Процессор это элемент матрицы дисплея формирующий изображение

Обновлено: 06.07.2024

ДОБАВЛЕНО 24/07/2009 23:13

THOMSON 26N90NH10 (повер+инвертор) MIP260T

Обзор управления матрицы LCD .

Матрица имеет структуру похожую на сетку или матрицу.
Вертикально идут шины данных либо еще их называют столбцы. Они представляют из себя прозрачные проводники (прозрачные электроды). Они подключены сверху к столбцовому драйверу (дешифратору). По вертикальным шинам данных передается напряжение для открывания пикселя (то есть яркость).
Горизонтальные линии - это строки (выборочные шины) в местах пересечения с вертикальными шинами данных они изолированы от них. Управляет этими шинами строчный дешифратор. Второе название счетчик-адресcатор, либо просто драйвер горизонтальных шин. Горизонтальный драйвер подает импульс на ту строку в которую надо записать яркость.

Формирование изображения.

Каждое перекрестие это один субпиксель. Запись яркости для матрицы FullHD можно представить как работу цикла. Сперва для 1920*3 транзисторов субпикселей вертикальным драйвером формируются напряжения, а затем проходит первый импульс от горизонтального драйвера и происходит запись этих напряжений в каждый субпиксель (напряжением заряжаются 1980*3 конденсаторов) "выполняется первая итерация цикла" и так операция формирования напряжений и "записи" значений этих напряжений идет по циклу 1080 раз. Таким образом формируется полный кадр. Конденсаторы запоминают заряд пока не прорисуется вся матрица и не начнется новый кадр.

Строчные драйвера.

Строчные драйвера чаще располагаются на "ушках", либо располагаются прямо на стекле. И прикладывают напряжение на затворы транзисторов.
Сигналы драйвера:
1. STVI - импульс с частотой следования кадров или с частотой смены полей. Например у матрицы с частотой 100 Гц это 100 полей в секунду.
2. STVO - выход сигнала для перехода на следующий драйвер.
3. CPV - сигнал строчной синхронизации. Идет на все боковые драйвера параллельно.
4. OE - Идет на все боковые драйвера параллельно.
5. VGH (Voltage Gate Hight)(Von) - Напряжение высокого уровня для открытия транзисторов. (18v - 28v)
6. VGL (Voltage Gate Low)(Voff) - Напряжение низкого уровня для закрытия транзисторов. (обычно -6, но бывает -8v или -9v) Если напряжение меньше -4, -3, или выше, то надо смотреть T-con который формирует эти напряжения.
7. Vdd - Напряжение питания драйвера 3,3v
На ушах драйверов имеются пятачки - контрольные точки.

Столбцовые драйвера.

Они находятся в шлейфах от стекла к планке, либо к блоку T-con.
Их количество зависит от конструкции самой матрицы. Каждый драйвер работает на определенную часть экрана.
Данные поступают на сдвиговой регистр, затем они сдвигаются и заполняют регистры (ячейки строки), далее данные поступают в ЦАП и затем в усилитель.
Отдельно стоит отметить работу ЦАП. Для свое работы ему необходимо опорное напряжение. Для формирования цветовой гаммы к нему подходит 14 напряжений (GAMMA, GMA1. GMA14). ЦАП выставляя на шину свои 8 бит смешивает эти напряжения и формирует необходимое для конкретной яркости напряжение. Встречается неисправность, ЦАПа, когда матрицу заливает одним цветом, например всё становится красным или зеленым. Эта неисправность может указывать на неправильную работу ЦАП.
На столбцовый драйвер приходят сигналы данных ODATA и EDATA они идут 24-битными и поступают на все столбцовые драйвера.
Для синхронизации есть импульсы:
SP - это стартовый импульс загрузки. Когда первый драйвер отработал SP поступает на второй драйвер.
CLK - частота с которой происходит запись в пиксель.
Синхроимпульсы, питание, ODATA, EDATA, GAMMA - все это формируется на модуле T-con.

Автономный режим матрицы.

Этот режим нужен для проверки работоспособности матрицы и сокращения времени на диагностику. В автономном режиме матрица переходит в режим "самотестирования" показывает нам разноцветные поля, шахматное поле, серое поле, белое поле и т.п.
Например если на экране после включения отображаются полосы, то подозрение может упасть как на матрицу, так и на Main Board и на T-con.
Если в автономном режиме матрица нормально работает, то это говорит о том, что у нас нормально работают: матрица, драйвера, синхронизация, T-con и в этом случае стоит искать неисправность например в Main Board.
Не все матрицы имеют автономный режим. Часто не бывает автономного режима у матриц Samsunga.

Включение автономных режимов:

При включении автономных режимов во всех приведенных ниже случаях не забываем про подсветку она должна быть включена.
-У LG - Отключаем LVDS подаем питание на T-con и матрица переходит в режим тестирования.
- Для включения автономного режима надо узнать какое напряжение идет на T-con. Обычно это 12v, но бывает и 5v. Далее необходимо включить тестовый режим. Для этого на T-con имеется контрольная точка, которая обычно обозначается (AGM, AGMODE, TEST). Эту контрольную точку можно попробовать замкнуть на корпус через резистор 1 koм, если режим не включился, то пробуем подать на эту точку 3,3v через 1koм.
- Многие T-con не имеют на борту кварцевого резонатора, потому для работы им всё же нужна шина LVDS, тогда мы её подключаем, питание в этом случае у нас идет через неё, а мы через резистор 1koм проделываем описанную операцию с вышеуказанной контрольной точкой.

Неисправности драйверов.

1. С этими сигналами бывают самые серьезные неисправности. Эти сигналы и напряжения, а точнее проводники подводящие сигналы и напряжения к драйверам - обрываются. Обрываются они под стеклом матрицы. Они проходят под стеклом от столбцового драйвера к строчному. В этом случае необходимо продублировать оборвавшийся сигнал проводком, припаяв его на соответствующие пятаки. Также могут оборваться проводники идущие от драйвера к драйверу от STI к STV. OE и CPV тоже могут отвалиться на пути к драйверу.

Для того чтобы починить ЖК монитор своими руками, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и за что отвечает каждый элемент электронной схемы. Начинающие радиомеханики в начале своей практики считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата. Но на самом деле, это ошибочное мнение и принципиальная схема нужна не всегда.

Итак, вскроем крышку первого попавшегося под руку ЖК монитора и на практике разберёмся в его устройстве.

ЖК монитор. Основные функциональные блоки.

Жидкокристаллический монитор состоит из нескольких функциональных блоков, а именно:

Жидкокристаллическая панель представляет собой завершённое устройство. Сборкой ЖК-панели, как правило, занимается конкретный производитель, который кроме самой жидкокристаллической матрицы встраивает в ЖК-панель люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT).

Рассмотрим состав ЖК-панели компьютерного монитора ACER AL1716. ЖК-панель является завершённым функциональным устройством и, как правило, при ремонте разбирать её не надо, за исключением замены вышедших из строя ламп подсветки.

Маркировка ЖК-панели: CHUNGHWA CLAA170EA

На тыльной стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф. Сама печатная плата скрыта под металлической планкой.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

ЖК-панель компьютерного монитора Acer AL1716

На печатной плате установлена многовыводная микросхема NT7168F-00010. Данная микросхема подключается к TFT матрице и участвует в формировании изображения на дисплее. От микросхемы NT7168F-00010 отходит множество выводов, которые сформированы в десять шлейфов под обозначением S1-S10. Эти шлейфы довольно тонкие и на вид как бы приклеены к печатной плате, на которой находиться микросхема NT7168F.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Печатная плата ЖК-панели и её элементы

Микропроцессор SM5964 выполняет довольно небольшое число функций. К нему подключена кнопочная панель и индикатор работы монитора. Этот процессор управляет включением/выключением монитора, запуском инвертора ламп подсветки. Для сохранения пользовательских настроек к микроконтроллеру по шине I2C подключена микросхема памяти. Обычно, это восьмивыводные микросхемы энергонезависимой памяти серии 24LCxx.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Основная плата (Main board) ЖК-монитора.

Вторым микропроцессором на плате управления является так называемый мониторный скалер (контроллер ЖКИ) TSU16AK. Задач у данной микросхемы много. Она выполняет большинство функций, связанных с преобразованием и обработкой аналогового видеосигнала и подготовке его к подаче на панель ЖКИ.

В отношении жидкокристаллического монитора нужно понимать, что это по своей сути цифровое устройство, в котором всё управление пикселями ЖК-дисплея происходит в цифровом виде. Сигнал, приходящий с видеокарты компьютера является аналоговым и для его корректного отображения на ЖК матрице необходимо произвести множество преобразований. Для этого и предназначен графический контроллер, а по-другому мониторный скалер или контроллер ЖКИ.

Мониторный скалер TSU16AK взаимодействует с управляющим микроконтроллером SM5964 по цифровой шине. Для работы ЖК-панели графический контроллер формирует сигналы синхронизации, тактовой частоты и сигналы инициализации матрицы.

Микроконтроллер TSU16AK через шлейф связан с микросхемой NT7168F-00010 на плате ЖК-панели.

При неисправностях графического контроллера у монитора, как правило появляются дефекты, связанные с правильным отображением картинки на дисплее (на экране могут появляться полосы и т.п). В некоторых случаях дефект можно устранить пропайкой выводов скалера. Особенно это актуально для мониторов, которые работают круглосуточно в жёстких условиях.

При длительной работе происходит нагрев, что плохо сказывается на качестве пайки. Это может привести к неисправностям. Дефекты, связанные с качеством пайки нередки и встречаются и у других аппаратов, например, DVD плееров. Причиной неисправности служит деградация либо некачественная пайка многовыводных планарных микросхем.

Блок питания и инвертор ламп подсветки.

Наиболее интересным в плане изучения является блок питания монитора, так как назначение элементов и схемотехника легче в понимании. Кроме того, по статистике неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Поэтому практические знания устройства, элементной базы и схемотехники блоков питания непременно будут полезны в практике ремонта радиоаппаратуры.

Блок питания ЖК монитора состоит из двух. Первый – это AC/DC адаптер или по-другому сетевой импульсный блок питания (импульсник). Второй – DC/AC инвертор. По сути это два преобразователя. AC/DC адаптер служит для преобразования переменного напряжения сети 220 В в постоянное напряжение небольшой величины. Обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт.

Инвертор DC/AC наоборот преобразует постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц. Переменное напряжение подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.

Вначале рассмотрим AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров (за исключением дешёвых зарядников для мобильного, например).

Так в блоке питания ЖК монитора Acer AL1716 применена микросхема TOP245Y. Документацию (datasheet) по данной микросхеме легко найти из открытых источников.

В документации на микросхему TOP245Y можно найти типовые примеры принципиальных схем блоков питания. Это можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы.

Вот несколько примеров принципиальных схем блоков питания на базе микросхем серии TOP242-249.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Рис 1 .Пример принципиальной схемы блока питания

В следующей схеме применены сдвоенные диоды с барьером Шоттки (MBR20100). Аналогичные диодные сборки (SRF5-04) применены в рассматриваемом нами блоке монитора Acer AL1716.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Рис 2. Принципиальная схема блока питания на базе микросхемы из серии TOP242-249

Заметим, что приведённые принципиальные схемы являются примерами. Реальные схемы импульсных блоков могут несколько отличаться.

Микросхема TOP245Y представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ – контроллер и мощный полевой транзистор, который переключается с огромной частотой от десятков до сотен килогерц. Отсюда и название — импульсный блок питания.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Блок питания ЖК монитора (AC/DC адаптер)

Схема работы импульсного блока питания сводится к следующему:

Выпрямление переменного сетевого напряжения 220В.

Эту операцию выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе напряжение чуть больше чем сетевое. На фото показан диодный мост, а рядом фильтрующий электролитический конденсатор (82 мкФ 450 В) – синий бочонок.

Преобразование напряжения и его понижение с помощью трансформатора.

Коммутация с частотой в несколько десятков – сотен килогерц постоянного напряжения (>220 B) через обмотку высокочастотного импульсного трансформатора. Эту операцию выполняет микросхема TOP245Y. Импульсный трансформатор выполняет ту же роль, что и трансформатор в обычных сетевых адаптерах, за одним исключением. Работает он на более высоких частотах, во много раз больше, чем 50 герц.

Поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди. Но необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 герц. Те, кто не знает, что такое трансформатор и зачем он применяется, сперва ознакомьтесь со статьёй про трансформатор.

В результате трансформатор получается очень компактным. Также стоит отметить, что импульсные блоки питания очень экономичны, у них высокий КПД.

Выпрямление пониженного трансформатором переменного напряжения.

Эту функцию выполняют мощные выпрямительные диоды. В данном случае применены диодные сборки с маркировкой SRF5-04.

Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом. Обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но используются для выпрямления больших напряжений (20 – 50 вольт). Это нужно учитывать при замене дефектных диодов.

У диодов Шоттки есть некоторые особенности, которые нужно знать. Во-первых, эти диоды имеют малую ёмкость перехода и способны быстро переключаться – переходить из открытого состояния в закрытое. Это свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 вольт, против 0,6 – 0,7 вольт у обычных диодов. Это свойство повышает их КПД.

Есть у диодов с барьером Шоттки и нежелательные свойства, которые затрудняют их более широкое использование в электронике. Они очень чувствительны к превышению обратного напряжения. При превышении обратного напряжения диод Шоттки необратимо выходит из строя.

Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоках питания. Это стоит учитывать в проведении диагностики и ремонте.

Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи. На схеме обозначена как R15C14 (см.рис.1).

При анализе схемотехники блока питания ЖК монитора Acer AL1716 на печатной плате также обнаружены демпфирующие цепи, состоящие из smd резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811). Они защищают диоды Шоттки (D803, D805).

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Демпфирующие цепи на плате блока питания

Также стоит отметить, что диоды Шоттки используются в низковольтных цепях с обратным напряжением, ограниченным единицами – несколькими десятками вольт. Поэтому, если требуется получение напряжения в несколько десятков вольт (20-50), то применяются диоды на основе p-n перехода. Это можно заметить, если просмотреть datasheet на микросхему TOP245, где приводятся несколько типовых схем блоков питания с разными выходными напряжениями (3,3 B; 5 В; 12 В; 19 В; 48 В).

Диоды Шоттки чувствительны к перегреву. В связи с этим их, как правило, устанавливают на алюминиевый радиатор для отвода тепла.

Отличить диод на основе p-n перехода от диода на барьере Шоттки можно по условному графическому обозначению на схеме.

Условное обозначение диода с барьером Шоттки.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Условное обозначение диода на основе p-n перехода.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

После выпрямительных диодов ставятся электролитические конденсаторы, служащие для сглаживания пульсаций напряжения. Далее с помощью полученных напряжений 12 В; 5 В; 3,3 В запитываются все блоки LCD монитора.

По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами (ЭПРА), которые нашли широкое применение в осветительной технике для питания бытовых осветительных люминесцентных ламп. Но, между ЭПРА и инвертором ЖК монитора есть существенные различия.

Инвертор ЖК монитора, как правило, построен на специализированной микросхеме, что расширяет набор функций и повышает надёжность. Так, например, инвертор ламп подсветки ЖК монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G. Микросхема контроллера смонтирована на печатной плате планарным монтажом.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Микросхема контроллера OZ9910G

Инвертор преобразует постоянное напряжение, значение которого составляет 12 вольт (зависит от схемотехники) в переменное 600-700 вольт и частотой 50 кГц.

Контроллер инвертора способен изменять яркость люминесцентных ламп. Сигналы для изменения яркости ламп поступают от контроллера ЖКИ. К микросхеме-контроллеру подключены полевые транзисторы или их сборки. В данном случае к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (На корпусе микросхемы указано только 4501S).

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Сборка полевых транзисторов AP4501SD и её цоколёвка

Также на плате блока питания установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Плата инвертора и её элементы

Информацию по ремонту ЖК мониторов можно найти в специализированных журналах по ремонту. Так, например, в журнале “Ремонт и сервис электронной техники” №1 2005 года (стр.35 – 40), подробно рассмотрено устройство и принципиальная схема LCD-монитора “Rover Scan Optima 153”.

Среди неисправностей мониторов довольно часто встречаются такие, которые легко устранить своими руками за несколько минут. Например, уже упомянутый ЖК монитор Acer AL1716 пришёл на стол ремонта по причине нарушения контакта вывода розетки для подключения сетевого шнура. В результате монитор самопроизвольно выключался.

После разборки ЖК монитора было обнаружено, что на месте плохого контакта образовывалась мощная искра, следы которой легко обнаружить на печатной плате блока питания. Мощная искра образовывалась ещё и потому, что в момент контакта заряжается электролитический конденсатор в фильтре выпрямителя. Причина неисправности — деградация пайки.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Деградация пайки, вызвавщая неисправность монитора

Также стоит заметить, что порой причиной неисправности может служить пробой диодов выпрямительного диодного моста.

Как работает ЖК-экран монитора и телевизора

Каждый день вы видите самые разнообразные экраны. В их числе рекламные дисплеи на улице, состоящие из светодиодов, а также читалки, в пикселях которых черный пигмент перемещается во взвеси белого пигмента. Или экран кинотеатра, который вовсе не простой кусок ткани, а холст со специальной фактурой и покрытием. Но сейчас речь пойдет не о них, а о жидкокристаллических экранах и о том, каким образом электричество превращается в конечное изображение.


Источник света

Изначально источником света для ЖК-экранов были газоразрядные лампы с холодным электродом (CCFL).


Под действием газового разряда ртуть излучает ультрафиолетовое свечение, которое, в свою очередь, возбуждает люминофор на стенках колбы и превращается в видимый свет. В отличие от обычных ламп дневного света, у таких ламп электрод без подогрева (что становится ясно из названия). Для нормальной работы им нужно высокое напряжение — до 900 вольт.

Сейчас вместо газоразрядных ламп используют светодиоды. От их типа сильно зависит конечная цена монитора. Так, в бюджетном сегменте используются обычные белые светодиоды W-Led. Основой для белых светодиодов служат синие светодиоды.


Они покрыты слоем люминофора, который преобразует часть синего спектра в другие цвета. В результате из синих светодиодов получаются белые светодиоды.


Обычный люминофор для белых светодиодов состоит из множества редкоземельных металлов: иттрий, гадолиний, церий, тербий, лантан.


В профессиональных устройствах подсветку из белых светодиодов дополняют зелеными светодиодами (GB-LED). Это дешевле люминофора, дающего нужный спектр. Использование же RGB-светодиодов даже в профессиональных устройствах — редкость, хотя это позволяет регулировать цветовую температуру и яркость без нарушения калибровки гамма-кривых монитора.

В последнее время производители обратили внимание не только на обычные люминофоры, изготавливаемые из редкоземельных металлов, но и на квантовые точки.


Квантовые точки не требуют использования редких компонентов и просты в производстве: достаточно в правильных условиях смешать два дешевых реактива. Из-за того, что идеально выдержать условия невозможно, квантовые точки имеют небольшие различия в размере, поэтому ширина спектра излучения составляет порядка 20 нм.


Такой ширины спектра недостаточно для того, чтобы перекрыть REC.2020 на 100%, но это значение находится очень близко.

Подсветка

Подсветка может быть как боковой (Edge), так и прямой (Direct). Изначально боковая подсветка появилась для ртутных ламп. Потом на нее перешли и светодиоды.

Прямая подсветка ограничена довольно маленькими зонами, за которые отвечают отдельные светодиоды. Она более требовательна к качеству светодиодов, но позволяет хоть как-то реализовать технологию HDR не в OLED-устройствах.


Некоторых производителей при реализации HDR не останавливает наличие боковой подсветки, что приводит к большой площади изменения локальной яркости подсветки.

Полноценный HDR возможен только на OLED — это типичное заблуждение. В студиях кинопроизводства используют все те же самые дисплеи TFT LСD, но с одним маленьким отличием. В таких мониторах дополнительная матрица TFT обеспечивает попиксельное затенение подсветки, за счет чего получается монитор, превосходящий OLED почти по всем показателям, включая нескромную цену.

Рассеиватель


Как можно понять из названия, задача этой части ЖК-экрана — получить равномерное освещение, выдаваемое источником света. Первый слой — отражающий, обычно представляет из себя комбинацию белого пластика и фольги. Следующим идет световод.


Тут используется эффект полного отражения света в диэлектрике, а чтобы свет хоть как-то мог выйти, на поверхность световода наносят мельчайшие линзы.


Аналогичный способ используют и в акриловых вывесках и указателях.


Третий и шестой слои — рассеивающая пленка. Она обладает настолько мелкой и хаотичной структурой поверхности, что снимок был сделан на грани возможностей обычного объектива.


Четвертый и пятый слои отражают большую часть света и обладают либо призматическим, либо полуцилиндрическим рельефом.


Здесь снова используется принцип полного отражения в диэлектрическом материале, но уже как в катафотах.


Свет поочерёдно отражается от двух поверхностей, образованных микроклиньями на плёнке, и возвращается обратно.


Использование двух световозвращающих пленок обусловлено тем, что на производстве, чтобы получить более качественный рельеф, проще вытягивать пленку, чем пытаться штамповать заготовку и получить что-то непригодное.

Прямая подсветка устроена по тому же принципу, только вместо световода установлены рассеивающие линзы на светодиодах.


TFT-панель


Можно подумать, что эффект «капель воды» дает антибликовое покрытие, но нет. Это вид со стороны подсветки. Мельчайшие неровности находятся на поверхности первого слоя TFT-панели — поляризующей пленки, которая приклеена к стеклянной подложке.

Основную работу по поляризации в дешевой поляризующей пленке выполняют атомы йода, вшитые внутрь полимера. А за счет 15-кратного вытягивания пленки молекулы полимера ориентируются в пространстве, и пленка получает свойства линейного поляризатора.



В отличие от демонстрационных моделей со шнурком в решетке, в реальности небольшая проводимость йода вдоль цепочки вызывает поглощение в видимом спектре вдоль ориентации.


После первого слоя преполяризатора идет непосредственно матрица TFT (тонкоплёночных транзисторов). Принцип работы всех панелей заключается в изменении поляризации света на тонкопленочных транзисторах. В зависимости от конфигурации электродов получаются разновидности TN(+film), IPS, VA. Современные панели настолько оптимизированы, что в конечном результате могут иметь как достоинства, так и недостатки панелей других типов.

Расположение слоя жидких кристаллов можно увидеть на приведенной выше схеме. Под действием электрического поля жидкие кристаллы меняют ориентацию и тем самым вращают плоскость поляризации проходящего через них света.

За ним следуют светофильтры. Они обеспечивают разбиение белого цвета на цвета субпикселей. В зависимости от полосы пропускания фильтра, меняется конечная цветопередача всего монитора. Поэтому не факт, что, заменив подсветку W-LED на RGB, вы получите монитор, который станет пригоден для решения полиграфических задач.

Анализатор — это та же самая поляризационная пленка, но ориентированная перпендикулярно поляризатору. Она превращает изображение в видимое. Удалив эту пленку с экрана, можно скрыть изображение от посторонних глаз.


Антибликовое покрытие — последний слой. Вариантов его реализации множество, но основных — не так уж много. В первую очередь, это использование пластика с низким коэффициентом преломления света, что, в свою очередь, уменьшает коэффициент отражения от экрана.

Гладкое покрытие дает более контрастную картинку при условии, что за спиной нет сильных источников света. Матовое покрытие рассеивает свет равномерно и независимо от угла падения, что снижает контраст изображения, но при этом не создает отвлекающих бликов на экране.


Компромиссом является полуматовое/глянцевое покрытие, степень рассеивания отраженного света которого зависит от угла падения.

В самых дорогих моделях встречаются и другие типы антибликовых покрытий: с поляризацией, интерференцией и переменным эффективным коэффициентом преломления.

Ну, и какой экран без управляющей электроники. От электроники зависит интерфейс подключения монитора, частота обновления, глубина цветопередачи и маленькие фичи – разгон матрицы, хранение калибровки в самом мониторе, управление подсветкой, наличие технологий синхронизации и не только.

Несмотря на кажущуюся простоту, жидкокристаллические экраны — это очень сложные устройства, объединяющие в себе множество достижений в области химии, физики и электроники.



Два месяца тому назад в статье, посвящённой сравнению LCD и E-Ink дисплеев, я упомянул, что одним из следующих обзоров будет «вскрытие» матрицы современного фотоаппарата. И спешу исполнить данное обещание!


Первым в «коллекцию» светочувствительных матриц попали фронтальная и задняя камеры смартфона одного известного корейского производителя, который был любезно предоставлен Василием Столяровым. Затем хабраюзер DarkWood, живущий недалеко от Москвы, прислал мне свой старенький неработающий фотоаппарат фирмы Pentax (здесь и далее я намеренно не буду указывать точную модель девайсов). Девайс был мёртв и это был хороший повод сдать его в мои заботливые руки, а не выкидывать, как многие делают.

И как только я собрался пилить, поступило ещё одно предложение от моего практически однокурсника, Ильи. От этого предложение я не мог отказаться. Мне презентовали относительно современный Canon, у которого были проблемы со съёмкой изображений.

Таким образом, на красно-революционно-первомайский стол ложатся три кандидата: OEM камера из телефона и фотоаппараты Pentax (самый пожилой среди всех участников) и Canon (пожалуй, самый молодой).

Если ещё кто-то не знает, зачем мы здесь собрались, то в подвале данной статьи есть ссылки на предыдущие «вскрытия». Если же кто-то запамятовал, как работает цифровой фотоаппарат или зачем нужна матрица, то милости просим на Wiki или просто посмотрите это видео от канала Discovery:

Часть теоретическая. CCD и CMOS

На сегодняшний день матрицы, выполненные по технологии CMOS (Complementary Metal-Oxide Semiconductor) завоевали более 90% мирового рынка, а не так давно безумно популярным CCD (Charge-Coupled Device) уже пророчат скорый закат.

Причин тому масса, вот далеко не полный список преимуществ CMOS-технологии: во-первых, низкое энергопотребление в статическом состоянии по сравнению с CCD, во-вторых, CMOS сразу «выдаёт» цифровой сигнал, который не требует дополнительного преобразования (точнее преобразование происходит на каждом отдельном субпикселе), в отличие от CCD, которое является фактически аналоговым устройством, в-третьих, дешевизна производства, особенно при больших размерах матриц.

Кратко ознакомиться с принципами работы CMOS-матриц можно с помощью в двух видео от компании Canon:

Но все наши пациенты (может быть, за исключением матрицы камеры мобильного телефона) относятся к той эпохе, когда миром безраздельно правил CCD, а CMOS только набирался сил и светочувствительности, чтобы впоследствии занять лидирующие позиции. Поэтому несколько слов, всё же, скажу о том, как работает CCD-матрица. Более подробное описание всегда можно найти на страницах Wiki.

Итак, фотон от объекта съёмки, пройдя сквозь фильтр Байера, то есть цветофильтр типа RGBG, или фильтр RGBW и собирающую микролинзу, попадает на светочувствительный полупроводниковый материал. Поглощаясь, фотон порождает электро-дырочную пару, которая в ячейке под действием внешнего электрического поля «разделяется», и электрон «отправляется» в копилку – потенциальную яму, где он будет ожидать «чтения».



Схема устройства CCD матрицы (Источник)

Чтение же в CCD матрицы происходит «поячеечно», если так можно выразиться. Пусть мы имеем массив 5 на 5 пикселей. Сначала мы считываем количество электронов, а по-простому величину электрического тока, с первого пикселя. Затем специальный контроллер «сдвигает» все ячейки на одну, то есть заряд из второй ячейки перетекает в первую. Опять считывается значение и так, пока не будут прочитаны все 5 ячеек. Далее уже другой контроллер сдвигает оставшееся «изображение» на одну строчку вниз и процесс повторяется, пока не будут измерены токи во всех 25 ячейках. Может показаться, что это долгий процесс, однако для 5 миллионов пикселей он занимает считанные доли секунд.



Процесс считывания изображения с CCD матрицы (Источник)

Чтобы было совсем понятно, предлагаю ознакомиться со следующими видео:

Часть практическая

Обычно красивыми разборами занимаются люди в белоснежных перчатках, недавно они добрались и до фотоаппаратов, однако поговаривают, что за видео-инструкцию по сборке необходимо доплатить, отправив смс на короткий номер. Далее будут применяться чуть более чем полностью топорные методы, так что не советую повторять это в домашних условиях…

Как разбирался сотовый телефон всегда можно посмотреть на страницах предыдущей статьи, поэтому не буду здесь приводить эти душераздирающие кадры ещё раз.

Вышеупомянутый фотоаппарат Pentax был предоставлен мисьё DarkWood, у которого, как мне кажется, сейчас сердце должно обливаться кровью, а по щеке катиться скупая мужская слеза:



Разборка Pentax в фотографиях

Из всего многообразия деталей, нас пока интересует лишь LCD дисплей, который будет демонстрироваться школьникам, приходящим к нам, на ФНМ, на экскурсии, сама CCD матрица, стекло с чем-то подозрительно напоминающим поляризатор или фильтр и ИК-подсветка (красная лампочка) для ночной съёмки. Стоит отметить, что матрица жёстко закреплена на корпусе фотоаппарата. Следовательно, все вибрации Ваших рук будут без труда напрямую передаваться на саму матриц, что, согласитесь, никак не способствует качественной фотосъёмке. Видимо, DarkWood имеет железобетонные нервы.

Что между тем не помешало ему, «утопить» свой любимый фотоаппарат. Помните, когда летом Вы оправитесь в тёплые страны на море и будете пытаться сфотографировать очередную накатывающую волну, что фотоаппарат – устройство, в котором токи могут приводить к коррозии.



Следы коррозии прямо на шлейфе, ведущем к кнопке спуска затвора (к сожалению, не единственное такое место)

Сразу видно, что Canon – чуть более продвинутая, более современная модель, нежели Pentax. Например, матрица подпружинена (на левом нижнем изображении хорошо различимы маленькие пружинки). Такая пассивная система стабилизации изображения способствует получению более качественных и чётких снимков, если, конечно, Вы не неврастеник в запущенной стадии!



«Внутренности» Canon

Кстати, на фото справа внизу отчётливо виден громадный конденсатор, отвечающий за вспышку, из-за проблем с которым мне когда-то пришлось списать свою цифровую мыльницу Canon.

Камера мобильного телефона

Начнём наши изыскания с камеры мобильного телефона, которой будет посвящено не так много времени и слов в этой статье по причине того, что сама матрица имеет совершенно микроскопические размеры и с ней трудно работать (пилить, шлифовать).

Как не сложно заметить, на оптических микрофотографиях ниже матрица у края имеет две зоны: более светлую и более тёмную. Надеюсь, что все уже догадались: под светлой стороной нет диодов, она нанесена просто так, с запасом, чтобы максимально закрыть собой тонкую душевную организацию матрицы…



Накроем всё с запасом – нам не жалко

Микрофотографии, полученные с помощью оптического микроскопа, значительно отличаются, от тех, что выдаёт микроскоп электронный. Например, как на счёт «квадратуры сферы»?

Дело в том, что на оптике мы не видим каких-то прозрачных слоёв (да хотя б они и просто менее заметны), тогда как электронная микроскопия – прежде всего метод анализа поверхности, то есть вполне может быть так, что круглые цветные цветофильтры накрыты сверху квадратными «колпаками». При этом размеры такого кубосферического субпикселя составляют около 2,5 микрометров.



Вот такая она, квадратура сферы…кстати, в вакууме…

Матрица фотоаппарата Pentax

Исследование CCD-матрицы фотоаппарата Pentax начнём с оптических микрофотографий. К моему глубокому сожалению, из-за стерических затруднений, как говорят химики, в системе образец-микроскоп, не удалось снять при больших увеличениях и рассмотреть отдельные субпикселы.



Что-то написано, интересно, а можно тут где-нибудь увидеть имена маленьких китайских детишек?

Каждая посадочная площадка под контакты пронумерована, но не к каждой подведён тот самый контактный провод.



А вот так мы скоро будем учиться считать – с помощью нанотехнологий, естественно…



Чёткая граница между самой матрицей и «обвязкой»

А следующая микрофотография достойна учебника по электронной микроскопии. Знаете, почему электронный микроскоп не является средством измерения? Да-да, именно поэтому: из-за локального накопления заряда, вроде бы сферические объекты вдруг стали эллипсоидами:



Но мы-то знаем, что это сферы…

Далее взглянем на то, что находится вокруг светочувствительной матрицы. Так как я не являюсь специалистом в области создания электронных схем, то боюсь даже предполагать, зачем нужны все эти сложные конструкции и «хитросплетения» проводников, может быть, найдётся кто-нибудь, готовый пояснить назначение приведённых ниже деталей и компонентов (в комментариях, конечно же)?



Непоколебимые столбики, пережившие распил и полировку…



В этих слоях можно запутаться, а чёрту и ногу сломать

Этот выпуск «Взгляд изнутри» — знаковый, после нескольких лет «мытарств» нам, наконец-то, установили новую систему микроанализа, так что в некоторых случаях, я смогу не только приводить красивые картинки, но и пояснять из каких химических элементов увиденное состоит.

А вот и самое интересное – матрица во всей своей красе. Под сеточкой, в ячейках которой расположились микросферы-линзы, можно видеть отдельные фоточувствительные элементы (ну или их останки, точнее сказать затруднительно). Чуть ниже при обсуждении матрицы Canon я в деталях поясню «cross-section» устройство матрицы. Пока же обратимся к данным локального химического анализа. Оказывается, что сетка состоит из вольфрама, а микросферы, по всей видимости, это диоксид кремния, который сверху «укрыт» каким-то полимерным материалом. С более детальным анализом можно ознакомиться здесь.



Матрица во всей своей сложноустроенной красоте

Возвращаясь к первому СЭМ-изображению в этой главе, хочется отметить, что контактные площадки выполнены из чистого золота (о да!), однако проводники внутри сенсора, по всей видимости, состоят из алюминия, на который тончайшим слоем напылена медь, содержание которой на грани чувствительности прибора. Детальная информация представлена тут.

Матрица фотоаппарата Canon

Продолжим наше погружение в микро- и наномиры мы, как обычно, с оптической микроскопии. Как и в случае с Pentax, матрицу от фотоаппарата Canon не удалось снять на высоком увеличении вследствие геометрических нестыковок. Однако из полученных микрофотографий можно оценить размер отдельного субпикселя – около 1,5 мкм, что гораздо меньше, чем у матрицы мобильного телефона.



Оптические микрофотографии матрицы Canon

Кстати, один из виновников невозможности снимать на оптическом микроскопе при больших увеличениях – «покровное» стекло, закрывающее собой матрицу и её «начинку»:



Хороший кадр: передача за стеклом

Конечно, всегда самое интересное прячется на сколах, где разваливающийся строго упорядоченный мир даёт трещину, позволяющую заглянуть в самые сакраментальные уголки устройства:



Чуть позже мы ещё вернёмся к желтовато-оранжевым областям этой фотографии…

Уже знакомые нам столбики совершенно не понятного предназначения:



Как стойкие оловянные солдатики

Теперь рассмотрим более детально устройство CCD-матрицы. Сверху CCD-матрица покрыта чем-то, напоминающем полимерный слой (1), который защищает фоточувствительные элементы от агрессивной внешней среды. Под ним находятся микролинзы с красителем (2 и 3). Но так как электронная микроскопия не позволяет получать цветные изображения, то точно сказать, окрашена большая или маленькая сферы не представляется возможным. Микролинзы из диоксида кремния (наиболее вероятный материал для их изготовления) закреплены в ячейках вольфрамовой сетки (4), под которой скрывают фоточувствительные элементы (5). И, конечно же, вся эта конструкция покоится на подложке из чистейшего кремния!

С учётом того, что матрица дополнительно защищена «покровным» стеклом, то фотоэлементы защищены лучше, чем президент РФ в своём лимузине (если, конечно, сделать поправку на масштабный фактор).

Данные микроанализа можно скачать тут.



Устройство матрицы по пунктам. Описание в тексте

Но и это ещё не всё. У нас же осталось ещё стёклышко, прикрывающее матрицу, которое, как кажется, является поляризатором. Оно несколько шероховатое по краям, но практически идеально гладкое по всей остальной площади поверхности. Вроде бы оптическая микроскопия не даёт никаких результатов: стекло, как стекло.



Стекло с подозрением на поляризатор: ничего необычного

И только с помощью электронной микроскопии удаётся увидеть химконтраст на изображении и полосатую структуру. Толщина такой «плёнки» составляет всего-навсего 2,5 микрометра, при этом размеры отдельных слоёв 180 и 100 нм, соответственно, для более тёмных и более светлых. На основании данных микроанализа (тут), рискну предположить, что более тёмные области обогащены титаном, а светлые – алюминием. По-моему, это потрясающе!



Оказывается, внутри фотоаппарата своя полосата жизнь!

Послесловие

Такой мир уходящего века CCD-матриц предстал перед нами сегодня.

Спасибо всем (Василию за телефон, Илье и DarkWood за фотоаппараты), кто внёс свой посильный вклад в создание данной статьи. Вы – молодцы, что поддержали в этом нелёгком начинании!

И апофеоз данной статьи, а точнее его апофигей:



Покойтесь с миром, пока мы не придумаем вам нового применения

Бонус 1. Как выглядит зелёная пылевая буря в Москве?

Хотел сначала отдельным постом выложить, но решил не захламлять пространство. Буквально несколько дней назад Москву накрыло жёлто-зелёное облако, многие уже начали было готовится к приходу апокалипсиса, но обошлось… Что в реальности явилось причиной столь странной окраски?

Климат в последнее время барахлит на этой планете: то на Новый Год оставит без снега, то завалит снегом по самую макушку, то весна будет похожа на зиму, то вдруг неожиданно наступит лето. Цветы, деревья и растительность менее приспособлены к такого рода пертурбациям, поэтому 1,5 месяца весны сжавшиеся в 1 неделю заставили растения пересмотреть свои планы по размножению…

Утром, сев за письменный стол, я обнаружил на нём слой пыли, а протерев салфеткой, понял, что надо бы эту пыль как следует изучить. Сказано – сделано!

Хорошая новость – окраска жёлто-зелёного облака действительно была обусловлена большим количеством пыльцы (я насчитал, как минимум, три вида):



Состав московской бури: пыльца… Справа внизу пыльца на поверхности части растения

Плохая новость – этим мы тоже дышим, причём каждый день, а не в периоды размножения растений (микро- и наночастицы, которые не каждый фильтр поймает):



Состав московской бури: не очень приятная пыль и грязь

Читайте также: