Row of chips оперативная память что это

Обновлено: 06.07.2024

Оперативная память – это неотъемлемая часть компьютера любой мощности и назначения. Она отвечает за временное хранение машинных кодов, с которыми в конкретный период времени работает центральный процессор. Также в массивах оперативной памяти хранятся исходные данные для выполнения процессором задач, обработанные фрагменты и промежуточные результаты.

Оперативная память относится к энергозависимому виду памяти, то есть требующему постоянного питания при выполнении своих функций. При обесточивании системы вся информация на плате оперативной памяти обнуляется.

Каждый пользователь выбирает оперативную память по ряду известных показателей:

Объем – массив для хранения данных. Чем он больше, тем выше производительность и скорость работы компьютера.

Поколение , или тип памяти – это техническое решение, отвечающее за скорость передачи информации. На данный момент существует 4 типа оперативной памяти от DDR до DDR4 , последняя является самой скоростной из имеющихся в свободном доступе. Но буквально на днях были представлены первые опытные образцы новых модулей памяти поколения DDR5. Появление таких плат в продаже планируется уже в 2022-2023 годах .

Тайминги – стандартные задержки в функциональных циклах оперативной памяти, которые существенно влияют на скорость предоставления данных для вычисления центральному процессору.

И если с этими характеристиками все более или менее понятно, то такое понятие, как ранг оперативной памяти часто вызывает затруднение даже у довольно опытных пользователей.

В сети бытует мнение, что ранг памяти – это архитектура распайки чипов памяти на плате. Якобы у одноранговой памяти микросхемы расположены с одной стороны, а у двухранговой – с обеих, поэтому она лучше и быстрее. Но такое определение является ошибочным, к тому же не объясняет наличия четырехранговой и восьмиранговой памяти.

На самом деле рангом называется область микросхемы шириной в 64 бита, представляющая собой отдельный логический модуль, образованный определенным количеством чипов памяти. Соответственно, если логический модуль один – то и память именуется одноранговой, если два – двухранговой и так далее.

При этом логические модули используют один физический канал для передачи информации.

Каждый процессор способен поддерживать определенное количество потоков информации от оперативной памяти. То есть, если он рассчитан на 4 ранга, то можно установить в систему 4 одноранговые платы оперативной памяти, две платы на 2 ранга или одну на четыре. Все эти конфигурации взаимозаменяемы, но превышать норматив не следует. Система, укомплектованная в разрез с этими требованиями будет периодически выдавать ошибки и в отличие от ожиданий демонстрировать низкую производительность.

Узнать ранг оперативной памяти можно по маркировке на текстолите платы или наклейке. При этом единого стандарта обозначения не существует, и каждый производитель маркирует оперативную память по своим правилам.

Модули оперативной памяти Crucial маркируются цифрами и буквами. Для примера: 2Rx8 - двухранговая память, а маркировка 4Rx16 соответствует четырем и восьми рангам.

Оперативная память Kingston содержит буквенное обозначение рангов: S (Single) — один ранг, D (Dual) — двухранговая, Q (Quadro) — четыре ранга памяти.

Из вышесказанного можно сделать вывод о том, что ранги оперативной памяти отвечают за скорость передачи данных. А, следовательно, влияют на общую производительность системы.

На практике прирост производительности составляет порядка 5 – 10 % на каждый ранг. Но для реализации этого потенциала оперативной памяти потребуются соответствующие компаньоны – производительный процессор и мощная системная плата .

При этом интересной особенностью можно считать разгонный потенциал. Одноранговая память разгоняется эффективнее и функционирует в таком состоянии намного стабильнее, чем другие виды памяти.

Чем отличается серверная оперативная память?

Наибольшее значение ранг памяти имеет при сборке серверной платформы. Это объясняется огромными объемами информации, которыми в непрерывном режиме оперируют серверы. Поэтому, помимо остальных характеристик он должен быть укомплектован не менее чем 4 рангами оперативной памяти на один процессор.

И сами ранги серверной оперативной памяти отличаются от пользовательской. Это связано с технологией исправления (коррекции) ошибок ЕСС . Ранги такой памяти отличаются наличием дополнительных 8 битов и 1 чипа памяти, который делает модуль визуально не симметричным . Каждый логический модуль серверной памяти обладает потоком данных шириной в 72 бита. Технология исправления ошибок необходима для стабильной и бесперебойной работы оперативной памяти, потому как даже минутная задержка может принести большие убытки владельцам и арендаторам сервера.

Регистровая и LR-память отличается наличием дополнительного чипа – буфера, поэтому она часто называется регистровой или буферизированной. Это чип позволяет буферизировать не только команды, как контроллер в пользовательской плате, но передавать данные целыми пакетами.

Чип-буфер выделяет большое количество тепловой энергии. А значит система требует усиленного внимания к охлаждению.

Главное правило при комплектации сервера – не перемешивать ECC, Reg и LR-память . Подобная комплектации будет давать регулярные сбои, а чаще всего операционная система даже не сможет запуститься.

В коротком видео компания Micron наглядно показывает, как в новом типе памяти DDR5 будет более чем в 2 раза эффективная пропускная способность

SDRAM: Определение

Микросхемы SDRAM: Физическая организация и принцип работы

Важно заметить, что с динамической матрицей памяти связан особый буфер статической природы, именуемый «усилителем уровня» (SenseAmp), размер которого равен размеру одной строки, необходимый для осуществления операций чтения и регенерации данных, содержащихся в ячейках памяти. Поскольку последние физически представляют собой конденсаторы, разряжающиеся при совершении каждой операции чтения, усилитель уровня обязан восстановить данные, хранящиеся в ячейке, после завершения цикла доступа (более подробно участие усилителя уровня в цикле чтения данных из микросхемы памяти рассмотрено ниже).

Кроме того, поскольку конденсаторы со временем теряют свой заряд (независимо от операций чтения), для предотвращения потери данных необходимо периодически обновлять содержимое ячеек. В современных типах памяти, которые поддерживают режимы автоматической регенерации (в «пробужденном» состоянии) и саморегенерации (в «спящем» состоянии), обычно это является задачей внутреннего контроллера регенерации, расположенного непосредственно в микросхеме памяти.

Схема обращения к ячейке памяти в самом общем случае может быть представлена следующим образом:

В современных микросхемах SDRAM схема обращения к ячейкам памяти выглядит аналогично. Далее, в связи с обсуждением задержек при доступе в память (таймингов памяти), мы рассмотрим ее более подробно.

Микросхемы SDRAM: Логическая организация

Модули SDRAM: Организация

Модули памяти: Микросхема SPD

Тайминги памяти

Схема доступа к данным микросхемы SDRAM

1. Активизация строки

Повторная активизация какой-либо другой строки того же банка не может быть осуществлена до тех пор, пока предыдущая строка этого банка остается открытой (т.к. усилитель уровня, содержащий буфер данных размером в одну строку банка и описанный в разделе «Микросхемы SDRAM: Физическая организация и принцип работы», является общим для всех строк данного банка микросхемы SDRAM). Таким образом, минимальный промежуток времени между активизацией двух различных строк одного и того же банка определяется минимальным временем цикла строки (Row Cycle Time, tRC).

2. Чтение/запись данных

Возвращаясь к чтению данных, заметим, что существует две разновидности команды чтения. Первая из них является «обычным» чтением (READ), вторая называется «чтением с автоматической подзарядкой» (Read with Auto-Precharge, «RD+AP»). Последняя отличается тем, что после завершения пакетной передачи данных по шине данных микросхемы автоматически будет подана команда подзарядки строки (PRECHARGE), тогда как в первом случае выбранная строка микросхемы памяти останется «открытой» для осуществления дальнейших операций.

3. Подзарядка строки

Соотношения между таймингами

В заключение этой части, посвященной задержкам при доступе к данным, рассмотрим основные соотношения между важнейшими параметрами таймингов на примере более простых операций чтения данных. Как мы рассмотрели выше, в самом простейшем и самом общем случае — для пакетного считывания заданного количества данных (2, 4 или 8 элементов) необходимо осуществить следующие операции:

1) активизировать строку в банке памяти с помощью команды ACTIVATE;

2) подать команду чтения данных READ;

3) считать данные, поступающие на внешнюю шину данных микросхемы;

4) закрыть строку с помощью команды подзарядки строки PRECHARGE (как вариант, это делается автоматически, если на втором шаге использовать команду «RD+AP»).

Наконец, промежуток времени между четвертой операцией и последующим повтором первой операции цикла составляет «время подзарядки строки» (tRP).

В то же время, минимальному времени активности строки (от подачи команды ACTIVATE до подачи команды PRECHARGE, tRAS), по его определению, как раз отвечает промежуток времени между началом первой и началом четвертой операции. Отсюда вытекает первое важное соотношение между таймингами памяти:

Как узнать, сколько оперативной памяти поддерживает компьютер или ноутбук

Важное замечание : друзья, пожалуйста, не забывайте, что если у вас процессор нового поколения Intel Core i3, Intel Core i5, Intel Core i7 или из новых серий AMD, то контроллер оперативной памяти у вас находится не на северном мосту , а в самом процессоре. И модули оперативной памяти управляются процессором, а не материнской платой. Поэтому максимальный объём оперативной памяти также нужно смотреть в описании вашего процессора или на его официальном сайте.

Официальные сайты материнских плат, процессоров и ноутбуков

Возьмём для примера материнскую плату ПК Asus P8Z77-V Pro с установленным процессором Intel Core i7-3770. Если перейти на официальный сайт производителя Asus, на страничку этой материнки, то мы увидим необходимую нам информацию о максимальном объёме оперативки (32 Гб).


На официальном сайте процессора видим аналогичный показатель.



Есть у нас и другое устройство - ноутбук HP Envy 17. Но на его страничке на официальном сайте не найти информации о максимальном объёме оперативной памяти. Значит, нужно обращаться к программе AIDA64.

Программа AIDA64

Программа AIDA64 является одним из самых мощных инструментов для диагностики компьютера. Она платная, но имеет пробный период 30 дней. Официальный сайт:

AIDA64 всё расскажет об установленной на ПК или ноутбуке оперативной памяти: объём, тип (SIMM, DIMM, DDR, DDR2, DDR3), частоту, тайминги и др.

Запускаем программу, выбираем вкладку «Системная плата».




Открываются свойства северного моста компьютера. В третьей строчке будет указан тип поддерживаемой памяти, а в четвёртой - то, что именно вам нужно - максимальный объём памяти, которую можно установить в ПК или ноутбук.

Ещё ниже будет указано, сколько оперативной памяти установлено на устройстве сейчас.


Если у вас в свойствах северного моста нет информации о максимальном объёме оперативной памяти, ищите его в другом месте: на панели слева открываете «Компьютер», потом - «DMI». Переходите на правую панель, открываете «Массивы памяти - Системная память». В блоке ниже смотрите поддержку максимального объёма оперативной памяти.


Если с помощью AIDA64 вы всё же не сможете выяснить, сколько оперативной памяти поддерживает ваш ноутбук, тогда напишите в техподдержку его производителя.

И ещё: друзья, если вы собираетесь самостоятельно делать апгрейд компьютера, перед покупкой дополнительной оперативной памяти уточните всё в техподдержке вашей материнской платы или ноутбука. Или заказывайте память в официальных сервисных центрах производителей устройств. И ещё: дополнительная оперативная память - не панацея от тормозов. Более чем 8 Гб её нужно устанавливать, чётко понимая зачем - в расчёте на использование какими-то программами или играми. Если вы хотите, чтобы ваш ПК или ноутбук работал быстрее в 10 раз, установите вместо обычного жёсткого диска твердотельный накопитель SSD.

Тайминги оперативной памяти: разбираемся, какие значения лучше

Что означают эти непонятные цифры на оперативной памяти для ПК? Ведь тайминги напрямую влияют на ее быстродействие, но их величина — это вовсе не объем и не скорость. Рассказываем понятным языком и объясняем, какие параметры лучше.


При выборе оперативной памяти для ПК многие пользователи сталкиваются с вопросом изучения характеристик чипов, в том числе рабочих частот и таймингов. Но если с первыми все понятно — чем они выше, тем быстрее память, то со вторыми не все так просто. Мы расскажем, для чего нужен этот параметр и как выбрать планку с оптимальными значениями таймингов.

Что влияет на скоростные параметры ОЗУ

От скоростных показателей оперативной памяти зависит как быстро будет осуществляться обмен данными между процессором и жестким или твердотельным диском и системой. Чем выше частота работы чипов, тем больше операций чтения/записи она может выполнить в единицу времени. Конечно, от объема оперативной памяти также зависит общее быстродействие ПК, но лишь в определенных программах.

Это может быть интересно:

Характеристики памяти

Тайминги оперативной памяти: разбираемся, какие значения лучше

Возьмем конкретный пример: планка оперативной памяти DDR3 1600 RAM имеет в обозначениях еще и такие характеристики, как PC3 12800, а у модуля DDR4 2400 RAM указано PC4 19200. Что это означает? Первая цифра указывает на частоту работы памяти в МГц, то вторая связана с битами:

1 байт = 8 бит

Из этого можно вычислить, что DDR3 с частотой 1600 МГц сможет обработать 12800 МБ/сек. Аналогично этому DDR4 2400 сможет пропустить через себя данные со скоростью 19200 МБ/сек. Таким образом, со скоростью обработки данных разобрались.

Эта задержка характеризует, какое количество тактовых импульсов необходимо для считывания данных из ячеек памяти для 4-х таймингов. Самая важная из четырех цифр — первая, и на этикетке может быть написан только она.

Это может быть интересно:

Поэтому в этих характеристиках действует обратный принцип: чем меньше числа, тем выше скорость. А меньшая задержка обеспечит возможность быстрее считать или записать данные в ячейку памяти, а затем достигнуть процессора для обработки.

Тайминги замеряют период ожидания (CL, CAS Latency, где CAS — Acess Strobe) чипа памяти, пока он обрабатывает текущий процесс. Т.е. это время между получением команды на чтение и ее выполнением.

Со следующими двумя цифрами все несколько сложнее. Вторая цифра в строке таймингов (RAS-CAS) является ничем иным, как отрезком времени между получением команды «Active» и выполнением поступающей после нее команды на чтение или запись. Здесь все так же — чем меньше, тем лучше.

Третья цифра, RAS Precharge — время, которое проходит между завершением обработки одной строки и переходом к другой.

Последняя цифра демонстрирует параметр памяти Row Active. Он определяет задержку, в течение которой активна одна строка в ячейке.

Какие тайминги лучше выбирать

Тайминги оперативной памяти: разбираемся, какие значения лучше

Допустим, вы покупаете для своего ноутбука комплект оперативной памяти из двух планок DDR. В этом случае тайминги будут одинаковые у обоих модулей, что определяет их стабильную работу. Что касается величины, то определяющей является первая цифра, обозначаемая, как CL-9. А значения 9-9-9-24 можно охарактеризовать, как средние по быстродействию.

Вы также можете подобрать себе оперативную память в качестве апгрейда. Здесь также нужно придерживаться правила равных таймингов и не допускать, чтобы какой-то из них, например, опережал другой почти на треть цикла.

Если же вы намерены установить на ПК самую быструю память, что следует учесть, что, например, тайминги 4-4-4-8, 5-5-5-15 и 7-7-7-21 могут обеспечить очень быстрый доступ к данным, но процессор и материнская плата не смогут этим воспользоваться. При этом важно, чтобы в материнской плате была возможность вручную установить тайминги для ОЗУ.

Как узнать тайминги оперативной памяти

Тайминги оперативной памяти: разбираемся, какие значения лучше
Как посчитать тайминг самому

Для вычисления таймингов самостоятельно можно использовать довольно простую формулу:

Время задержки (сек) = 1 / Частота передачи (Гц)

Тайминги оперативной памяти: разбираемся, какие значения лучше

Таким образом, из скриншота с CPU-Z можно высчитать, что модуль DDR3, работающий с частотой 400 МГц (половина декларируемого производителем значения, т.е. 800 МГц) будет выдавать примерно:

1 / 400 000 000 = 2,5 нсек (наносекунд)

периода полного цикла (время такта). А теперь считаем задержку для обоих вариантов, представленных на рисунках. При таймингах CL-11 модуль будет выдавать задержки периодом 2,5 х 11 = 27,5 нсек. В CPU-Z это значение показано как 28. Как видно из формулы, чем ниже каждый из указываемых параметров, тем быстрее будет работать ваша оперативная память.

Как вручную задать тайминги в BIOS

Такая возможность есть не в любой материнской плате — лишь в оверклокерских модификациях. Вы можете попробовать выставить тайминги вручную из предлагаемых системой значений, после чего нужно внимательно следить за стабильностью работы ПК под нагрузкой. Если в БИОС специальных настроек не предусмотрено, то стоит смириться с теми, которые установлены по умолчанию.

Читайте также: