Переделка электронного балласта в блок питания

Обновлено: 06.07.2024

До недавнего времени компактные люминесцентные лампы пользовались большой популярностью. Даже сейчас у некоторых дома всё ещё есть несколько КЛЛ. В этой статье я хочу рассказать, как можно сделать блок питания из такой перегоревшей лампы.

Чаще всего перегорают нити накала, а электронный балласт остаётся рабочим. Он нам и нужен.

Отсоединив саму лампу, нам нужно сделать 2 действия, для превращения балласта в блок питания:

  1. Поверх уже имеющейся обмотки на дросселе нужно намотать свою. На фотографии видны 4 вывода от двух намотанных обмоток, чтобы снимать 2 разных напряжения. Количество витков и толщина изолированной проволоки подбирается под конкретное устройство. На выходе будет переменный высокочастотный ток.
  2. Замкнуть 2 крайних штырька, на которые были подключены нити накала лампы. На фото это сделано белым проводом. Другие 2 штырька никуда не подключаются, к ним припаян зелёный плёночный конденсатор, который я удалил, потому что он мешал наматывать проволоку. Блок питания начинает сразу работать после подключения к сети переменного тока 230 В. Не забудьте зачистить концы обмотки, или, лучше с помощью турбо зажигалки или горелки сварите их с неизолированным проводом.

Такой блок питания подходит для использования с разными устройствами . Например, можно питать несколько светодиодов, в том числе и мощных.

Напоминаю, что ток светодиодов будет возрастать по мере их прогрева. Поэтому обязательно нужно иметь запас по току. Максимально допустимый ток для конкретных светодиодов не должен быть превышен . Проверяйте после полного прогрева. Чем меньше ток питания и нагрев, тем дольше прослужат светодиоды.

Светодиоды подключаются в две ветви встречно-параллельно по схеме.

Такое включение уменьшило коэффициент пульсации в 3 раза по сравнению с включением через диод.

Существует второй вариант схемы, при котором светодиоды будут светить немного ярче, и можно будет более точно контролировать их ток мультиметром.

Самым лучшим вариантом будет использование диодов Шоттки. Несколько меньший ток на светодиодах, а значит и меньшую яркость создадут ультрабыстрые или супербыстрые диоды. Конденсаторы в схеме 470 мкФ - 1000 мкФ на напряжение не менее того, которое там будет в случае перегорания светодиода. Встречал совет припаять параллельно к каждому конденсатору ещё один неполярный (лучше керамический) для лучшей работы и большей стабильности электролитов в условиях пульсирующего напряжения. Минусом второй схемы является использование дополнительных радиодеталей и повышение коэффициента пульсации с 14% до 19%.

Компактные люминесцентные лампы (КЛЛ или «энергосберегайки») появились в быту довольно давно, но до сих пор удерживают если не первенство среди осветительных приборов, то одно из ведущих мест. Они компактны, экономичны, могут работать вместо обычной лампочки накаливания. Но есть у этих приборов и недостатки. Несмотря на заявленный производителем срок эксплуатации КЛЛ часто выходят из строя, даже не выработав свой ресурс.

Виной этому чаще всего становится нестабильное питающее напряжение и частое «щелканье» выключателем. Можно ли как-то использовать сгоревший прибор, который стоит довольно больших денег? Конечно, можно! В этой статье мы попытаемся собрать блок питания из энергосберегающей лампы своими руками.

Устройство и принцип работы ЭПРА

Прежде чем взяться за переделку электронного балласта для компактных люминесцентных ламп, познакомимся с этим узлом и принципом его работы поближе. Основная задача балласта:

  • запустить газоразрядную трубку лампы;
  • поддерживать необходимые для работы трубки ток и напряжение.

Взглянем на классическую схему электронного балласта или, если называть его правильно, ЭПРА (Электронный ПускоРегулирующий Аппарат).

Схема ЭПРА

Схема ЭПРА (электронного балласта) для энергосберегающих ламп

По сути, это обычный импульсный блок питания с незначительными отличиями, но о них позже. Напряжение сети подается на мостовой выпрямитель VD1-VD4, сглаживается конденсатором С1 и поступает на высокочастотный (частота автоколебаний 10-60 кГц) генератор, собранный на транзисторах VT2, VT3. Генерация в нем возникает за счет положительной обратной связи, которую обеспечивает трансформатор Т1, запуск при подаче питания происходит благодаря симметричному динистору DB1.

Импульсное напряжение через токоограничивающий дроссель Т2 поступает на энергосберегающую лампу, выполненную в виде изогнутой трубки. Конденсатор С8 нужен для создания высоковольтного импульса, поджигающего трубку. Как только в лампе произошел пробой газового участка, в работу вступает дроссель, ограничивающий ток на необходимом для работы лампы уровне. Поскольку частота напряжения относительно высокая, дроссель получился весьма компактным.

Важно! Производители энергосберегающих ламп используют в своих изделиях различные схемы балластов, но принцип работы у них один и тот же.

Отличия конструкции лампы от импульсного блока

Чем же отличается электронный балласт КЛЛ от импульсного блока питания (ИБП)? Прежде всего на выходе балласта стоит токоограничивающий дроссель. Далее, схема не имеет гальванической развязки сетевого напряжения с выходным, поэтому все элементы схемы, которую питает ЭПРА, находятся под опасным для жизни напряжением. А теперь попытаемся сделать импульсный блок питания из энергосберегающей лампы.

Кроме указанных отличий, на выходе ЭПРА напряжение импульсное, тогда как блок питания обычно выдает постоянное.

Схема переделки ЭПРА в ИБП

Для переделки ЭПРА в блок питания необходимо решить три задачи:

  1. Обеспечить электробезопасность, создав гальваническую развязку.
  2. Понизить выходное напряжение преобразователя, поскольку на его выходе оно довольно высокое – прядка 100–150 В.
  3. Выпрямить выходное напряжение.

Если необходим блок питания небольшой мощности – до 15 Вт, то никакой особой переделки ЭПРА не потребуется. Достаточно десятка сантиметров обмоточного провода, четыре диода и пары конденсаторов. Ну и, конечно, понадобится электронный балласт от лампы мощностью 40 Вт. Взглянем на доработанную схему:

 импульсный блок питания, схема

Простой импульсный блок питания на 12 В из ЭПРА люминесцентной лампы

Переделку ЭПРА в блок питания будем производить в следующей последовательности:

  1. Удаляем люминесцентную трубку и конденсатор С8.
  2. Соединяем выводы конденсаторов С6, С7 и дросселя Т2, которые ранее шли на лампу, между собой. Проще всего это сделать, просто замкнув все выводы лампы.

Теперь наш дроссель является нагрузкой преобразователя. Осталось лишь домотать на него вторичную обмотку. Так как частота преобразования довольно высока, понадобится всего несколько витков обмоточного провода диаметром 0.5-0.8 мм. Зазор между сердечником и обмоткой дросселя невелик, но его вполне достаточно для нескольких витков, число которых подбирается экспериментально.

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Важно! Для большей надежности блока питания лучше использовать не обычный обмоточный провод в эмалевой изоляции, а монтажный во фторопластовой. Это исключит пробой между обмотками при неаккуратной намотке и появлении опасного напряжения во вторичной цепи.

Методика намотки следующая. Наматываем в качестве вторичной около 10 витков, подключаем к ней диодный мост со сглаживающими конденсаторами и нагружаем будущий блок питания резистором мощностью около 30 Вт и сопротивлением 5-6 Ом. Замеряем напряжение на резисторе вольтметром постоянного тока. Затем делим полученное напряжение на количество витков, и выходит напряжение, получаемое с одного витка. Теперь делим необходимое нам напряжение (12-13 В) на последнее значение и получаем необходимое количество витков вторичной обмотки.

Предположим, намотав 10 витков, мы получили напряжение 8 В. 8/10=0.8. Значит, один виток выдает 0.8 вольт. Нам нужно 12. Делим 12 на 0.8, получаем 15. Итак, нам необходимо намотать 15 витков.

дроссель блока питания ЭПРА

Штатный и доработанный дроссель блока питания из ЭПРА

В диодном мосте можно использовать любые выпрямительные диоды на обратное напряжение не ниже 25 В и ток 1А. Лучше для этих целей использовать диоды Шоттки – они имеют меньшее прямое падение напряжения и лучше работают в импульсном режиме, увеличивая КПД блока питания. На месте С8 может работать керамический конденсатор емкостью 0.1 мкФ, С9 – электролитический емкостью 10-50 мкФ и рабочее напряжение не ниже 25 В.

Всем хороша схема такого блока питания, но напряжение на его выходе не стабилизировано. То есть оно будет колебаться вместе с изменением сетевого. Выйти из положения довольно просто, установив в схему блока питания 12-вольтовый стабилизатор. Идеальным для этой цели будет интегральный стабилизатор КР142ЕН8Б или зарубежный аналог L1812. В этом случае выходной фрагмент схемы будет выглядеть так:

Схем блока питания

Схема блока питания со стабилизированным выходным напряжением

Конденсаторы С10 и С11 нужно взять тех же номиналов, что и С8, С9.

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Важно! Если в схеме блока питания будет использоваться стабилизатор, то количество витков необходимо увеличить до получения напряжения на нагрузочном резисторе (см. методику расчета выше) 15-16 В. Именно такое напряжение является нормальным входным для линейного 12-вольтового стабилизатора.

Как увеличить мощность

Обычно мощность КЛЛ относительно невелика и колеблется в пределах 10-40 Вт. В теории неплохо, но на практике все дело портит токоограничивающий дроссель. Он не дает самодельному блоку питания развить максимальную мощность, во-первых, из-за токоограничивающих свойств, а во-вторых, из-за собственной малой мощности. При увеличении тока магнитопровод начинает работать в режиме насыщения, уменьшая КПД блока питания и перегружая ключевые транзисторы, причем перегружая впустую.

Как же сделать относительно мощный блок питания из энергосберегающей лампы? Задача не так сложна, как кажется на первый взгляд. Для этого достаточно дроссель заменить на относительно мощный импульсный трансформатор. Конечно, тут потребуются более глубокие знания в радиотехнике, но оно того стоит.

Трансформатор можно взять, к примеру, из ненужного блока питания от компьютера или другой оргтехники (принтер, сканер, малогабаритный телевизор и т. п.). Еще понадобится резистор мощностью 3 Вт и сопротивлением 5 Ом, а также новый высоковольтный конденсатор на номинал 100 мкФ и рабочее напряжение не ниже 350 В. Взглянем на доработанную схему:

Схема блока повышенной выходной мощности

Схема блока питания с повышенной выходной мощностью

Здесь вместо дросселя установлен импульсный трансформатор, причем первичной обмоткой является та, что была подключена к преобразователю (высоковольтная), а вторичной – понижающая. Кроме того, резистор R1 выбран большей мощности, а емкость сглаживающего конденсатора С1 (по доработанной схеме С0) увеличена до 100 мкФ. В остальном схема практически не изменилась, но теперь она вполне способна отдать в нагрузку ток в 5-8 А при напряжении 12 В. Такие блоки питания уже вполне можно использовать для шуруповерта и подобных 12-вольтовых инструментов.

И напоследок несколько рекомендаций

  1. При первом пуске доработанный блок питания лучше подключать к сети через лампу накаливания 220 В 60-100 Вт. Если все в порядке, то лампа будет едва светиться. Если в схеме ошибка, то лампа будет гореть довольно ярко. Это сбережет транзисторы от пробоя при ошибках в монтаже.
  2. Прежде чем запустить блок питания в долговременную работу, необходимо «погонять» его на нагрузочном резисторе. При этом трансформатор и транзисторы не должны нагреваться выше 60 градусов Цельсия.
  3. Если трансформатор сильно греется, придется намотать понижающую обмотку более толстым проводом.
  4. Если сильно греются транзисторы, их нужно снабдить небольшими радиаторами.
  5. Не стоит использовать такой блок питания для зарядки и питания дорогостоящих гаджетов. Гораздо надежнее купить заводское питающее устройство. Это обойдется намного дешевле, чем ремонт, к примеру, ноутбука или смартфона.

На этом, пожалуй, беседу о переделке ЭПРА для компактных люминесцентных ламп в импульсный блок питания можно закончить. Если ты внимательно прочел статью и имеешь хотя бы небольшое понятие о радиотехнике, то справишься с этой несложной доработкой самостоятельно.

Не в сети

Вышла из строя КЛЛ мощностью 20 Вт. ЭПРА оказался исправным.Подключал к нему обычную люминесцентную лампу ЛБ18. Лампа работает нормально,транзисторы нагреваются несильно. Затем к выходу ЭПРА был подключен трансформатор с автомобильной лампой А12-21 в качестве нагрузки(естественно,дроссель из цепи исключён). На лампе прямоугольные импульсы амплитудой 12В. Вроде всё как надо,однако транзисторы стали сильно греться(палец не терпит). От сети потребляет 83 мА,т.е. мощность около 18 Вт - не больше нормы(20 Вт). В чём же дело?


Модератор

Не в сети


Технолог

Не в сети

дело не только в величине тока и напряжения. учитывать нужно и угол сдвига между ними и на сколько характер нагрузки влияет на скорость запирания-отпирания транзисторов. в ключевом режиме, когда все подобрано, транзистор быстро откр и закр, поєтому мало греется. а если долго переходной период, сам понимаешь, нагрузкой становится сам транзистор и на нем все и рассеивается


Технолог

Не в сети

я так понимаю, что схема с самовозбуждением, а не с принудительным генератором. а ты внес изменение -Затем к выходу ЭПРА был подключен трансформатор с автомобильной лампой - вот-вот, ТРАНСФОРМАТОР, изменил временные цепочки самовозбуждения, отпирания-запирания. НУ ЕСТЕСТВЕННО, ЭТО ВСЕ ПРЕДПОЛОЖЕНИЯ, т.к.
ни схем, ни фотографий- ничего не понятно (Модератор)


Технический Директор

Не в сети

Схема-то,в принципе,типичная для ЭПРА,даже примитивная,вечером попробую выложить,сейчас просто нет времени


Технолог

Не в сети

может, можно решить по иному вообще? ты что хочешь получить в итоге? а?


Технический Директор

Не в сети

Собираюсь сделать "электронный трансформатор"(для переноски и т.п.).Схему привожу.Все диоды - 1N4007,на транзисторах надпись 13003х507II(видимо,MJI13003).Трансформатор Тр1 намотан на ферритовом кольце К8,5х4х2,обмотка I - 7 витков,II и III - по 5. Провод диам. 0,5. С лампой ЛБ18 частота около 30 кГц. Силовой трансформатор рассчитан под эту частоту(с помощью Transformer 3.0.0.0)и содержит 288 витков в первичке и 29 во вторичке на кольце К20х12х6(М2000НМ).С этим трансформатором и лампой А12-21 частота примерно 40 кГц. Трансформатор подключен к точкам А и Б вместо цепи,выделенной синим цветом.

Прикреплённый файл:

eblds-p.jpg (8.44 KB)

ebf-p.jpg (8.63 KB)

Отредактировано пользователем MACTEP 26.06.2011 11:55:35
Отредактировано пользователем MACTEP 26.06.2011 11:57:37
Отредактировано пользователем MACTEP 26.06.2011 12:11:23

ЭПРА (Электронный Пуско Регулирующий Аппарат) – это устройство, предназначенное для поджига газоразрядных ламп и поддержания их в рабочем состоянии.

Соответственно, горение таких ламп без ЭПРА невозможно, а, значит, этот блок имеется во всех светильниках, которые работают с лампами на основе инертных газов, или даже в самих лампах (например, в энергосберегающих неоновых со стандартными цоколями).

Рассмотрение преимуществ и недостатков ламп мы оставим на потом, а сейчас остановимся подробнее на блоке их питания.

Основные компоненты ЭПРА

В составе подавляющего большинства таких устройств имеются:

  • Фильтр (могут отсекаться помехи из сети питания, или, наоборот, создаваемые самим блоком питания).
  • Выпрямитель.
  • Корректор мощности.
  • Выходной сглаживающий фильтр.
  • Инвертор.
  • Балласт.

Однако, в целях экономии (габаритов или конечной стоимости) некоторые производители могут убирать те или иные блоки.

Блоки могут реализовываться из самостоятельных радиоэлементов или на основе специальных микросхем.

Даже при беглом взгляде на состав ЭРПА становится понятно, что перед нами – готовый импульсный блок питания.

И, например, если светильник больше эксплуатироваться по назначению не будет, то почему бы не использовать из него пускорегулирующий блок в других целях?

Например, можно собрать компактный блок питания светодиодных лент с минимумом дополнительных деталей или зарядное устройство для аккумуляторов.

Переделка ЭПРА из энергосберегающей лампы

Так выглядит обычная люминесцентная лампа с цоколем Е27.

Рис. 1. Люминесцентная лампа с цоколем Е27

А так выглядит её принципиальная схема.

Рис. 2. Принципиальная схема л юминесцентной лампы с цоколем Е27

Красным выделены элементы, которые необходимы для запуска колбы (они нам не понадобятся).

Физически блок выглядит так (после разбора лампы).

Рис. 3. Блок лампы с элементами

Практически единственное отличие от ИБП – дроссель L5. Его нужно заменить на трансформатор. Сделать это можно двумя способами:

  • Намотать на него вторичную обмотку;
  • Выпаять и заменить на подходящий трансформатор (обязательно импульсный).

Здесь сразу необходимо оговориться о мощности такого ИБП.

Примечание. Все элементы схемы для достижения компактности готового изделия подобраны строго под определённые выходные параметры. А значит, без значительной переделки и применения радиаторов / других теплоотводов выходную мощность повысить не получится. Лучше всего, если она останется в пределах исходной мощности лампы!

То есть, если лампа на 15 Вт, то при выходном напряжении в 12 В сила тока на выходе не должна быть выше 1 А (12·1= 12 Вт).

Путь с минимальными трудозатратами - конечно, замена на подходящий.

Штатный дроссель имеет небольшие габариты, что существенно затрудняет перемотку. И даже после переделки впаять его на место вряд ли получится (габариты увеличатся). Хотя при должной сноровке можно-таки разобрать дроссель, изолировать первичную обмотку стеклотканью и намотать 10-20 витков (толщина провода до 0,5 мм отлично подойдёт).

Переделанная схема может иметь вид как на схеме ниже.

Рис. 4. Переделанная схема

Конденсаторы С9 – 0,1 мкФ, С10 – 470 мкФ. Диоды или диодный мост должны быть импульсными.

ЭРПА можно дополнить своим трансформатором. Например, как на схеме ниже.

Рис. 5. Схема дополненная трансформатором

Здесь не обошлось без мелких переделок основной схемы. Был заменён:

  • Резистор R0 (минимум 3 Вт, можно включить два по 10 Ом, 2 Вт параллельно).
  • Конденсатор C0 (напряжение – до 350 В).
  • Транзисторы 13007 (VT1 и 2, ставятся на радиаторы с площадью минимум 20 см 2 ).

Трансформатор можно взять готовый или намотать на основе дросселя из другой лампы, например, большей по мощности.

В качестве основы можно использовать ферритовое кольцо (2000НМ - 28 х 16 х 9мм или больше). В данной схеме использовалось кольцо с диаметрами 40 и 22 мм (внешний/внутренний), толщина – 20 мм. Первичная обмотка – 63 витка (ПЭЛ 0,85 мм2), вторичные – по 12 витков (провод тот же).

На схеме обозначена симметричная намотка вторичных обмоток. Её можно заменить одной, но на выходе должен быть диодный мост (как на первой схеме).

Схема 2 позволяет довести мощность блока питания до 100 Вт.

Больший ток может понадобиться для питания галогеновых ламп или для других задач.

Без подключённой нагрузки включать этот блок питания нельзя! Обратите внимание на показатели рассеиваемой мощности тестовой нагрузки.

Как посчитать витки трансформатора

Это, наверное, ключевой вопрос в переделке.

Алгоритм действий таков:

1. На дроссель необходимо намотать удобное количество витков (10/20/30 и т.п.).

2. Подключить нагрузку (это может быть резистор с рассеиваемой мощностью 30 Вт и больше).

3. Запитать схему и снять измерения на выходе (то есть на нагрузке).

4. Теперь легко понять какое напряжение приходится на 1 виток (имеющееся напряжение делите на количество намотанных витков).

5. Теперь можно рассчитать необходимое вам количество витков (требуемое напряжение делите на "цену" одного витка).

6. Наматываете своё количество витков.

Мнения читателей

Практически изложенный материал повторяется на разных сайтах. На одном пишут, что R2, C11 и C8 ускоряют запуск- сомневаюсь т.к. это подключено к выходу. Здесь тоже ошибка: до 100 Вт рис.5, а не схема 2. Сомневаюсь, что из 20 Вт лампы можно только усилив элементы и намотав трансформатор получить 100 Вт- в разы увеличится ток TV1 и напряжения на базе соответственно, а превышение этого напряжения 8 В приведёт к пробою транзисторов без принятия дополнительных мер. Нельзя дроссель заменить трансформатором, как написано в начале статьи- не хватит тока первички для работы TV1, а если уменьшить индуктивность как у дросселя, то выйдет из строя всё под нагрузкой когда индуктивность снижается.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Читайте также: