оперативной памяти, тем больше ячеек и тем больше информации может хранить оперативная память, без перезаписи и использования файла подкачки. И тем самым увеличивается производительность системы. Оперативная память, расположена на материнской плате, вставляется в специальный слот.

Слотов может быть от двух и более. Слоты которые разбиты попарно, различаются по цвету. Материнские платы могут работать в двухканальном режиме. Двухканальный режим поддерживается, когда в слот одинакового цвета вставлена одинаковое количество памяти, одинаковой частоты и объема. При использовании разных каналов модуля DIMM с различной скоростью, память будет работать на более медленной. При выборе оперативной памяти, часто можно встретить такие названия-

Сейчас мы научимся разбираться в подобных целомудренных названиях.

Организация и основные характеристики памяти компьютера

26 марта, 2012 | Автор: admin

Организация и основные характеристики памяти компьютера

Память (memory) – функциональная часть ЭВМ, предназначенная для записи, хранения и выдачи информации.

Всю память ЭВМ можно разделить на:

  1. ОЗУ (оперативное запоминающее устройство)
  2. ПЗУ (постоянное запоминающее устройство)
  3. РОН (регистры общего назначения) внутренняя память процессора – его регистры.
  4. CMOS (Complement Metal Oxide Semiconductor – комплементарные пары метал-оксид-полупроводник указывает на технологию изготовления данной памяти) – память системных установок(конфигурации).
  5. ВЗУ (внешнее запоминающее устройство)
  6. Видеопамять – электронная память, размещенная на видеокарте, используется в качестве буфера для хранения кадров динамического изображения.

1,2,3,6 – электронная память, 5 – электромеханическая память.

Характеристики оперативной памяти

Внутренняя память ПК обладает двумя основными свойствами: дискретностью и адресуемостью.

Бит – наименьшая частица памяти компьютера.

Следовательно, у слова «бит» есть два смысла: это единица измерения количества информации и частица памяти компьютера. Оба эти понятия связаны между собой следующим образом:
В одном бите памяти хранится один бит информации.

Память – это упорядоченная последовательность двоичных разрядов(бит). Эта последовательность делится на группы по 8 разрядов. Каждая такая группа образует байт памяти.

Следовательно «бит» и «байт» обозначают не только названия единиц измерения количества информации, но и структурные единицы памяти ЭВМ.
1Кб = 210 байт =1024б
1Мб = 210 Кбайт =1024Кб
1Гб = 1024Мб

Ячейка памяти – группа последовательных байтов внутренней памяти, вмещающая в себе информацию, доступную для обработки отдельной командой процессора.
Содержимое ячейки памяти называется машинным словом. Байты внутренней памяти пронумерованы. Нумерация начинается с 0.
Порядковый № байта называется адресом байта. Принцип адресуемости памяти заключается в том, что любая информация заносится в память и извлекается из нее по адресам, т.е. чтобы взять информацию из ячейки памяти или поместить ее туда, необходимо указать адрес этой ячейки. Адрес ячейки память равен адресу младшего байта, входящим в ячейку.
Адресация памяти начинается с 0. Адреса ячеек кратны количеству байтов в машинном слове.


Структура оперативной памяти


Оперативная память(ОП) (ОЗУ)

Быстродействие памяти характеризуется двумя параметрами: временем доступа(access time) и длительностью цикла памяти (cycle time).
Эти величины, как правило, измеряются в наносекундах. Чем больше эти величины, тем больше быстродействие памяти.
Время доступа представляет собой промежуток времени между формированием запроса на чтение информации из памяти и моментом поступления из памяти запрошенного машинного слова (операнда).
Длительность цикла определяется минимальным допустимым временим между двумя последовательными обращениями к памяти.

В динамической памяти элементы памяти построены на основе полупроводниковых конденсаторов, занимающих гораздо более меньшую площадь, чем триггеры в статической памяти.
Для построения динамического элемента памяти требуется 1-2 транзистора. Каждый бит ОП представляется в виде наличия или отсутствия заряда на конденсаторе, образованном в структуре
полупроводникового кристалла. Ячейки динамической памяти очень компактны, но со временем конденсатор испытывает утечку заряда, поэтому периодически (приблизительно 1000 раз в сек.)
выполняется автоматическое восстановление информации в каждой ячейке. Это снижает скорость работы динамической памяти и является основным ее недостатком.

ОП часто обозначают RAM (Random Access memory) – память с произвольным доступом (тип доступа к памяти при котором ячейки памяти пронумерованы, т.е. адресуемы и, следовательно, обращение к ним может производиться в произвольном порядке).

Термин «произвольный доступ» означает, что можно считать (записать) информацию в любой момент времени из любой ячейки.

Заметим, что существует и другая организация памяти, при которой прежде чем считать нужную информацию нужно «вытолкнуть» ранее поступившие операнды.

Чем больше ОП в ПК, тем лучше. При необходимости объем ОП можно нарастить (ограничивается параметрами ОП, поддерживаемой конкретной материнской платы, внимательно см.спецификацию к системной плате).


Распределение памяти в ПК (Разделы ОЗУ)

RAM устроена довольно сложно, она иерархична (многоэтажна). ОП разделяют на несколько типов. Деление это обусловлено историческими причинами.
Первые компьютеры были выполнены так, что они могли работать максимально с 640Кб памяти. Выделяют 4 вида памяти:

  • Стандартная (conventional memory area)
  • Верхняя (upper memory blocks(area))
  • Дополнительная (expanded memory specification)
  • Расширенная (extended memory specification)

Стандартная (conventional memory area) – базовая, первые 640 Кб, также его часто называют lower.
В мл. адреса этой памяти загружается ОС и драйверы устройств. Оставшуюся свободную часть памяти занимают пользовательские программы.
Резидентные программы так же остаются в этой памяти.

High memory – первые 64 Кб после 1Мб. ОС MS DOS позволяет загрузить часть резидентной DOS в эту область, освобождая при этом существенную часть
базовой памяти для работы прикладных программ. Особенно это полезно для программ, использующих всю ОП. Используя спец. утилиты (для DOS emm386.exe)
в верхние разделы памяти можно загружать также и резидентные программы (команды LH для autoexec.bat и DEVICEHIGT для config.sys).

Вся память свыше 1 Мб может быть рассмотрена как дополнительная(expanded) или как расширенная (extended). В ОС менеджер памяти позволяет использовать память и как расширенную и как дополнительную, автоматически обеспечивая тот тип взаимодействия с данными, который нужен прикладным программам. Т.е. пользователю новых современных ПК (от Pentium) нет необходимости распределять память «в ручную», менеджер выделить память таким образом, как это требует прикладная программа.

Дополнительная(expanded) память – постраничная, т.е. ОП разбивается на страницы, каждой странице ставится в соответствие определенный адрес в основной памяти. При обращении к такому адресу EMM(expanded memory manager) драйвер расширенной памяти(менеджер памяти) позволяет компьютеру считать информацию с соответствующей страницы памяти.


Распределение ОП в ПК с ОС MS-DOS

Микросхемы ОП (модули ОП)


Производительность ПК зависит от типа и размера ОП, а это в свою очередь зависит от набора интегральных схем на материнской плате.

Устройства памяти характеризуются следующими основными показателями:

  1. временем доступа (быстродействием). Время доступа – промежуток времени, за который может быть записано (прочитано) содержимое ячейки памяти.
  2. емкостью (определяет количество ячеек (битов) в устройстве памяти).
  3. стоимостью.
  4. потребляемой мощностью (электропотреблением).

Существует 2 модуля памяти, отличающиеся формой, внутренней архитектурой, скоростью работы: SIMM и DIMM.
I. SIMM (SINGLE IN-LINE MEMORY MODULES) (SRAM)
бывают двух типов (отличающихся количеством контактов).

1. 30-контактные модули SIMM. Бывают 1 и 4 Мб. Практически сегодня исчезли из продажи для компьютеров 386, 286-процессором. Сегодня им нашлось интересное применение – в качестве ОП, устанавливаемой в некоторые звуковые платы, например, Greafive Sound Blaster 32 (AWE-32) Gravis UltraSound PnP. Однако новая карта AWE-64 уже содержит свои модули ОП, эта память не нужна.

2. 72-контактные SIMM (на 1, 4, 8, 16, 32, 64 Мб, редко 128 Мб). Внешний вид неизменный, а вот тип устанавливаемой на них памяти меняется (тип памяти указывается на микросхеме).

a) самый старый (редко сейчас встречающийся) – FPM DRAM (или просто DRAM – Dynamic Random Access Memory – динамическая ОП). Работала на 486 и первых Pentium.

b) модифицированный тип EDO DRAM (или EDO – Extended data output).

Микросхемы SIMM выпускаются одинарной и двойной плотности, с контролем четности и без (использование контроля четности позволяет парировать одиночную ошибку памяти). Модули отличаются и по скорости доступа 60 и 70 наносекунд, чем скорость меньше, тем быстрее доступ. 60 наносекунд быстрее 70 наносекунд. Модули SIMM в материнской плате Pentium и Pentium MMX устанавливаются только попарно, образуя так называемый банк.

Пример необходимо 32 Мб => 2 модуля SIMM по 16 Мб.
необходимо 64 Мб => 4 модуля SIMM по 16 Мб или 2 модуля SIMM по 32Мб.

В рамках одного банка можно использовать только одинаковые по емкости и скорости доступа модули SIMM. Если на вашей материнской плате 4 слота для модулей памяти SIMM, то можно сформировать два банка различной емкости.


II. DIMM (SDRAM DUAL IN-LINE MEMORY MODULES).

Появился впервые у MMX- компьютеров, стал основой для PII., поэтому у PII редко бывают SIMM-разъемы. DIMM не обязательно должно быть четное число. Модули DIMM бывают емкостью 16, 32, 64, 128, 256, 512 Мб

Читайте также: