Переделка компьютерного блока питания для усилителя

Обновлено: 07.07.2024

Компьютерный бп на tl494 как питание лампового унч

как то все рядом то для авто, то для сабвуферов.
а эта тема - для лампового унч

им обычно нужны (с учетом наших плавающих напруг в сети и срезанных вершин на синусе сетевого синуса) стабильные накал анод и смещение (а срезанные синусы - напрягают 50гц трансформаторы)
поэтому схемы без стабилизации мало подходят
ну а со стабилизацией - самое простое и "есть везде горами" - на tl494 компуковые бп (одно НО - поздние на шим-ах с повышенной интеграцией не так интересны, хотя примененные детали часто в них получше, сложно их защиты обходить)

взят как основа "узкий* "левый" бп (pm-230) (размер примерно у него как у тс-180)
убраны - плата атх включения, цепи -5 и -12в, защита от перенапруги по ним, компенсационный дроссель, и вся дежурка вчистую, у этих бп она и так уже обычно мертвая в хлам
транс перемотан (транс "средний* по размерам, со всяких повермастер-кодеген), 12в - проводом 0.3, анодная (300в) - таким же, смещение - таким же, накальная (7.6в) - в 4 провода 0.5
витки - 4 и 4 - накал, 3 и 3 12в добавочные к накальной, 99вит - анод, 20вит - смещение (-55в)
на накал диодная 30а сборка, на 12в - два fr105 (снятые с -12 цепей)
12в идет на 7812 и с нее пит tl494 и еще может куда (индикаторы, реле и тп мелочевка)
по накалу с диодов идет дроссель, птом 1800х16в рубикон (с гигабайтовой мамы-трупа), дроссель и еще такой же 1800х16в
по 12в - перед 7812 - 470х25в, после нее - еще 470мкф на 25в)
для автостарта между к и б ключей (D304X) - резисторы 330к

ну и вернуть надо на место сетевой фильтр, "толстые* диоды в сетевой мост
так же изменены номиналы делителя (1я и вторая ноги tl) в цепи обратной связи, что б она считала что там те же 5в

в данный момент оно работает, дает по 300в - 300ма, по 7.6 накальной - до 8а (потом будут омные резисторы в послед с накалами ламп, для смягчения их разогрева, 1в снимутся там)
пульсации у накальной - милливольты вч, у анодной - вольт 5 100гц пульсация (пила), кондеры по сети невнятные 330мкфх200в

в дальнейшем по аноду будет стоять стабилизатор с плавным ростом напруги на полевике (кстати - 1n4148 в прямом включении - при малом токе как шикарные стабилитроны на 150-153в, ну и есно наши кд220, кд503, кд223 - тоже за стабилитроны сходят (от 60в до 200в и выше, какой то 1n вообще на 300в)

а вот как снять нагрев ключей, что бы обойтись без вентилятора вообще?
при 150вт на выходе его штатная пластина заметно нагревается
по идее перевод с биполяров на полевики должен уменьшить потери в них?

Если нужен блок питания для нестандартных условий, можно воспользоваться построением с низкочастотным трансформатором. Такое решение просто в реализации и не требует особо глубоких специальных знаний, но есть у него и ряд недостатков – большие габариты, низкий КПД и качество стабилизации выходных напряжений. Можно изготовить импульсный БП, но это довольно сложная процедура с массой подводных камней – при малейшей ошибке будет «хлопок» и куча ненужных деталей.

Попробуем снизить планку и ограничимся модернизацией обычного компьютерного блока питания ATX под необходимые требования. Гм, а что именно станет предметом рассмотрения? Вообще-то, 300-400 ваттный БП может обеспечить довольно значительную мощность, область применения у него большая. В одной статье трудно объять необъятное, поэтому ограничимся самым распространенным – усилителем низкой частоты, под него и попробуем осуществить переделку.

Блок питания довольно большой мощности, хотелось бы его использовать по максимуму. Из 12 вольт мощный усилитель не сделать, здесь требуется совсем другой подход – двуполярное питание с выходным напряжением явно побольше 12 В. Если БП будет запитывать самодельный усилитель, собранный из дискретных элементов, то его напряжение питания может быть любым (в разумных пределах), а вот интегральные микросхемы довольно придирчивы. Для определенности возьмем усилитель на TDA7294 – напряжение питания до 100 В (+/-50 В) с выходной мощностью 100 Вт. Микросхема обеспечивает ток в динамике до 10 ампер, что определяет максимальный ток нагрузки блока питания.

Вроде всё ясно, остается уточнить уровень выходного напряжения. Допускается работа от источника питания 100 вольт (+/-50 В), но попытка выбора такого значения выходного напряжения оказалась бы большой ошибкой. Микросхемы крайне отрицательно относятся к предельным режимам работы, особенно при одновременном максимальном значении нескольких параметров - напряжения питания и мощности. К тому же, вряд ли в обычной квартире есть смысл обеспечивать столь высокий уровень мощности, даже для низкочастотных динамиков с их низкой эффективностью.

Дешевая 3070 Gigabyte Gaming - успей пока не началось

Можно установить напряжение в 90 вольт (+/- 45 В), но это потребовало бы очень точного удержания выходного напряжения – в многоканальных блоках питания весьма затруднительно обеспечить одинаковость напряжений на разных выходах. Поэтому стоит немного снизить планку и установить номинальное напряжение для этой микросхемы 80 вольт (+/-40 В) - мощность усилителя немного упадет, но устройство будет работать с должным запасом прочности, что обеспечит достаточную надежность устройства.

Кроме того, если звуковая колонка будет работать не только в низкочастотной области, но еще содержит средне-высокочастотные каналы усилителей, то стоит получить от БП еще одно напряжение, меньше «+/-40 В». Эффективность работы низкочастотных динамиков большого диаметра существенно ниже более высокочастотных, поэтому запитывание усилителя СЧ-ВЧ канала от тех же «+/-40 В» довольно глупо, основная масса энергии уйдет в тепло. Для второго усилителя хорошо бы обеспечить выход +/-20 вольт.

Итак, спецификация блока питания, который хочется получить:

  • Канал № 1 (основной), напряжение: «+/-40 В».
  • Ток нагрузки от 0.1 А до 10 А.
  • Канал № 2 (дополнительный), напряжение: «+/-20 В».
  • Ток нагрузки от 0 до 5 А.

Характеристики определены, осталось выбрать подходящую модель. Совсем уж старый использовать нет никакого желания, конденсаторы давно уж высохли, да и схемные решения тех времен не внушают оптимизма. Стоит отметить, что часть «современных» блоков питания тоже не блещет качеством работы и надежностью, но с этим можно бороться – достаточно выбирать продукцию известных фирм, к которой есть доверие.

Кроме философского осмысления сущности БП и отбора по внешнему виду, есть вполне осмысленный критерий – их тип. Блок может быть выполнен по технологии «двухтактный полумост» или «однотактный прямоход», содержать в себе какую-то разновидность PFC (активную или пассивную на дросселе). Всё данные факторы оказывают влияние на качество работы и уровень помех. Причем, это не «просто слова», при переходе от трансформаторного БП на «импульсный» довольно часто замечается ухудшение качества звучания.

реклама

С одной стороны, «странно», ведь такой БП обеспечивает лучшую стабильность напряжения питания усилителя. С другой, ничего странного нет – «импульсник» производит помеху при переключении силовых транзисторов основного преобразователя (и блока APFC), что выражается в высокочастотных «всплесках» на цепях питания и земли. Чаще всего преобразователь БП работает на частоте 40-80 кГц, что выше звукового диапазона, а потому вроде бы не должно мешать устройству, но помехи распространяются по всему усилителю и сбивают рабочую точку усилительных каскадов, что приводит к интермодуляционным искажениям, звук становится «жестче». В компьютерном блоке питания шины 12 В и 5 В выглядят следующим образом:

320x234 6 KB

Так что, проблема не надуманная и на борьбу с ее негативным проявлением следует потратить некоторые усилия.

450x259 35 KB

Ничего необычного, классическая компоновка, разве что дроссель PFC вносит в картинку некоторый элемент дисгармонии. К слову, измерение характеристик и величины пульсаций на выходе показало, что наличие этого дросселя приводит лишь к тому, что блок питания становится тяжелее и немного «гудит» при мощности нагрузки 250-300 Вт.

Компьютерный блок питания должен формировать массу напряжений большой мощности – 12 В, 5 В, 3.3 В, -5 В, смысл в которых сразу теряется, как только речь заходит об усилителе. Кроме того, БП содержит дежурный источник 5 В, но его лучше не трогать и сохранить в неизменном виде – во-первых, он используется для работы основного преобразователя, во-вторых, можно будет реализовать включение-выключение усилителя от внешнего управления или просто по появлению звукового сигнала на входе усилителя. Это функция потребует изготовления высокочувствительного детектора с питанием от 5 вольт и вряд ли кто-нибудь станет делать этот элемент на начальной стадии сборки усилителя, ну хоть возможность такая останется. Пусть будет, это «бесплатно».

После удаления всех цепей формирования выходных напряжений получилось следующее:

342x450 54 KB. Big one: 400x527 69 KB

Оказалось не так много места, поэтому доработка не должна содержать слишком много деталей – банально не влезет. Фу ты, еще заложили в требования наличие двух выходных каналов.

Компьютерный блок питания формирует два основных выхода: 12 В и 5 В, этим объясняется наличие всего двух пар вторичных обмоток. Каким способом можно получить напряжение больше, чем заложено при проектировании БП?

1. Перемотать трансформатор.
2. Поставить умножитель.
3. Добавить второй трансформатор.

реклама

Первый вариант понятен и прост в техническом плане. Одно «но», конструкция импульсного трансформатора не так проста, как может показаться на первый взгляд. Существует масса требований и ограничений, не выполнив которых можно получить либо «крайне посредственный вариант», либо, что гораздо хуже, некачественную изоляцию вплоть до поражения электрическим током. В трансформаторе первичная обмотка выполнена из двух частей. Первая расположена в самом начале, а потому не мешает перемотке, а вот вторая наматывается самой последней.

Трудности умножаются тем, что между первичной и вторичной обмотками присутствует электростатический экран из медной ленты. Чтобы осуществить перемотку придется аккуратно смотать верхнюю часть первичной обмотки, убрать экран и вторичные обмотки. После чего намотать новые вторичные обмотки, восстановить экран и первичную обмотку. Естественно, между обмотками и экраном должна быть надежная изоляция. Дело усугубляется тем, что трансформатор пропитан лаком, а потому его разборка-сборка занятие «увлекательное» и качество выполнения доработки окажется не слишком хорошим. Впрочем, если у вас руки «прямые» и есть желание попробовать – некоторые рекомендации:

И всё же я бы не рекомендовал этот вариант переделки для тех, у кого нет опыта намотки импульсных трансформаторов. Не стоит, может выйти боком. К слову, если человек разбирается в вопросе, то ему проще намотать трансформатор полностью «с нуля», по крайней мере, не будет путаться под ногами этот «лак», да и число витков во всех обмотках можно будет выбрать оптимальным.

Второй вариант довольно сложен в реализации и обладает рядом серьезных недостатков. Пример такого построения изображен на рисунке:

реклама

  • TV1 – обычный трансформатор блока питания, без каких-либо доработок.
  • TV1.1 – первичная обмотка.
  • TV1.3 и TV1.4 – обмотки канала 5 В.
  • TV1.2 и TV1.5 – обмотки, совместно с TV1.3 и TV1.4 формирующие канал 12 В.

Для анализа важен тот факт, что форма импульсов напряжения на выходе трансформатора с гладким верхом, а не «синус», «пила» или другие вариации. Устройство работает следующим образом - на первичной обмотке следуют импульсы напряжения прямоугольной формы с некоторой скважностью. Напряжение импульсов на первичной обмотке составляет половину напряжения питания или около 140 В при номинальном напряжении сети. На вторичной стороне форма импульсов сохраняется, а амплитуда зависит от числа витков и распределяется примерно как 9 В на обмотках «канала 5 В» (TV1.3 и TV1.4) и 21 В на «канале 12 В» (TV1.2+TV1.3 и TV1.4+ TV1.5).

Предположим, что в данный момент поступает импульс положительной полярности и на верхних выводах обмоток следует «+». Расставим напряжения в контрольных точках:

  • A = +21 В.
  • B = +9 В.
  • С = -9 В.
  • D = -21 В.

Отсюда можно сразу вычислить напряжение в токе «F», оно будет чуть меньше цепи «B» на величину падения напряжения на диоде D1.

При данной полярности диод D2 закрыт, поэтому напряжение в точке «E» будет определено при противоположной полярности импульса.

  • Напряжение на конденсаторе C2 = +8.4 – (-21) = 29.4 В.

реклама

Сменим полярность импульса, напряжения в контрольных точках поменяют знак:

  • A = -21 В.
  • B = -9 В.
  • С = +9 В.
  • D = +21 В.

Полярность сменилась и открывается диод D2. Напряжение в точке «F» станет чуть меньше цепи «B» или около +8.4 В.

  • E = +8.4 В.
  • Напряжение на конденсаторе C1 = +8.4 – (-21) = 29.4 В.

Схема симметричная, поэтому напряжения конденсаторов обязаны быть одинаковыми. Из анализа предыдущей полярности импульса следует, что

  • Напряжение в точке «F» смещено относительно точки «D» на величину напряжения конденсатора С2 (29.4 В) и равно +21 + 29.4 = +50.4 В.

Нет смысла анализировать аналогичное состояние точки «E» при смене полярности импульса, схема симметричная и там будет столько же, сколько сейчас на точке «F», +50.4 В.

В итоге, может интересовать только «E» и «F», ведь из них получается выходное напряжение. Соберем значения в этих точках в таблицу. Впрочем, забыл еще одно состояние, «пауза» импульса от ШИМ-регулировки. Этот случай очень прост, на всех обмотках нулевое напряжение и в точках «E» и «F» получается одно и то же напряжение +29.4 В, хранимое в конденсаторах. (При анализе не учитывалась конечная емкость конденсаторов и непрямоугольность формы импульсов).

реклама

Выпрямительная сборка D3 «выбирает» наибольшее напряжение из двух входов («E» и «F»). Это означает, что на входе дросселя L6 будут идти импульсы амплитудой 50 В с паузой 8 В. При скважности ШИМ 70% на выходе сформируется напряжение примерно 37 вольт.

Всё сказанное относилось к получению повышенного напряжения положительной полярности. Если необходимо сформировать и отрицательный выход, то схему следует «удвоить» – добавить конденсаторы C1, С2 и C3, диоды D1 и D2, пару диодов в сборку D3 и намотать вторую обмотку на выходном дросселе. Не забудьте сменить полярность конденсаторов и диодов.

У подобного решения только одно достоинство – не придется что-то делать с трансформатором. Впрочем, есть еще одно - незначительное, девиация напряжения на выходном дросселе небольшой амплитуды, поэтому размеры дросселя и его индуктивность могут быть сниженной величины. Фактически, можно использовать старую обмотку канала 12 В.

Недостатков больше и они серьезные:

  • Весь импульсный ток протекает через повышающие конденсаторы С1 и С2.
  • Очень большой ток заряда конденсаторов в начальный момент времени. Кроме снижения срока службы конденсаторов, высокая величина тока может вызвать срабатывание общей защиты блока питания и он отключится.
  • Низкий диапазон регулирования выходного напряжения.
  • Невозможно получить больше одного канала со стабилизацией выходного напряжения. Выходы «+37 В» и «-37 В» получаются по вышеприведенной схеме, а вот обычные «+/-12 В» придется формировать на отдельном дросселе при повышенном уровне пульсаций с частотой сети и низкой стабильностью.

реклама

Основной недостаток схемного решения - весь ток протекает через конденсаторы С1 и С2. Довольно просто найти конденсаторы с подходящей емкостью или ESR, но вот величина импульсного тока у них окажется низка. Чтобы не быть голословным, подберем подходящий конденсатор для рассматриваемого блока питания усилителя (выходное напряжение соответствует заданным условиям, величина тока до 10 А).

Ранее я ссылался на конденсаторы общего применения фирмы Jamicon серии LP, посмотрим, что есть в данном исполнении – 2200 мкФ 50 В. Максимальный ток 2 ампера. Совершенно не подходит, конденсатор выйдет из строя через неделю работы усилителя. Переходим к серьезным сериям, «Low ESR». Например, серия WL:

В круглых скобках указывается характеристики альтернативного варианта исполнения корпуса конденсатора.

Хочется отметить интересный момент, для конденсатора «680 мкФ 35 В» первое исполнение, в сравнении со вторым, несет меньшее внутреннее сопротивление и максимальный ток, обычно происходит обратное – снижение ESR повышает величину тока. Видимо, причина в разной площади поверхности корпуса.

реклама

Если смотреть на ESR, то все конденсаторы вполне устраивают. Ну, сколько может «упасть» на сопротивлении 40-90 мОм при токе 3-8 ампер? Пустяк. Блок питания работать будет. Вот так и появляются «китайские» поделки. К слову, в Китае производится масса качественной продукции, это местные фарцовщики закупают хлам, отсюда и происходит недоверие к китайской продукции … причем зря.

Ну ладно, собираем для себя, поэтому делать плохо не будем. Конденсатор должен выдерживать ток не менее 10/2=5 А в долговременном режиме и на одном конденсаторе получить такую характеристику не удастся. Остается вариант с установкой пары или тройки конденсаторов параллельно. Два конденсатора «1000 мкФ 35 В» обеспечат ток до 5 (4.2) ампера, что маловато. Можно взять конденсаторы того же номинала, но чуть большего напряжения «1000 мкФ 50 В», предельный ток составит величину 6.4 (5.6) ампера.

С учетом конечной индуктивности выходного дросселя этот вариант может устроить, но не особо хорошо. Перейдем к утроению конденсаторов, «680 мкФ 35 В» обеспечит ток до 6 (5.1) А, или «680 мкФ 50 В» 7.8 (6.9) А. Последний вариант смотрится уже веселее, блок питания сможет работать достаточно долго.

В результате получается, что в блок питания придется установить 3*2*2=12 конденсаторов «680 мкФ 50 В», выйдет не самое компактное устройство, а место в БП ограничено.

Схема моделировалась, но практически не испытывалась, поскольку не лежит у меня душа к таким решениям. Этот вариант доработки дается на ваш страх и риск.


В третей части расскажу, как выбрать блок питания для питания усилителя.

Для питания усилителя нужно напряжение 12 вольт, такое напряжение дает компьютерный блок питания.

Для усилителя нам понадобится бюджетный блок питания без особых выпендрежей, подойдет бу, если есть, нужно 350 и более ватт
Не используйте бп старше 5 лет!
У меня бу не было, взял новый.
При подборе почитайте что написано на этикетке, у большинства расписано, сколько ватт выдаются на линию 12 вольт, 5 вольт и 3.3 вольта.
Не покупайте бп китайские, сомнительной марки рублей за 500.
Т.к. заявленные характеристики будут не соответсвовать.

Советую присмотреться к БП марки FSP GROUP, они по качеству и надежности самые лучшие из бюджетных и самое главное в них стоят очень большие и тихие вентиляторы, но есть одна особенность, о которой скажу чуть ниже.

Я взял FSP ATX-450pnr



Далее нам нужно его переделать для удобного использования:

!Когда работаете с блоком обратите внимание на то как расположены провода в фишках, нет ли где есть два разного цвета провода засунуты в один контакт, это не спроста их тогда надо тоже соединить!

1) Читаем этикетку, у многих бп написано какие провода к каким линиям относится.
Обчно желтый/желто-черный это 12 вольт, красный 5 вольт, 3.3 вольта оранжевый, черный это масса(-), зеленый относится к проводу отвечающему за пуск блока, ну и еще пара проводов.

2) чтобы запустить блок нужно соединить( пока на время, для каких либо тестов) черный с зеленым скрепкой.
3) Когда вы точно уверены какие провода за что отвечают, можно откусить их от фишек,
зачищаем и скручиваем на концах провода, получается коса желтых, коса желто-черных(т.к у моего блока две линии по 12 вольт) и коса черных( у меня две(я их разделил на два чтобы в усилитель удобнее было совать))))


4)Про линии 3.3 вольта, её можно отрезать или выпаять, если вы её не будете использовать.
5)Провода я пока обвязал изолентой, но потом красивую красную изоляцию куплю.
6)Соединяем провод зеленый с любым черным, можно через кнопку, она будет отвевать за пуск всей системы.


7) ! см условие (!) У меня были так засунуты коричневый и оранжевый провода, поэтому их нужно тоже соединить.

*) теперь про линию 5 вольт.
1. если нагрузить линию 5 вольт автомобильной лампочкой или светодиодами или конденсаторами, то на линии 12 вольт поднимется напряжение, оно станет 12,5 это нужно чтобы просадок в напряжение во время работы усилителя не было, но то не обязательно! я так не делал, стабильно держится 12 вольт и просадок не происходит.
поэтому если не хотите использовать линию 5 вольт тоже её вырезайте
На некоторых бп есть регулятор напряжения, но это другая история.
9) вырезайте все оставшиеся провода, кроме тех которые нам нужны.

Далее подключение блока питания к усилителю, в плюс пихаем две линии с плюса блока питания, потом от плюса делаем перемычку проводом на контакт для предохранителя( у нас его не будет тк это установлено не авто) и пихем минус в минус, главное внимательно смотреть что нарисовано на контактах у усилителя.

Для питания автомобильного усилителя требуется "бортовое" питание 12 вольт и при проверке, ремонте или эксплуатации такого усилителя дома может возникнуть проблема - отсутствие необходимого аккумулятора или блока питания достаточной мощности. В этом случае можно с успехом использовать любой компьютерный блок питания (БП), имеющий в наличии.

Мощность БП может быть от 200 ватт и выше, в зависимости от максимальной выходной мощности подключаемого усилителя. Правда, потребуется незначительная переделка блока питания, которая, впрочем, не требует никакой особой квалификации и даже вскрытия корпуса БП.

Ниже приведена стандартная (типовая) схема распайки "основного" разъёма блока питания (20 или 24 контакта) где красным цветом выделены добавленные элементы и нужные нам выводы:

Во-первых необходимо установить какой-либо выключатель, можно маломощный, для включения/выключения БП. Он подключается к контактам "COM" - "PS_ON"(этот контакт всегда с проводом зелёного цвета).

Затем, чтобы БП нормально запускался и выдавал стабильное выходное напряжение нужно "нагрузить" выход "+5V" (провода красного цвета) сопротивлением порядка 4-10 Ом. Этот резистор будет довольно сильно греться при работе, поэтому его нужно взять мощностью побольше, желательно ватт на 10. Вместо резистора можно использовать отрезок нихромовой проволоки или кусок спирали от нагревательных приборов с нужным сопротивлением. Необходимо лишь обеспечить его надёжное крепление и изоляцию от других токоведущих частей.

На этом, собственно, переделка закончена. К выводам "COM"- "+12V"(провода жёлтого цвета) можно подключать усилитель.

При необходимости можно сам разъём удалить и всю коммутацию производить с помощью непосредственно проводов (лишние провода лучше обрезать и изолировать их концы) . Проводов красного, чёрного и жёлтого цветов в любом БП будет по нескольку штук, внутри блока все они соединены параллельно(по цветам). Все их следует оставить и также запараллелить на "выходных" концах, это увеличит суммарную площадь сечения соединений.

* Спасибо за уделённое время, прошу поставить "палец-вверх", если статья была Вам полезна :-))

_________________
У кошки 4 ноги и хвост-плюс,минус,вход,выход,а хвост-земля. Надо переходить с китайской бурды на канифоль.

Блин я разстроен
ну что больше нет ни каких вариантов кроме как искать схему моего бп?
потому как я ее врядли найду поптому как корпуса от этого бп нет есть только плата рабочяя.

Блоки питания ПК в своём большинстве универсальны, вплоть до трансформаторов.
Поэтому имеется большая вероятность того, что транс от аналогичного БП подойдёт тик в тик, даже выводы совпадут на плате.
У меня так несколько раз случалось.
Так что ищите аналогичные блоки . .

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

Так надо не "курить", а читать. .

Там, к примеру, есть вот такая информация:

"Перемотал импульсный трансформатор, разобрать его оказалось не так сложно, надо нагреть феррит мощным паяльником, клей становится вязким- все легко разбирается (я разобрал 3 трансформатора). Главное - терпение. Первичку не перематывал, вторичку намотал 4 провода по 0.5 всего 2Х6 витков, ранее было 5 витков. Иногда первичка делается в 2 слоя-под и над вторичкой. Когда будете наматывать "наружнюю" первичку вновь, не перепутайте направление намотки. После перемотки склеил "секундным" клеем (цианоакриловым)"

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Вот появилась у меня навязчивая идея сделать блок питания для лампового усилителя из компьютерного ATX.
Да и вообще с ИИП не имел дела.

Блок питания лампового усилителя должен иметь довольно приличное выходное напряжение (сотни Вольт). Получение высоких напряжений в импульсных блоках питания сопряжено с рядом трудностей, и совсем не входит в круг задач для начинающих. Поэтому мой Вам совет: откажитесь от этой идеи, сделайте обычный БП для лампового усилителя.

В двух словах: компьютерный БП обычно выполнен как прямоходовый, по топологии "полумост". Выпрямители - двухтактные со средней точкой, с индуктивным фильтром. Этот выпрямитель неудобен для получения высоких выходных напряжений, т.к. требует применения очень быстрых диодов с обратным напряжением в 5 и более раз выше выходного. Обычно высокие напряжения получают в ИИП совсем другими способами, наиболее предпочтительная топология там - обратноходовый, часто при этом ещё и настраивается в резонанс на какую-нибудь гармонику


ну понимаете к новичкам меня можно отнести только в плане Импульсных ИИП, а так я и не новичек, у меня за плечами имеются и транзисторные и ламповые конструкции.
, вот сейчас например у меня стоит ламповый двухтакт на 6п14п выполнен в двойном моно. И меня радует все кроме того что вес оч большой, силовые трансы греются и напруга по питания не 230в вместо 275.
НО в скорем времени я хочу сделать двухтакт (или однотакт на 6ф6сЮ и хотелось чтоб усилитель был полностью обеспечем нужным током и нужным напряжением, и чтоб это все весело не так много как мой двухтакт на 6п14п, всем этим парамметрам соотвецтвует ИИП.

_________________
Все хорошо в меру.

Приглашаем всех желающих 25/11/2021 г. принять участие в вебинаре, посвященном антеннам Molex. Готовые к использованию антенны Molex являются компактными, высокопроизводительными и доступны в различных форм-факторах для всех стандартных антенных протоколов и частот. На вебинаре будет проведен обзор готовых решений и перспектив развития продуктовой линейки. Разработчики смогут получить рекомендации по выбору антенны, работе с документацией и поддержкой, заказу образцов.

ну вообщето говоря у меня есть еще один блок питания, правда он не на 350вт а на 200вт

_________________
Все хорошо в меру.

Приглашаем 30 ноября всех желающих посетить вебинар о литиевых источниках тока Fanso (EVE). Вы узнаете об особенностях использования литиевых источников питания и о том, как на них влияют режим работы и условия эксплуатации. Мы расскажем, какие параметры важно учитывать при выборе литиевого ХИТ, рассмотрим «подводные камни», с которыми можно столкнуться при неправильном выборе, разберем, как правильно проводить тесты, чтобы убедиться в надежности конечного решения. Вы сможете задать вопросы представителям производителя, которые будут участвовать в вебинаре

Читайте также: