Разбор как делают процессоры

Обновлено: 07.07.2024

Большие дела начинаются с малого. Это высказывание справедливо для многих вещей, но в этой статье пойдет речь об изготовлении микропроцессоров, которыми нашпигованы самые разные бытовые приборы, что вас окружают, от смартфонов и до холодильников.

Содержание

Подготовка сырья

Компьютерные чипы сложнейшей структуры, способные производить мгновенные вычисления, рождаются огромных тиглях из кварцевого стекла, наполненных до краев песком, прошедшим многоступенчатую очистку.

Прежде всего из песка, набранного в каком-нибудь карьере, получают «технический» кремний путем добавления в минерал углерода при высокой температуре. Получившийся в результате кремний при чистоте достигает 98%, но все еще совершенно не подходит для целей электронной промышленности и, чтобы стать «электронным кремнием», ему требуется дополнительная обработка хлором. В процессе каскада химических реакций с хлором, кремний буквально синтезируется заново, избавляясь от последних признаков примесей.

Только после этого тигель с чистейшим электронным кремнием помещают в герметичную печь, которая наполнена аргоном. Конечно, можно было бы откачать из нее воздух, но создать идеальный вакуум на земле очень сложно, если не невозможно, а с химической точки зрения аргон дает практически тот же эффект. Этот инертный газ замещает кислород, защищая состав от окисления, а сам никак не реагирует с кремнием в тигле.

Только после этого бывший песок разогревается до 1420 градусов Цельсия, что всего на 6 градусов выше его точки плавления. Для этого используется графитовый нагреватель. Выбор материала, как и в случае с кварцем тигля, обусловлен тем, что графит не реагирует с кремнием и, следовательно, не может загрязнить материал будущего процессора.

В нагретый тигель опускается тонкий затравочный кристалл кремния, размером и формой напоминающий карандаш. Он должен запустить процесс кристаллизации. Дальнейшее можно воспроизвести в домашних условиях с раствором соли, сахара, лимонной кислоты или, например, медного купороса. Остывающий раствор начинает кристаллизироваться вокруг затравочной точки, образуя идеальную молекулярную решетку. Так выращивают кристаллы соли, так растет и кремний.

Как делают микропроцессоры

Затравочный кристалл кремния постепенно поднимают из тигля, со скоростью примерно полтора миллиметра в минуту, и с ним из раствора поднимается растущий монокристалл. Рост кристалла происходит медленно и на один тигель уходит в среднем 26 часов, так что производство работает круглосуточно.

За это время образуется «буля» — цельный цилиндрический кристалл диаметром 300 миллиметров, длиной до 1-2 метров и весом около 100 килограммов. Если взглянуть на него под сильным увеличением, взгляду откроется строгая структура — идеальная кристаллическая решетка из атомов кремния, совершенно однородная по всему объему.

Кристалл настолько прочен, что его вес может выдержать нить диаметром всего 3 миллиметра. Так что, готовую заготовку для процессоров вытягивают из тигля за тот самый затравочный кристалл.

Однако с «буля» обращаются аккуратнее, чем с антикварной вазой, кристалл выдерживает огромные нагрузки на разрыв, но чрезвычайно хрупок.

После химического и рентгеноскопического исследования для проверки чистоты кристалла и правильности молекулярной решетки, заготовку помещают в установку для резки кремния. Она разделяет кристалл на пластины толщиной около 1 миллиметра при помощи проволочной пилы с алмазным напылением.

Конечно, не обходится без повреждений. Какой бы острой ни была пила, после нарезки, на поверхности пластин остаются микроскопические дефекты. Так что за нарезкой следует этап полировки.

Но даже после обработки в мощной шлифовальной машине пластины кремния ещё недостаточно гладкие, чтобы пустить их на производство микрочипов. Поэтому полировку повторяют снова и снова уже с использованием химических реагентов.

В результате получается поверхность, по сравнению с которой, зеркало напоминает крупную наждачную бумагу. Такая пластина без разрывов и микродефектов становится основой для миллионов микроэлектронных устройств, образующих микросхему. Очищенные от пыли, кремниевые диски, которые принято называть «вэйфер» или «вафля» в герметичных контейнерах отправляются в чистую комнату.

В чистой комнате

Как делают микропроцессоры

В 1958 году изобретателю интегральной микросхемы Джеку Кирби удалось совершить прорыв, разместить на своей схеме один транзистор. В наши дни число логических элементов микропроцессора перевалило за миллиард и продолжает удваиваться каждые два года в соответствие с законом Мура.

Работа с такими микроскопическими деталями ставит перед изготовителями чипов серьезный вызов, поскольку даже единственная пылинка может погубить будущее изделие. Поэтому цеха площадью в пару тысяч квадратных метров, полностью изолируют от внешнего мира, оснащают сложнейшими системами очистки и кондиционирования воздуха, делающими его 10000 раз чище, чем в хирургической палате.

Все специалисты, работающие в такой чистой комнате, не просто соблюдают стерильность, но и носят защитные костюмы из антистатических материалов, маски, перчатки. И все же, несмотря на все предосторожности, чтобы уменьшить риск брака, компании-производители процессоров стараются автоматизировать максимум операций, производимых в чистой комнате, возложив их на промышленных роботов.

Процесс изготовления процессоров поставлен на конвейер. Доставленная в герметичном боксе идеально ровная «вэйфер» проходит через 400-500 технологических операций и выходит из цеха только спустя несколько месяцев уже в виде готового микрочипа.

Создание из «вафли» микрочипа подразумевает построение сложнейшей технологической цепочки, описать которую в деталях нет никакой возможности из-за ограничений на объемы статьи. Даже если бы их не было, компании вроде Intel и AMD вовсе не спешат делиться секретами производства. В конструкторских отделах компаний проектируются сложнейшие трехмерные схемы взаимного расположения элементов процессора — топологии микросхем. Они представляют собой многоуровневое нагромождение элементов, которое разделяется на слои и послойно наносится на кремниевую подложку. Делать это вручную, конечно же невозможно, слишком тонкий процесс, слишком мелкие элементы, буквально нанометрового размера.

Как делают микропроцессоры

Процессоры Intel восьмого поколения, известные под обозначением Coffee Lake, усеяны 14 нанометровыми транзисторами, AMD анонсировала второе поколение процессоров AMD Ryzen, известное под кодовым названием Pinnacle Ridge построенных на 12 нанометровых элементах. Новейшие видеокарты NVIDIA с архитектурой ядер Volta также построены по 12 нанометровой технологии. Система на чипе Qualcomm Snapdragon 835 еще миниатюрнее — всего 10 нанометров. Постоянно уменьшать размеры функциональных элементов процессора и, следовательно, увеличивать его производительность, удается благодаря совершенствованию технологии под названием фотолитография.

В общих чертах этот процесс можно описать следующим образом:

Сначала пластина кремния покрывается основой — материалом, которой должен будет стать частью будущей схемы, затем поверх равномерным слоем наносится химический реагент, чувствительный к свету. Этот состав выполнит всю работу, но суть позже.

Прежде из корпоративных архивов извлекается хранимая в строжайшем секрете подробная схема процессора. Ее нижний слой представляют в виде негатива и переносят на фотошаблон —защитную пластину, действующую подобно трафарету. Она значительно больше чипа, так что проходящий сквозь нее свет фокусируют при помощи сложной системы линз, уменьшая проецируемое изображение до нужного размера.

В тех местах, где свет не достигает кремния, пластина остается нетронутой, в освещенных он инициирует реакцию в химическом реагенте, меняющую его свойства. Затем будущий процессор обработают еще одним составом, и эти участки растворятся, оставив только те области, что не подвергались воздействию. Они-то и образуют токопроводящие логические элементы процессора.

Как делают микропроцессоры

После на пластину нанесут слой диэлектрика и поверх добавят новые компоненты процессора, опять же, при помощи фотолитографии.

Некоторые слои нагреваются, на некоторые воздействуют ионизированные плазмы, а другие покрываются металлом. Каждый тип обработки изменяет свойства слоя и медленно создает часть головоломки, формирующей конкретную модель чипа. В результате получается своеобразный слоёный пирог, где у каждого слоя своя функциональность и они связаны между собой сложным образом по средствам «дорожек» из атомов меди, которую осаживают на кремниевую подложку из раствора сульфата меди, пропуская через него электрический ток.

Как делают микропроцессоры

Это завершающий этап обработки, после которого микрочипы проверяют на работоспособность. Несмотря на все меры предосторожности и многодневные усилия процент брака остается высок. Роботы выберут и вырежут из кремниевой пластины только 100% работоспособные чипы.

Они будут рассортированы по показателям энергоэффективности, токам, и максимальным рабочим частотам, получат различные обозначения и, в конечном счете, будут проданы по различной цене.

Последние штрихи

Как делают микропроцессоры

На пути к покупателям процессоры покидают чистую комнату и отправляются на сборочную линию, где готовую микросхему приклеивают на квадрат, называемый подложкой. Кристалл спаивается с ней в специальной печи при температуре 360 градусов Цельсия.

Затем чип накрывается крышкой. Она служит и для защиты все еще хрупкого кремния от повреждений и для отвода от него тепла. Вы наверняка хорошо ее себе представляете, именно к крышке будет прижиматься основание системы охлаждения, будь то кулер или теплообменник СВО (системы водяного охлаждения). Это не менее ответственный этап, чем предыдущий. Ведь от того, насколько хорошо крышка процессора отводит тепло от кристалла во многом зависит стабильность и скорость его работы, его будущая максимальная производительность.

Старые процессоры Intel буквально припаивались к теплораспределительным крышкам. Однако последние поколения фирменных чипов получают прокладку-термоинтерфейс между кристаллом и крышкой и охлаждаются хуже, что очень огорчает энтузиастов компьютерного железа, желающих выжать максимум из своих приобретений. Дошло до того, что они «скальпируют» процессоры — самостоятельно снимают с них теплораспределитель и заменяют термоинтерфейс на более эффективный. Но не будем отвлекаться на хитрости оверклокинга, поскольку процессор еще не готов.

Как делают микропроцессоры

Завершающий этап — создание электрических контактов, которые свяжут микропроцессор с материнской платой компьютера. Обычно для этого изготавливают оловянные цилиндрики, так называемые «ножки» процессора, которые сначала приклеиваются, а затем припаиваются к подложке, где для них заранее предусмотрены места. Для микрочипов с большим количеством связей вместо ножек иногда используют мелкие оловянные шарики, так как они крепче и надежнее, однако в последнее время от них стали отказываться в пользу простых контактных площадок.

Как делают микропроцессоры

Законченный микрочип промывают в растворе воды с растворителем, чтобы удалить лишний флюс и грязь, а затем проводят финальную проверку качества проделанной работы. Это могут быть как стресс-тесты производительности, как в чистой комнате, так и более суровые испытания. Так, чипы, предназначающиеся для работы в экстремальных условиях, например, в космической и военной отраслях, помещаются герметичные в корпуса из керамики и многократно тестируются при экстремальных температурах в вакуумных камерах.

Затем, в зависимости от назначения микропроцессора, он отправляется прямо в руки покупателей, а затем в сокеты материнских плат, или на другие заводы, где маленький кремниевый кристалл займет свое место на компьютерной плате видеокарты, космического спутника, умного холодильника, а может быть попадет в корпус смартфона.

Чтобы создать сверхмощный процессор, достаточно простого.

Песок. В наших компьютерах в буквальном смысле песок, вернее — составляющий его кремний. Это основной элемент, благодаря которому в компьютерах всё работает. А вот как из песка получаются компьютеры.

Что такое процессор

Процессор — это небольшой чип внутри вашего компьютера или телефона, который производит все вычисления. Об основе вычислений мы уже писали — это транзисторы, которые собраны в сумматоры и другие функциональные блоки.

Если очень упрощённо — это сложная система кранов и труб, только вместо воды по ним течёт ток. Если правильным образом соединить эти трубы и краны, ток будет течь полезным для человека образом и получатся вычисления: сначала суммы, потом из сумм можно получить более сложные математические операции, потом числами можно закодировать текст, цвет, пиксели, графику, звук, 3D, игры, нейросети и что угодно ещё.

Кремний

Почти все процессоры, которые производятся в мире, делаются на кремниевой основе. Это связано с тем, что у кремния подходящая внутренняя атомная структура, которая позволяет делать микросхемы и процессоры практически любой конфигурации.

Самый доступный источник кремния — песок. Но кремний, который получается из песка, на самом первом этапе недостаточно чистый: в нём есть 0,5% примесей. Может показаться, что чистота 99,5% — это круто, но для процессоров нужна чистота уровня 99,9999999%. Такой кремний называется электронным, и его можно получить после цепочки определённых химических реакций.

Когда цепочка заканчивается и остаётся только чистый кремний, можно начинать выращивать кристалл.

Кристалл и подложка

Кристаллы — это такие твёрдые тела, в которых атомы и молекулы вещества находятся в строгом порядке. Проще говоря, атомы в кристалле расположены предсказуемым образом в любой точке. Это позволяет точно понимать, как будет вести себя это вещество при любом воздействии на него. Именно это свойство кристаллической решётки используют на производстве процессоров.

Самые распространённые кристаллы — соль, драгоценные камни, лёд и графит в карандаше.

Большой кристалл можно получить, если кремний расплавить, а затем опустить туда заранее подготовленный маленький кристалл. Он сформирует вокруг себя новый слой кристаллической решётки, получившийся слой сделает то же самое, и в результате мы получим один большой кристалл. На производстве он весит под сотню килограмм, но при этом очень хрупкий.


Готовый кристалл кремния.

После того, как кристалл готов, его нарезают специальной пилой на диски толщиной в миллиметр. При этом диаметр такого диска получается около 30 сантиметров — на нём будет создаваться сразу несколько десятков процессоров.

Каждую такую пластинку тщательно шлифуют, чтобы поверхность получилась идеально ровной. Если будут зазубрины или шероховатости, то на следующих этапах диск забракуют.


Готовые отполированные пластины кремния.

Печатаем транзисторы

Когда диски отполированы, на них можно формировать процессоры. Процесс очень похож на то, как раньше печатали чёрно-белые фотографии: брали плёнку, светили сверху лампой, а снизу клали фотобумагу. Там, куда попадал свет, бумага становилось тёмной, а те места, которые закрыло чёрное изображение на плёнке, оставались белыми.

С транзисторами всё то же самое: на диск наносят специальный слой, который при попадании света реагирует с молекулами диска и изменяет его свойства. После такого облучения в этих местах диск начинает проводить ток чуть иначе — сильнее или слабее.

Чтобы так поменять только нужные участки, на пути света помещают фильтр — прямо как плёнку в фотопечати, — который закрывает те места, где менять ничего не надо.

Потом получившийся слой покрывают тонким слоем диэлектрика — это вещество, которое не проводит ток, типа изоленты. Это нужно, чтобы слои процессора не взаимодействовали друг с другом. Процесс повторяется несколько десятков раз. В результате получаются миллионы мельчайших транзисторов, которые теперь нужно соединить между собой.

Соединяем всё вместе

То, как соединяются между собой транзисторы в процессоре, называется процессорной архитектурой. У каждого поколения и модификации процессоров своя архитектура. Все производители держат в секрете тонкости архитектуры, потому что от этого может зависеть скорость работы или стоимость производства.

Так как транзисторов много, а связей между ними нужно сделать немало, то поступают так: наносят токопроводящий слой, ставят фильтр и закрепляют проводники в нужном месте. Потом слой диэлектрика и снова токопроводящий слой. В результате выходит бутерброд из проводников, которые друг другу не мешают, а транзисторы получают нужные соединения.


Токопроводящие дорожки крупным планом. На фото они уже в несколько слоёв и не мешают друг другу.

В чём сложность

Современные процессоры производятся на нанометровом уровне, то есть размеры элементов измеряются нанометрами, это очень мало.

Если, например, во время печати очень толстый мальчик упадёт на пол в соседнем цехе, еле заметная ударная волна прокатится по перекрытиям завода и печатная форма немного сдвинется, а напечатанные таким образом транзисторы окажутся бракованными. Пылинка, попавшая на пластину во время печати — это, считай, загубленное ядро процессора.

Поэтому на заводах, где делают процессоры, соблюдаются жёсткие стандарты чистоты, все ходят в масках и костюмах, на всех воздуховодах стоят фильтры, а сами заводы находятся на сейсмических подушках, чтобы толчки земной коры не мешали производить процессоры.

Крышка и упаковка

Когда дорожки готовы, диск отправляют на тесты. Там смотрят на то, как работает каждый процессор, как он греется и сколько ему нужно энергии, заодно проверяют на брак.

После тестов диск разрезают на готовые процессорные ядра.

Пластина со множеством одинаковых процессорных ядер. Робот вырезает ядра из готовой пластины.

После этого к ядру процессора добавляют контакты, чтобы можно было вставить его в материнскую плату, и накрывают крышкой. Чёрный или металлический прямоугольник, из которого торчат ножки, — это как раз крышка.

Крышка выполняет две функции: защищает сам кристалл от повреждений и отводит от него тепло во время работы. Дело в том, что миллионы транзисторов при работе нагреваются, и если процессор не остужать, то он перегреется и кристалл может испортиться. Чтобы такого не произошло, на крышку процессора ставят воздушные кулеры или делают водяное охлаждение.

Система на чипе

Чипы процессоров уже настолько маленькие, что под одной крышкой можно поместить какое-нибудь ещё устройство. Например, видеосистему — то, что обсчитывает картинку перед выводом на экран. Или устройство радиосвязи с антенной.

В какой-то момент на маленьком чипе площадью около 1 см 2 уже можно было поместить процессор, видео, модем и блютус, сделать всё нужное для поддержки памяти и периферии — в общем, система на чипе. Подключаете к этому хозяйству экран, нужное количество антенн, портов и кнопок, а главное — здоровенную батарею, и у вас готовый смартфон. По сути, все «мозги» вашего смартфона находятся на одном маленьком чипе, а 80% пространства за экраном занимает батарея.

От песка до процессора

Получившийся в результате водород можно много где использовать, но самое главное то, что был получен «электронный» кремний, чистый-пречистый (99,9999999%). Чуть позже в расплав такого кремния опускается затравка («точка роста»), которая постепенно вытягивается из тигля. В результате образуется так называемая «буля» — монокристалл высотой со взрослого человека. Вес соответствующий — на производстве такая буля весит порядка 100 кг.

От песка до процессора

Слиток шкурят «нулёвкой» :) и режут алмазной пилой. На выходе – пластины (кодовое название «вафля») толщиной около 1 мм и диаметром 300 мм (

12 дюймов; именно такие используются для техпроцесса в 32 нм с технологией HKMG, High-K/Metal Gate). Когда-то давно Intel использовала диски диаметром 50 мм (2"), а в ближайшем будущем уже планируется переход на пластины с диаметром в 450 мм – это оправдано как минимум с точки зрения снижения затрат на производство чипов. К слову об экономии — все эти кристаллы выращиваются вне Intel; для процессорного производства они закупаются в другом месте.
Каждую пластину полируют, делают идеально ровной, доводя ее поверхность до зеркального блеска.

Производство чипов состоит более чем из трёх сотен операций, в результате которых более 20 слоёв образуют сложную трёхмерную структуру. Сложно рассказать о всех операциях, которые выполняются в ходе изготовления процессора. Поэтому совсем коротко и лишь о самых важных этапах.
Итак. В отшлифованные кремниевые пластины необходимо перенести структуру будущего процессора, то есть внедрить в определенные участки кремниевой пластины примеси, которые в итоге и образуют транзисторы. Как это сделать? Вообще, нанесение различных слоев на процессорную подложу это целая наука, ведь даже в теории такой процесс непрост (не говоря уже о практике, с учетом масштабов)… но ведь так приятно разобраться в сложном;) Ну или хотя бы попытаться разобраться.

Теперь, когда мы знаем, как работают процессоры на высоком уровне, пришло время заглянуть внутрь процессора, чтобы понять, как устроены его внутренние компоненты. Эта статья является второй частью нашей серии, посвященной устройству процессоров. Если вы не читали первую часть, советуем ознакомиться с ней прежде, чем вы начнете читать дальше, поскольку в этой статье мы будем использовать понятия, освещенные ранее.

Как вы, вероятно, знаете, процессоры и большинство других современных цифровых технологий основаны на транзисторах. Самый простой способ представить транзистор – это управляемый переключатель с тремя контактами. Когда затвор включен, ток пропускается через транзистор. А когда выключен, транзистор ток не проводит. Точно так же, как и выключатель света на вашей стене, только транзистор гораздо меньше, гораздо быстрее и может управляться электрически.



В современных процессорах используются два основных типа транзисторов: pMOS и nMOS. Транзистор nMOS позволяет току течь, когда подается ненулевое напряжение на затвор, а транзистор pMOS – наоборот, проводит ток, когда напряжение на затворе стремится к нулю. Комбинируя эти типы транзисторов, мы можем создать логические вентили CMOS. В третьей части серии мы ещё остановимся подробней на физике работы процессоров.

Логический вентиль (логический элемент, гейт) – это простейшее устройство, которое принимает входной сигнал, выполняет некоторые операции и выводит результат в виде выходного сигнала. Например, вентиль AND (И) включит свой выход тогда и только тогда, когда все входы в вентиль включены. Инвертор или вентиль отрицания NOT (НЕ) включит свой выход, если вход отключен. Объединив эти два гейта, мы получим логический элемент NAND (И-НЕ), который включает свой выход, если и только если ни один из входов не включен. К другим логическим гейтам, с иной логической функциональностью, относятся OR (ИЛИ), NOR (ИЛИ-НЕ), XOR (Исключающее ИЛИ) и XNOR (Исключающее ИЛИ с инверсией).

Ниже показаны схемы двух основных логических элементов, реализованных с помощью транзисторов: вентиль отрицания (инвертор) и вентиль NAND (И-НЕ). В инверторе сверху находится транзистор pMOS, подключенный к питанию, а снизу транзистор nMOS, подключенный к земле. Транзисторы pMOS обозначаются с небольшим кружочком на затворе. Поскольку устройства pMOS срабатывают при отключенном входе, а устройства nMOS наоборот – при включенном, то несложно понять, что сигнал на выходе всегда будет противоположным сигналу на входе. Глядя на вентиль NAND, мы видим, что для него требуются четыре транзистора и что выход будет включен, пока хотя бы один из входов отключен. По такому же принципу, как формируются приведенные примеры элементарных транзисторных схем, проектируются и более сложные логические гейты и прочие схемы внутри процессоров.


Трудно представить, как из таких простейших кирпичиков – логических элементов – может получиться функционирующий компьютер. Сперва из нескольких отдельных вентилей создаётся простейшее устройство, способное выполнять какую-то простую функцию. Затем из нескольких таких простых устройств создаётся более сложное, выполняющее более сложную задачу. Процесс объединения отдельных компонентов для получения требуемой функциональности – это именно то, что применяется сегодня при создании чипов. Современные чипы имеют миллиарды транзисторов.

Вывод Суммы (Sum) включается, если A или B включены (но не оба сразу), либо если есть сигнал переноса (Cin), при этом A и B одновременно включены или выключены. Вывод переноса (Carry out) функционирует несколько сложнее – он срабатывает либо при одновременном включении A и B, либо если есть сигнал переноса и один из A или B (но не оба сразу). Чтобы соединить несколько однобитных сумматоров в один более широкий, нам попросту нужно последовательно соединить вывод переноса предыдущего бита с входом переноса текущего бита. Чем сложнее схемы, тем сложнее логика, но это самый простой способ сложить два числа. Современные процессоры используют более сложные сумматоры, рассматривать их в нашем обзоре будет излишним. Помимо сумматоров, процессоры также содержат узлы для деления и умножения, включая версии всех этих операций с плавающей запятой.



Объединение групп логических элементов для выполнения какой-либо функции, подобное этому, называется комбинационной логикой. Но этот тип логики не единственный, что встречается в компьютерах. Было бы мало толку, если бы мы не могли хранить данные или отслеживать состояние чего-либо. Для этого нам нужна секвенциальная логика, которая обеспечивает возможность хранить данные.

Секвенциальная логика строится путем подключения инверторов и других гейтов таким образом, что их выходы возвращают сигналы на вход гейтов. Эти контуры обратной связи используются для хранения одного бита данных и известны как статическое ОЗУ или SRAM (Static RAM). Статическим оно называется в противоположность динамическому (DRAM), поскольку сохраняемые в нём данные всегда напрямую связаны с положительным напряжением или землей.

Ниже показан стандартный способ имплементации одного бита SRAM на шести транзисторах. Верхний сигнал WL (Word Line, словная линия) является адресным, и когда он включен, данные, хранящиеся в этой 1-битной ячейке, подаются на битовую линию BL (Bit Line). Вывод BLB (Bit Line Bar, шина битовой линии) это просто инвертированное значение битовой линии, но физически это одна и та же линия. Помимо двух типов транзисторов, мы видим и знакомые нам схемы инверторов, выполненные на транзисторах M3/M1 и M2/M4.



SRAM используется для создания сверхбыстрых кэшей и регистров внутри процессоров. Такая память очень стабильна, но требует от шести до восьми транзисторов для хранения каждого бита данных. Это делает его чрезвычайно дорогим по стоимости, сложности и площади чипа по сравнению с Dynamic RAM. DRAM, в свою очередь, хранит данные в крошечном конденсаторе, а не с помощью логических вентилей. Динамическим оно называется потому, что напряжение на конденсаторе может динамически изменяться, поскольку оно не подключено напрямую к питанию или земле.

Поскольку для доступа к данным, хранящимся в конденсаторе, требуется только один транзистор на бит и конструкция схемы очень масштабируема, DRAM может быть «упакован» компактно и дешево. Одним из недостатков DRAM является то, что заряд в конденсаторе настолько мал, что его необходимо постоянно поддерживать. Именно поэтому при выключении компьютера все конденсаторы разряжаются и данные в оперативной памяти теряются.



Принципиальная схема DRAM. Address Line – адресная шина (словная линия); Bit Line – битовая шина (битовая линия); Transistor – транзистор; Storage capacitor – конденсатор; Ground – земля.

Такие производители, как Intel, AMD и Nvidia, не публикуют схем работы своих процессоров, поэтому и мы не можем предоставить точные схемы узлов современных процессоров. Однако этот простой сумматор позволяет получить достаточное представление о том, как даже самые сложные части процессора можно разбить на составляющие логические элементы, элементы памяти, и в конечном итоге – на транзисторы.

Теперь, когда мы знаем об устройстве некоторых компонентов процессора, нам нужно выяснить, как они соединяются и согласуются между собой. Все важнейшие узлы процессора подключены к тактовому сигналу (синхросигналу), который представляет собой чередование верхнего и нижнего уровня сигнала с заданным интервалом, называемым частотой. Логика внутри процессора обычно переключает значения и выполняет вычисления в момент переключения синхросигнала с низкого уровня на высокий. Синхронизируя все вместе, мы можем быть уверены, что данные всегда распределяются корректно по времени, тем самым исключая сбои в работе процессора.

Многие, наверное, слышали о так называемом «разгоне» – увеличении тактовой частоты процессора с целью повысить его производительность. Этот выигрыш в производительности достигается за счет более быстрого переключения транзисторов и внутрипроцессорной логики, чем предусмотрено производителем. Поскольку число тактов в секунду становится больше, то и операций может быть произведено больше, отчего и повышается производительность процессора. Но это справедливо лишь до определенного предела. Большинство современных процессоров работают с частотой от 3,0 до 4,5 ГГц, и за последнее десятилетие ситуация не сильно изменилась. Точно так же, как металлическая цепь не прочнее её самого слабого звена, процессор не может быть быстрее его самой медленной части. К концу каждого такта каждый из элементов процессора должен завершить свою работу. Если какой-то элемент не успевает, значит заданная частота слишком высока, и процессор не сможет работать. Разработчики называют эту самую медленную часть «критическим путем», и именно по ней производителем задаётся максимальная частота процессора. Выше определенной частоты транзисторы просто не могут переключаться достаточно быстро и начинают глючить или давать неправильные выходные сигналы.

Мы можем ускорить переключение транзисторов, повысив напряжение питания процессора, но это тоже срабатывает до определённого предела. Если подать слишком большое напряжение, то мы рискуем сжечь процессор. При увеличении частоты или повышении напряжения процессора, усиливаются его нагрев и потребляемая мощность. Это происходит потому, что мощность процессора прямо пропорциональна частоте и пропорциональна квадрату напряжения. Чтобы определить энергопотребление процессора, мы рассматриваем каждый транзистор как маленький конденсатор, который нужно заряжать или разряжать при изменении его значения.

Подача питания — настолько важная часть процессора, что в некоторых случаях до половины физических контактов на чипе может использоваться только для питания или заземления. Некоторые чипы при полной нагрузке могут потреблять больше 150 ампер, и весь этот ток должен крайне аккуратно управляться. Чтобы представить такое количество энергии, заметим: центральный процессор производит больше тепла на единицу площади, чем ядерный реактор.

Тактовый сигнал в современных процессорах отнимает примерно 30-40% от его общей мощности, потому что он очень сложен и должен управлять множеством различных устройств. Для сохранения энергии большинство процессоров с низким потреблением отключают части чипа во время их бездействия. Это реализуется отключением тактового сигнала (Clock Gating) или отключением питания (Power Gating).

Тактовые сигналы имеют ещё одну сложность при разработке процессора: так как их частоты постоянно растут, на их пути начинают вставать законы физики. Хоть скорость света и чрезвычайно высока, она недостаточно высока для высокопроизводительных процессоров. Если подключить тактовый сигнал к одному из концов чипа, то ко времени, когда сигнал достигнет другого конца, он уже будет значительно рассинхронизован. Чтобы синхронизировать все части чипа, тактовый сигнал распределяется при помощи так называемого H-дерева (H-Tree). Это структура, обеспечивающая равноудаленность всех конечных точек от центра.



Может показаться, что проектирование каждого отдельного транзистора, тактового сигнала и контакта питания в чипе – чрезвычайно монотонная и сложная задача, и это в самом деле так. Даже несмотря на то, что в таких компаниях, как Intel, Qualcomm и AMD работают тысячи инженеров, они не смогли бы вручную спроектировать каждый аспект чипа. Для их проектирования они используют различные специальные инструменты, помогающие создавать необходимые конструкции и схемы к ним. Такие инструменты обычно получают высокоуровневое описание того, что должен делать компонент, и определяют наилучшую аппаратную конфигурацию, удовлетворяющую этим требованиям. Зародилось технологическое направление под названием "Синтез высокого уровня" (High Level Synthesis), которое позволяет разработчикам задавать в коде желаемую функциональность, после чего компьютеры определяют, как оптимально достичь её в оборудовании.

Точно так же, как вы можете описывать компьютерные программы с помощью кода, проектировщики могут описывать кодом аппаратные устройства. Такие языки, как Verilog и VHDL позволяют разработчикам оборудования выражать функциональность любой создаваемой ими электрической схемы. После успешного выполнения симуляций и верификации таких проектов их можно материализовать в конкретные транзисторы, из которых будет состоять электрическая схема. Хоть этап верификации и не кажется столь же увлекательным, как проектирование нового кэша или ядра, он значительно важнее их. На каждого нанимаемого компанией инженера-проектировщика может приходиться пять или более инженеров по верификации.

Непросто осмыслить то, что в одном чипе может быть несколько миллиардов транзисторов и понять, что все они делают. Если разбить чип на его отдельные внутренние компоненты, становится немного легче. Из транзисторов составляются логические вентили, логические вентили соединяются в функциональные модули, выполняющие определённую задачу, а эти функциональные модули собираются вместе, образуя архитектуру компьютера, о которой мы говорили в первой части серии.

Бо́льшая часть работ по проектированию автоматизирована, но изложенное выше позволяет нам осознать, насколько сложен только что купленный нами новый процессор.

Эта вторая часть нашей серии посвящена процессу проектирования процессора. Мы рассмотрели транзисторы, логические элементы (они же вентили, гейты), подачу питания и синхронизирующих сигналов, синтез конструкции и верификацию. В третьей части мы узнаем, что требуется для физического производства чипа. Все компании любят хвастаться тем, насколько современен их техпроцесс (Intel 10 нм, Apple и AMD 7 нм, и т.д.), но что же на самом деле означают эти числа? Об этом мы расскажем в следующей части.

Читайте также: