Прохождение сигнала до процессора

Обновлено: 06.07.2024

Какие функциональные элементы входят в состав компьютера?

Из каких элементов состоят узлы компьютера?

Что такое электрические ячейки памяти и логические элементы?

Глоссарий по теме:

Микросхема-память – устройство, предназначенное для запоминания, хранения массивов информации.

Микросхема-процессор – устройство для обработки информации.

Ячейка памяти – минимальный адресуемый элемент запоминающего устройства ЭВМ. Ячейки памяти могут иметь разную ёмкость (число разрядов, длину).

Логическое устройство – это электронное устройство, реализующее функцию или систему функций алгебры логики в виде определенных уровней напряжений или токов.

Логический элемент – это электронные устройства, предназначенные для обработки информации представленной в виде двоичных кодов, отображаемых напряжением (сигналом) высокого и низкого уровня. Логические элементы реализуют логические функции И, ИЛИ, НЕ и их комбинации.

Генератор тактовых импульсов – устройство, которое генерирует электрические импульсы заданной частоты (обычно прямоугольной формы) для синхронизации различных процессов в цифровых устройствах —ЭВМ, электронных часах и таймерах, микропроцессорной и другой цифровой технике.

Основная и дополнительная литература по теме урока:

Естествознание. 11 класс: Учебник для общеобразоват. организаций: базовый уровень под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017. – §40, стр. 125-125

Информатика. Базовый курс / Под ред. СВ. Симоновича. — СПб.: Питер, 2005.

Теоретический материал для самостоятельного изучения

Сложно представить современную жизнь без технологий. Каждый день мы видим компьютер у себя на столе. Но далеко не все знают, что же таится под крышкой системного блока. С основными компонентами компьютера и их предназначением вы должны были ознакомиться на уроках информатики. Сегодня мы разберемся, как работают узлы компьютера с точки зрения преобразования электрических сигналов и что является элементарными составляющими компьютера?

Компьютер - это устройство для обработки информации, которое состоит из множества элементов: видеокарты, отвечающей за работу с изображением, оперативной памяти, отвечающей за временное хранение информации, постоянной памяти, предназначенной для длительного хранения данных, устройств ввода и вывода, материнской платы, через которую соединяются в единое целое все элементы ПК.


Микросхема-память и микросхема-процессор, расположены на одной или нескольких печатных платах.

Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал 1 или 0, а потом считывается информация. Ячейки памяти состоят их логических элементов.

Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. В зависимости от входных сигналов процессор передает сигналы на разные устройства.

Обратимся к ячейке памяти. Как мы уже знаем в ячейке памяти могут храниться только сигналы 0 или 1. Каждый из сигналов соответствует своему напряжению. Для «1» напряжение равно от 2.5 до 4.5 Вольт. Для «0» напряжение равно от 0 до 0,2 Вольт. Стоит отметить, что ячейки памяти могут иметь разную форму, но в любом случае содержат емкости, накапливающие заряд. Заряд, в свою очередь, задает напряжение при запоминании сигнала.

Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера. Тактовая частота — это количество тактов (операций) процессора в секунду.

Как правило, чем выше тактовая частота процессора, тем выше его производительность.

Логические элементы – это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Действие этих элементов можно понять, воспользовавшись таблицей.


Логические элементы состоят из транзисторов. Два параллельно включенных транзистора реализуют элемент ИЛИ-НЕ; два транзистора, включенных последовательно реализуют элемент И-НЕ. Транзистором называется преобразовательный полупроводниковый прибор, имеющий не менее трех выводов, предназначенный для усиления мощности электрического сигнала. Важную роль в цепи играют и диоды. Их основная задача - превращение переменного тока в постоянный. Диоды широко применяются в логических цепях, в которых необходимо обеспечить прохождение тока в нужном направлении. Диод - основной элемент всех блоков питания в нашем компьютере.

Резюме теоретической части:

Компьютер – это устройство для обработки информации, которое состоит из множества элементов: микросхем-память и микросхем-процессор, расположенных на одной или нескольких печатных платах. Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал, а потом считывается информация. Ячейки памяти состоят их логических элементов. Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера. Логические элементы – это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Логические элементы состоят из транзисторов. Два параллельно включенных транзистора реализуют элемент ИЛИ-НЕ; два транзистора, включенных последовательно реализуют элемент И-НЕ. Важную роль в цепи играют и диоды. Их основная задача – превращение переменного тока в постоянный. Диоды широко применяются в логических цепях, в которых необходимо обеспечить прохождение тока в нужном направлении. Диод – основной элемент всех блоков питания в нашем компьютере.

Примеры и разбор решения заданий тренировочного модуля:

1) Вставьте пропущенные слова.

1. Быстродействие компьютера определяет _____.

2. За запись сигнала и подсчет информации отвечает ______________.

Правильный вариант: Микросхема-процессор, Микросхема-память

Пояснение: 1. Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера.

2. Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал, а потом считывается информация. Ячейки памяти состоят их логических элементов.

2) Установите последовательность по мере возрастания размеров.

Первые компьютеры, Процессор, Клавиатура, Диод

Правильные варианты:

  1. Диод
  2. Процессор
  3. Клавиатура
  4. Первые компьютеры

Пояснение: 1. Размер диода до 8 мм 3. Размер клавиатуры до 500мм

2. Размер процессора до 50мм 4. Размер первых компьютеров более 17м

Найти дефект гораздо сложнее, чем его устранить, особенно начинающему мастеру. Предложенная автором статьи универсальная методика позволит Вам быстро и эффективно провести диагностику современного телевизора.

При ремонте телевизионных приемников встречаются ситуации, когда телевизор не включается и не подает никаких признаков жизни. Это значительно затрудняет локализацию дефекта, особенно если учесть, что ремонтировать импортную технику часто приходится без принципиальных схем. Перед мастером встает задача выявить неисправность и устранить ее с наименьшими затратами времени и усилий. Для этого необходимо следовать определенной методике отыскания неисправностей.

Если мастерская или частный мастер дорожит своей репутацией, необходимо начинать с чистки аппарата. Вооружившись мягкой кистью и пылесосом, следует произвести чистку внутренней поверхности корпуса, поверхности кинескопа и платы телевизионного приемника. После тщательной очистки производят внешний осмотр платы и элементов на ней. Иногда можно сразу определить место неисправности по вздувшимся или разорвавшимся конденсаторам, по обгоревшим резисторам или по прогоревшим насквозь транзисторам и микросхемам. Бывает, что после очистки кинескопа от пыли вместо прозрачной колбы мы видим молочно-белую внутреннюю поверхность (потеря вакуума).

Значительно чаще визуальный осмотр не выявляет внешних признаков неисправных деталей. И тут возникает вопрос - с чего начать?

Наиболее целесообразно начать ремонт с проверки работоспособности блока питания. Для этого отключаем нагрузку (выходной каскад строчной развертки) и подключаем вместо нее лампу накаливания 220 В, 60. 100 Вт.

Обычно напряжение питания строчной развертки составляет 110. 150 В в зависимости от размеров кинескопа. Просмотрев вторичные цепи, на плате рядом с импульсным трансформатором блока питания находим конденсатор фильтра, который чаще всего имеет емкость 47. 100 мкФ и рабочее напряжение порядка 160 В. Рядом с фильтром находится выпрямитель напряжения питания строчной развертки. После фильтра напряжение поступает на выходной каскад через дроссель, ограничительный резистор или предохранитель, а иногда на плате стоит просто перемычка. Отпаяв этот элемент, мы отключим выходной каскад блока питания от каскада строчной развертки. Параллельно конденсатору подключаем лампу накаливания - имитатор нагрузки.

При первом включении ключевой транзистор блока питания может выйти из строя из-за неисправности элементов обвязки. Для того чтобы этого не произошло, блок питания лучше включать через еще одну лампу накаливания мощностью 100. 150 Вт, используемую в качестве предохранителя и включенную вместо выпаянного компонента. Если в схеме есть неисправные элементы и ток потребления будет большим, лампа загорится, и все напряжение упадет на ней. В такой ситуации необходимо, прежде всего, проверить входные цепи, сетевой выпрямитель, конденсатор фильтра и мощный транзистор блока питания. Если при включении лампа зажглась и сразу погасла или стала слабо светиться, то можно предположить, что блок питания исправен, и дальнейшую регулировку лучше производить без лампы.
Включив блок питания, замерьте напряжение на нагрузке. Внимательно посмотрите на плате, нет ли около блока питания резистора регулировки выходного напряжения. Обычно рядом с ним находится надпись, указывающая величину напряжения (110. 150 В).

Если таких элементов на плате нет, обратите внимание на наличие контрольных точек. Иногда величину напряжения питания указывают рядом с выводом первичной обмотки строчного трансформатора. Если диагональ кинескопа 20. 21", напряжение должно быть в диапазоне 110. 130 В, а при размере кинескопа 25. 29" диапазон напряжения питания обычно составляет 130. 150В.
Если напряжение питания выше указанных значений, надо проверить целостность элементов первичной цепи блока питания и цепь обратной связи, которая служит для установки и стабилизации выходного напряжения. Следует также проверить электролитические конденсаторы. При высыхании их емкость значительно уменьшается, что приводит к неправильной работе схемы и повышению вторичных напряжений.
Например, в телевизоре Akai CT2107D при высыхании электролитического конденсатора С911 (47 мкФ, 50 В) напряжение во вторичной цепи вместо 115 В может возрасти до 210 В.
Если напряжения занижены, надо проверить вторичные цепи на наличие замыканий или больших утечек, целостность защитных диодов R2K, R2M в цепи питания строчной развертки и защитных диодов на 33 В в цепи питания кадровой развертки.

Например, в телевизоре Gold Star CKT 2190 при неисправном конденсаторе фильтра питания строчной развертки 33 мкФ, 160 В, имеющем большой ток утечки, напряжение на выходе вместо 115В составляло порядка 30 В.

В телевизоре Funai TV-2000A МК7 был пробит защитный диод R2M, что приводило к срабатыванию защиты, и телевизор не включался; в Funai TV-1400 МК10 пробой защитного диода на 33 В в цепи питания кадровой развертки также приводил к срабатыванию защиты.

Разобравшись с блоком питания и убедившись, что он исправен, восстанавливаем соединение в цепи питания строчной развертки, убрав предварительно лампу, которую использовали вместо нагрузки.
Для первого включения телевизора желательно установить лампу накаливания, используемую вместо предохранителя.
При исправном выходном каскаде строчной развертки лампа при включении загорится на несколько секунд и погаснет или будет слабо светиться.

Если при включении лампа вспыхнула и продолжает гореть, нужно убедиться в исправности выходного транзистора строчной развертки. Если транзистор исправен, а высокого напряжения нет, убедитесь в наличии управляющих импульсов на базе выходного транзистора строчной развертки. Если импульсы есть и все напряжения в норме, можно предположить, что неисправен строчный трансформатор.
Иногда это сразу понятно по сильному нагреванию последнего, но достоверно сказать, исправен ли ТДКС, по внешним признакам очень трудно. Для того чтобы определить это точно, можно воспользоваться следующим методом. На коллекторную обмотку трансформатора подаем прямоугольные импульсы с частотой 1. 10 кГц небольшой амплитуды (можно использовать выход сигнала калибровки осциллографа]. Туда же подключаем вход осциллографа.

При исправном трансформаторе максимальная амплитуда полученных продифференцированных импульсов должна быть не меньше амплитуды исходных прямоугольных импульсов.
Если ТДКС имеет короткозамкнутые витки, мы увидим короткие продифференцированные импульсы амплитудой в два и более раз меньше исходных прямоугольных. Этим методом также можно определять неисправность трансформаторов сетевых импульсных блоков питания.

Метод работает и без выпаивания трансформатора (естественно, надо убедиться в отсутствии короткого замыкания во вторичных цепях обвязки).
Еще одна неисправность строчной развертки, при которой блок питания не включается и лампа, включенная вместо предохранителя, ярко светится - пробой строчных отклоняющих катушек. Определить данную неисправность можно путем отсоединения катушек. Если после этого телевизор нормально включился, то, вероятно, неисправна отклоняющая система [ОС]. Чтобы в этом убедиться, замените отклоняющую систему на заведомо исправную. Телевизор при этом нужно включать на очень короткое время, чтобы избежать прожога кинескопа. Заменить отклоняющую систему не сложно. Лучше применить ОС от аналогичного кинескопа с диагональю такого же размера.

Автору приходилось устанавливать в телевизоре Funai 2000 МКЗ отклоняющую систему от телевизора Philips с диагональю 21". После установки новой ОС в телевизоре необходимо произвести регулировку сведения лучей с применением генератора телевизионных сигналов.

Если строчная развертка исправна, то на экране, как минимум, должна светится горизонтальная полоса, а при исправной кадровой развертке - полный растр. Если растра нет и на экране видна яркая горизонтальная полоса, следует регулировкой ускоряющего напряжения [Screen] на ТДКС уменьшить яркость свечения экрана. Это необходимо для того, чтобы не прожечь люминофор кинескопа, и только после этого следует искать неисправность в кадровой развертке.

Диагностику в блоке кадровой развертки следует начинать с проверки питания задающего генератора и выходного каскада. Чаще всего питание берется с обмотки строчного трансформатора. Напряжение питания этих каскадов составляет 24. 28 В. Напряжение подается через ограничивающий резистор, который и надо проверить в первую очередь. Частыми неисправностями в кадровой развертке являются пробой или обрыв выпрямительного диода и выход из строя микросхемы кадровой развертки. Редко, но все же встречается межвитковое замыкание в кадровых отклоняющих катушках.
При подозрении на отклоняющую систему лучше произвести ее проверку путем временного подключения заведомо исправной катушки. Контроль следует производить осциллографом, наблюдая импульсы прямо на кадровых катушках.

ЦЕПИ ПИТАНИЯ КИНЕСКОПА

Бывает, что блок питания и блок разверток исправны, а экран телевизора не светится. В этом случае нужно проверить напряжение накала, а при его наличии целостность нити накала кинескопа.
В практике автора было два случая, когда накальная обмотка строчного трансформатора была разорвана (телевизоры Sony и Waltham). He торопитесь менять строчный трансформатор. Для начала его следует аккуратно выпаять, очистить от пыли и внимательно осмотреть выводы накальной обмотки.

Иногда обрыв находится рядом с выводом под слоем эпоксидной смолы. Горячим паяльником аккуратно удаляем часть смолы и, если обрыв найден, устраняем его, после чего желательно место ремонта залить эпоксидной смолой.

Если обрыв найти не удалось, можно намотать накальную обмотку на сердечнике этого же трансформатора. Количество витков подбирают опытным путем (обычно это 3. 5 витков, провод МГТФ 0,14]. Концы обмотки можно закрепить клеем или мастикой.

РАДИОКАНАЛ, БЛОК ЦВЕТНОСТИ, ВИДЕОУСИЛИТЕЛЬ

Если развертка в норме, экран светится, а изображения нет, можно определить неисправный блок по следующим признакам.
При отсутствии звука и изображения неисправность надо искать в радиоканале (тюнер и видеопроцессор).
При наличии звука и отсутствии изображения неисправность следует искать в видеоусилителе или блоке цветности.
При наличии изображения и отсутствии звука неисправен, скорее всего, видеопроцессор или усилитель низкой частоты.

После проверки напряжения питания радиоканала нужно подать видео- и аудиосигналы через низкочастотный вход (можно использовать генератор телесигналов или обычный видеомагнитофон).
Если изображения или звука нет, следует с помощью осциллографа проследить прохождение сигнала от источника, с которого подали сигнал, до катодов кинескопа или, если неисправен звуковой канал, до громкоговорителей и при необходимости заменить неисправный элемент.

Если после подачи сигнала на низкочастотный вход изображение и звук появились, то неисправность следует искать в предыдущих каскадах.
При проверке видеопроцессора надо подать сигнал ПЧ на вход ФСС с генератора или с выхода тюнера другого телевизора.

Если изображение и звук не появились, проверяем с помощью осциллографа путь прохождения сигнала и при необходимости меняем видеопроцессор (при замене микросхемы лучше сразу впаять панельку).
Если изображение и звук есть, то неисправность следует искать в тюнере или в его обвязке. Прежде всего надо проверить, поступаетли на тюнер питание.
Проверить исправность ключевых транзисторов, через которые поступает напряжение на тюнер при переключении диапазонов. Проследить, поступает ли на базы этих транзисторов сигнал от процессора управления, проверить величину и диапазон изменения напряжения настройки, которое должно меняться в пределах 0. 31 В.

При диагностике неисправностей тюнера нужно подать сигнал с антенны на смеситель, минуя каскады ВЧ-усилителя. Для этого удобно пользоваться щупом, который можно изготовить из одноразового шприца с удаленным поршнем. В верхней части шприца следует установить антенное гнездо и через конденсатор 470 пФ соединить центральный контакт с иглой. Землю выводим обычным проводом; для удобства лучше к земляному проводу припаять зажим «крокодил». Щуп соединяем с антенным штекером и подаем сигнал на каскады тюнера.

С помощью такого щупа удалось определить неисправность в тюнере телевизора Grundig T55-640 OIRT. В этом аппарате был неисправен первый каскад УВЧ. Неисправность устранена путем подачи сигнала через конденсатор 10 пФ прямо с антенного гнезда, минуя первый транзистор, на следующий каскад тюнера. Качество изображения и чувствительность телевизора после такой переделки остались довольно высокими и даже не сказались на работе телетекста.

Особо надо остановиться на диагностике блока управления телевизором.
При его ремонте желательно пользоваться схемой или справочными данными на процессор управления. Если не удалось найти таких данных, можно попытаться скачать их с сайта производителя этих компонентов через Интернет.

Неисправность в блоке может проявляться следующим образом: телевизор не включается, телевизор не реагирует на сигналы с пульта или кнопок управления на передней панели, нет регулировок громкости, яркости, контрастности, насыщенности и других параметров, нет настройки на телевизионные программы, не сохраняются настройки в памяти, нет индикации параметров управления.
Если телевизор не включается, прежде всего проверяем наличие питания на процессоре и работу тактового генератора. Затем нужно определить, поступает ли сигнал с процессора управления на схему включения. Для этого необходимо выяснить принцип включения телевизора.
Телевизор можно включить с помощью управляющего сигнала, который запускает блок питания, или с помощью снятия блокировки с прохождения строчных запускающих импульсов с задающего генератора до блока строчной развертки.

Следует отметить, что на процессоре управления сигнал на включение обозначается либо Power, либо Stand-by. Если сигнал с процессора поступает, то неисправность следует искать в схеме включения, а если сигнала нет, придется менять процессор.

Проверяем последовательно питание, состояние контактных дорожек и состояние контактных площадок на кнопках управления, наличие импульсов на выходе микросхемы пульта, исправность транзистора или транзисторов и исправность излучающих светодиодов.
Часто после падения пульта выходит из строя кварцевый резонатор. При необходимости меняем неисправный элемент или восстанавливаем контактные площадки и покрытие кнопок (это можно сделать, нанеся графит, например мягким карандашом, или наклеив на кнопки металлизированную пленку).
Если пульт исправен, нужно проследить прохождение сигнала от фотоприемника до процессора. Если сигнал доходит до процессора, а на его выходе ничего не меняется, можно предположить, что процессор неисправен.

Если телевизор не управляется с кнопок на передней панели, нужно сначала проверить исправность самих кнопок, а затем проследить наличие импульсов опроса и подачу их на шину управления.
Если телевизор включается с пульта и импульсы поступают на шину управления, а оперативные регулировки не работают, надо выяснить, с помощью какого вывода микропроцессор управляет той или иной регулировкой (громкость, яркость, контрастность, насыщенность). Далее проверить тракты данных регулировок, вплоть до исполнительных устройств.
Микропроцессор выдает управляющие сигналы с линейно изменяющейся скважностью, а поступая на исполнительные устройства, данные сигналы преобразуются в линейно изменяющееся напряжение.
Если сигнал поступает на исполнительное устройство, а реакции устройства на этот сигнал нет, то ремонту подлежит данное устройство, а если нет управляющего сигнала, замене подлежит процессор управления.

При отсутствии настройки на телевизионные программы сначала проверяем узел выбора поддиапазона. Обычно через буферы, реализованные на транзисторах, с процессора подается напряжение на выводы тюнера (0 или 12 В). Чаще всего выходят из строя именно эти транзисторы. Но бывает, что с процессора нет сигналов переключения поддиапазонов. В этом случае надо менять процессор.
Далее проверяем узел выработки напряжения настройки. Напряжение питания обычно поступает от вторичного выпрямителя со строчного трансформатора и составляет 100. 130 В. Из этого напряжения с помощью стабилизатора формируется 30. 31 В.
Микропроцессор управляет ключом, формирующим напряжение настройки 0. 31 В с помощью сигнала с линейно изменяющейся скважностью, который после фильтров преобразуется в линейно изменяющееся напряжение.

Чаще всего выходит из строя стабилизатор 30. 33 В. Если в телевизоре не сохраняются настройки в памяти, надо при любой настройке проверить обмен данными между процессором управления и микросхемой памяти по шинам CS, CLK, D1, DO. Если обмен есть, а значения параметров в памяти не хранятся, замените микросхему памяти.
Если в телевизоре нет индикации параметров управления, необходимо в режиме индикации проверить наличие пачек видеоимпульсов служебной информации на процессоре управления по цепям R, G, В и сигнал яркости, а также прохождение этих сигналов через буферы на видеоусилители.

В этой статье мы коснулись малой части неисправностей, которые встречаются в телевизионных приемниках. Но в любом случае методика их отыскания поможет Вам правильно определить и устранить неисправность и позволит сократить время, затраченное на ремонт.

На прохождение сигналов по магистрали влияют следующие факторы:

· конечная величина задержки распространения сигналов по линиям магистрали;

· различие задержек распространения сигналов по разным линиям шины;

· неодновременное выставление сигналов на линии шины;

· искажение фронтов сигналов, проходящих по линиям магистрали;

· отражение сигналов от концов линий связи (рис. 2.4).


Рис. 2.4. Прохождение сигналов по шине

Для улучшения формы сигналов, распространяющихся по магистрали, иногда применяют оконечные согласователи (терминаторы) на концах линий магистрали. Особенно важно их применение в случае, когда допустимая длина магистрали превышает несколько метров. Например, в случае магистрали Q-bus применяются два типа согласователей: 120-омный и 250-омный (рис. 2.5).


Рис. 2.5. Оконечные согласователи на магистрали Q-bus

3. Функции устройств магистрали ……………………………………
В этой лекции рассказывается о функциях основных устройств микропроцессорной системы: процессора, памяти, устройств ввода-вывода, о принципах их устройства и подключения к магистрали.

Функции процессора

Процессор (рис. 3.1) обычно представляет собой отдельную микросхему или же часть микросхемы (в случае микроконтроллера). В прежние годы процессор иногда выполнялся на комплектах из нескольких микросхем, но сейчас от такого подхода уже практически отказались. Микросхема процессора обязательно имеет выводы трех шин: шины адреса, шины данных и шины управления. Иногда некоторые сигналы и шины мультиплексируются, чтобы уменьшить количество выводов микросхемы процессора.

Важнейшие характеристики процессора — это количество разрядов его шины данных, количество разрядов его шины адреса и количество управляющих сигналов в шине управления. Разрядность шины данных определяет скорость работы системы. Разрядность шины адреса определяет допустимую сложность системы. Количество линий управления определяет разнообразие режимов обмена и эффективность обмена процессора с другими устройствами системы.

Кроме выводов для сигналов трех основных шин процессор всегда имеет вывод (или два вывода) для подключения внешнего тактового сигнала или кварцевого резонатора (CLK), так как процессор всегда представляет собой тактируемое устройство. Чем больше тактовая частота процессора, тем он быстрее работает, то есть тем быстрее выполняет команды. Впрочем, быстродействие процессора определяется не только тактовой частотой, но и особенностями его структуры. Современные процессоры выполняют большинство команд за один такт и имеют средства для параллельного выполнения нескольких команд. Тактовая частота процессора не связана прямо и жестко со скоростью обмена по магистрали, так как скорость обмена по магистрали ограничена задержками распространения сигналов и искажениями сигналов на магистрали. То есть тактовая частота процессора определяет только его внутреннее быстродействие, а не внешнее. Иногда тактовая частота процессора имеет нижний и верхний пределы. При превышении верхнего предела частоты возможно перегревание процессора, а также сбои, причем, что самое неприятное, возникающие не всегда и нерегулярно. Так что с изменением этой частоты надо быть очень осторожным.


Рис. 3.1. Схема включения процессора

После включения питания процессор переходит в первый адрес программы начального пуска и выполняет эту программу. Данная программа предварительно записана в постоянную (энергонезависимую) память. После завершения программы начального пуска процессор начинает выполнять основную программу, находящуюся в постоянной или оперативной памяти, для чего выбирает по очереди все команды. От этой программы процессор могут отвлекать внешние прерывания или запросы на ПДП. Команды из памяти процессор выбирает с помощью циклов чтения по магистрали. При необходимости процессор записывает данные в память или в устройства ввода/вывода с помощью циклов записи или же читает данные из памяти или из устройств ввода/вывода с помощью циклов чтения.

Таким образом, основные функции любого процессора следующие:

· выборка (чтение) выполняемых команд;

· ввод (чтение) данных из памяти или устройства ввода/вывода;

· вывод (запись) данных в память или в устройства ввода/вывода;

· обработка данных (операндов), в том числе арифметические операции над ними;

· адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен;

· обработка прерываний и режима прямого доступа.

Функции памяти

Память микропроцессорной системы выполняет функцию временного или постоянного хранения данных и команд. Объем памяти определяет допустимую сложность выполняемых системой алгоритмов, а также в некоторой степени и скорость работы системы в целом. Модули памяти выполняются на микросхемах памяти (оперативной или постоянной). Все чаще в составе микропроцессорных систем используется флэш-память (англ. — flash memory), которая представляет собой энергонезависимую память с возможностью многократной перезаписи содержимого.

Информация в памяти хранится в ячейках, количество разрядов которых равно количеству разрядов шины данных процессора. Обычно оно кратно восьми (например, 8, 16, 32, 64). Допустимое количество ячеек памяти определяется количеством разрядов шины адреса как 2 N , где N — количество разрядов шины адреса. Чаще всего объем памяти измеряется в байтах независимо от разрядности ячейки памяти. Используются также следующие более крупные единицы объема памяти: килобайт — 2 10 или 1024 байта (обозначается Кбайт), мегабайт — 2 20 или 1 048 576 байт (обозначается Мбайт), гигабайт — 2 30 байт (обозначается Гбайт), терабайт — 2 40 (обозначается Тбайт) Например, если память имеет 65 536 ячеек, каждая из которых 16-разрядная, то говорят, что память имеет объем 128 Кбайт. Совокупность ячеек памяти называется обычно пространством памяти системы.

Память программы начального запуска всегда выполняется на ПЗУ или флэш-памяти. Именно с этой области процессор начинает работу после включения питания и после сброса его с помощью сигнала RESET.

Память для стека или стек (Stack) — это часть оперативной памяти, предназначенная для временного хранения данных в режиме LIFO (Last In — First Out).

Принцип действия стека показан на рис. 3.3 (адреса ячеек памяти выбраны условно).


Рис. 3.2. Структура модуля памяти


Рис. 3.3. Принцип работы стека

Следующая специальная область памяти — это таблица векторов прерываний.

В случае аппаратных прерываний номер прерывания или задается устройством, запросившим прерывание (при векторных прерываниях), или же задается номером линии запроса прерываний (при радиальных прерываниях). Процессор, получив аппаратное прерывание, заканчивает выполнение текущей команды и обращается к памяти в область таблицы векторов прерываний, в ту ее строку, которая определяется номером запрошенного прерывания. Затем процессор читает содержимое этой строки (код вектора прерывания) и переходит в адрес памяти, задаваемый этим вектором. Начиная с этого адреса в памяти должна располагаться программа обработки прерывания с данным номером. В конце программы обработки прерываний обязательно должна располагаться команда выхода из прерывания, выполнив которую, процессор возвращается к выполнению прерванной основной программы. Параметры процессора на время выполнения программы обработки прерывания сохраняются в стеке.

Прерывание в случае аварийной ситуации обрабатывается точно так же, только адрес вектора прерывания (номер строки в таблице векторов) жестко привязан к данному типу аварийной ситуации.

Программное прерывание тоже обслуживается через таблицу векторов прерываний, но номер прерывания указывается в составе команды, вызывающей прерывание.


Рис. 3.4. Упрощенный алгоритм обработки прерывания

Такая сложная, на первый взгляд, организация прерываний позволяет программисту легко менять программы обработки прерываний, располагать их в любой области памяти, делать их любого размера и любой сложности.

Еще одна специальная область памяти микропроцессорной системы — это память устройств, подключенных к системной шине. Такое решение встречается нечасто, но иногда оно очень удобно. То есть процессор получает возможность обращаться к внутренней памяти устройств ввода/вывода или каких-то еще подключенных к системной шине устройств, как к своей собственной системной памяти. Обычно окно в пространстве памяти, выделяемое для этого, не слишком большое.

Все остальные части пространства памяти, как правило, имеют универсальное назначение. В них могут располагаться как данные, так и программы (конечно, в случае одношинной архитектуры). Иногда это пространство памяти используется как единое целое, без всяких границ. А иногда пространство памяти делится на сегменты с программно изменяемым адресом начала сегмента и с установленным размером сегмента. Оба подхода имеют свои плюсы и минусы. Например, использование сегментов позволяет защитить область программ или данных, но зато границы сегментов могут затруднять размещение больших программ и массивов данных.


2. BIOS загружает загрузчик, который в свою очередь загружает ОС.

3. BIOS позволяет ОС взаимодействовать с периферийным оборудованием.

4. BIOS позволяет настраивать многие компоненты оборудования, следить за их состоянием, параметрами работы. Там сохраняются сделанные пользователем настройки, например актуальная дата и время, позволяет включать-выключать встроенное в материнскую плату оборудование.
Для определения вида BIOS я рекомендую посмотреть на момент загрузки, обычно в верхней левой части экрана есть информация о производителе и версии BIOS, либо зайти в настройки BIOS, как правило нажимая несколько раз на клавишу Delete после включения ПК.

UEFI (BIOS)

Asus UEFI BIOS

Описание ошибки

Загрузка прошла успешно

Имеются не критичные ошибки.

Ошибку выдал контроллер клавиатуры

1 короткий + 1 длинный

Неисправна оперативная память

1 длинный + 2 коротких

Об ошибке сигнализирует видеокарта

1 длинный + 3 коротких

1 длинный + 9 коротких

Ошибка при чтении из ПЗУ

Непрерывные короткие сигналы

Неисправность блока питания или оперативной памяти

Непрерывные длинные гудки

Попеременные длинный и короткий сигналы

Сигнализирует о проблемах с блоком питания

IBM BIOS.

IBM BIOS
IBM BIOS
Последовательность звуковых сигналовОписание ошибки Bios
1 короткийУспешный POST
1 сигнал и пустой экранНеисправна видеосистема
2 короткихНе подключен монитор
3 длинныхНеисправна материнская плата (ошибка контроллера клавиатуры)
1 длинный 1 короткийНеисправна материнская плата
1 длинный 2 короткихНеисправна видеосистема (Mono/CGA)
1 длинный 3 короткихНеисправна видеосистема (EGA/VGA)
Повторяющийся короткийНеисправности связаны с блоком питания или материнской платой
НепрерывныйПроблемы с блоком питания или материнской платой
ОтсутствуетНеисправны блок питания, материнская плата, или динамик

Award BIOS

AMI BIOS

AST BIOS

Последовательность звуковых сигналовОписание ошибки
1 короткийОшибка при проверке регистров процессора. Неисправность процессора
2 короткихОшибка буфера клавиатурного контроллера. Неисправность клавиатурного контроллера.
3 короткихОшибка сброса клавиатурного контроллера. Неисправность клавиатурного контроллера или системной платы.
4 короткихОшибка связи с клавиатурой.
5 короткихОшибка клавиатурного ввода.
6 короткихОшибка системной платы.
9 короткихНесовпадение контрольной суммы ПЗУ BIOS. Неисправна микросхема ПЗУ BIOS.
10 короткихОшибка системного таймера. Системная микросхема таймера неисправна.
11 короткихОшибка чипсета.
12 короткихОшибка регистра управления питанием в энергонезависимой памяти.
1 длинныйОшибка контроллера DMA 0. Неисправна микросхема контроллера DMA канала 0.
1 длинный 1 короткийОшибка контроллера DMA 1. Неисправна микросхема контроллера DMA канала 1.
1 длинный 2 короткихОшибка гашения обратного хода кадровой развёртки. Возможно, неисправен видеоадаптер.
1 длинный 3 короткихОшибка в видеопамяти. Неисправна память видеоадаптера.
1 длинный 4 короткихОшибка видеоадаптера. Неисправен видеоадаптер.
1 длинный 5 короткихОшибка памяти 64K.
1 длинный 6 короткихНе удалось загрузить векторы прерываний. BIOS не смог загрузить векторы прерываний в память
1 длинный 7 короткихНе удалось инициализировать видеооборудование.
1 длинный 8 короткихОшибка видеопамяти.

Compaq BIOS

Compaq BIOS
Compaq BIOS
ЗвукиОписание
1 короткийОшибок нет. Нормальная загрузка системы.
1 длинный 1 короткийОшибка контрольной суммы памяти CMOS BIOS. Возможно сел аккумулятор ROM.
2 короткихГлобальная ошибка.
1 длинный 2 короткихОшибка инициализации видеокарты. Проверьте правильность установки видеокарты.
7 сигналовНеисправность видеокарты AGP. Проверьте правильность установки.
1 длинный постоянныйОшибка оперативной памяти, попробуйте перезагрузиться.
1 короткий 2 длинныхНеисправность оперативной памяти. Перезагрузитесь через Reset.

Quadtel BIOS

Quadtel BIOS
Последовательность звуковых сигналовОписание ошибки
1 короткийОшибок не обнаружено, ПК исправен
2 короткихCMOS RAM повреждена. Заменить IC если это возможно
1 длинный 2 короткихОшибка видеоадаптера. Неисправен видеоадаптер. Переустановите или замените адаптер
1 длинный 3 короткихОдин или несколько из периферийных контроллеров неисправен.
Замените контроллеры и проведите повторное тестирование

Далее: Beep-коды представлены последовательностью звуковых сигналов. Например, 1-1-2 означает 1 звуковой сигнал, пауза, 1 звуковой сигнал, пауза, и 2 звуковых сигнала.

Dell BIOS

Dell BIOS

Последовательность звуковых сигналовОписание ошибки
1-2Не подключена видеокарта
1-2-2-3Ошибка контрольной суммы ПЗУ BIOS
1-3-1-1Ошибка обновления DRAM
1-3-1-3Ошибка клавиатуры 8742
1-3-3-1Неисправна память
1-3-4-1Ошибка ОЗУ на линии xxx
1-3-4-3Ошибка ОЗУ на младшем бите xxx
1-4-1-1Ошибка ОЗУ на старшем бите xxx

Phoenix BIOS
Phoenix BIOS

Звуковые сигналы Phoenix BIOS состоят из нескольких серий коротких гудков, которые следуют с некоторым интервалом. Например, сигнал с кодом 1-2-3 будет звучать так: один короткий гудок, пауза, два коротких гудка, пауза, три коротких гудка.

Сигнал

Значение (расшифровка)

Ошибка при чтении данных из микросхемы встроенной памяти СМОS

Ошибка контрольной суммы микросхемы CMOS

Ошибка на системной плате

Ошибка контроллера DМА системной платы

Ошибка чтения или записи данных в один из каналов DМА

Ошибка в оперативной памяти

Ошибка первых 64 Кбайт основной памяти

Ошибка тестирования оперативной памяти

Ошибка системной платы

Ошибка тестирования оперативной памяти

Ошибка одного из битов первых 64 Кбайт оперативной памяти

Ошибка в первом канале DMA

Ошибка во втором канале DМА

Ошибка при обработке прерываний

Ошибка контроллера прерываний материнской платы

Ошибка контроллера клавиатуры

Ошибка при тестировании видеопамяти

Ошибка при поиске видеопамяти

Ошибка системного таймера

Ошибка контроллера клавиатуры

Ошибка центрального процессора

Ошибка тестирования оперативной памяти

Ошибка системного таймера

Ошибка часов реального времени

Ошибка последовательного порта

Ошибка параллельного порта

Ошибка математического сопроцессора

Ошибка в работе адаптеров, имеющих собственный BIOS

Ошибка при подсчете контрольной суммы BIOS

Ошибка в работе оперативной памяти

Ошибка контроллера клавиатуры

Ошибки при тестировании оперативной памяти

Ошибка при проверке уведомления об авторском праве ROM BIOS

Ошибка при обработке непредвиденных прерываний

Последовательность звуковых сигналов, описание ошибок без таблицы:

Читайте также: