С какими устройствами связывает локальная шина центральный процессор

Обновлено: 07.07.2024

Среди наиболее динамично развивающихся областей компьютерной техники стоит отметить сферу технологий передачи данных: в отличие от сферы вычислений, где наблюдается продолжительное и устойчивое развитие параллельных архитектур, в «шинной» 1 сфере, как среди внутренних, так и среди периферийных шин, наблюдается тенденция перехода от синхронных параллельных шин к высокочастотным последовательным. (Заметьте, «последовательные» – не обязательно значит «однобитные», здесь возможны и 2, и 8, и 32 бит ширины при сохранении присущей последовательным шинам пакетной передачи данных, то есть в пакете импульсов данные, адрес, CRC и другая служебная информация разделены на логическом уровне 2 ).

1 Компьютерная шина (магистраль передачи данных между отдельными функциональными блоками компьютера) – совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление), которые имеют определённые электрические характеристики и протоколы передачи информации. Шины отличаются разрядностью, способом передачи сигнала (последовательные или параллельные), пропускной способностью, количеством и типами поддерживаемых устройств, протоколом работы, назначением (внутренняя, интерфейсная).

Шины могут быть синхронными (осуществляющими передачу данных только по тактовым импульсам) и асинхронными (осуществляющими передачу данных в произвольные моменты времени), а также могут использовать мультиплексирование (передачу адреса и данных по одним и тем же линиям) и различные схемы арбитража (то есть способа совместного использования шины несколькими устройствами).

2 Основным отличием параллельных шин от последовательных является сам способ передачи данных. В параллельных шинах понятие «ширина шины» соответствует её разрядности – количеству сигнальных линий, или, другими словами, количеству одновременно передаваемых («выставляемых на шину») битов информации. Сигналом для старта и завершения цикла приёма/передачи данных служит внешний синхросигнал. В последовательных же каналах передачи используется одна сигнальная линия (возможно использование двух отдельных каналов для разделения потоков приёма-передачи). Соответственно, информационные биты здесь передаются последовательно. Данные для передачи через последовательную шину облекаются в пакеты (пакет – единица информации, передаваемая как целое между двумя устройствами), в которые, помимо собственно полезных данных, включается некоторое количество служебной информации: старт-биты, заголовки пакетов, синхросигналы, биты чётности или контрольные суммы, стоп-биты и т. п. Но в свете последних достижений в «железной» сфере компьютерной индустрии малое количество сигнальных линий и логически более сложный механизм передачи данных последовательных шин оборачиваются для них существенным преимуществом – возможностью практически безболезненного наращивания рабочих частот в таких пределах, каких никогда не достичь громоздким параллельным шинам с их высокочастотными проблемами ожидания доставки каждого бита к месту назначения. Проблема в том, что каждая линия такой шины имеет свою длину, свою паразитную ёмкость и индуктивность и, соответственно, своё время прохождения сигнала от источника к приёмнику, который вынужден выжидать дополнительное время для гарантии получения данных по всем линиям. Так, к примеру, каждый байт, передаваемый через линк шины PCIExpress, для увеличения помехозащищённости «раздувается» до 10 бит, что, однако, не мешает шине передавать до 0,25 ГБ за секунду по одной паре проводов. Да, ширина последовательной шины на самом деле является количеством одновременно задействованных отдельных последовательных каналов передачи.

Все эти нововведения и смена приоритетов преследуют в конечном итоге одну цель – повышение суммарного быстродействия системы, ибо не все существующие архитектурные решения способны эффективно масштабироваться. Несоответствие пропускной способности шин потребностям обслуживаемых ими устройств приводит к эффекту «бутылочного горлышка» и препятствует росту быстродействия даже при дальнейшем увеличении производительности вычислительных компонентов – процессора, оперативной памяти, видеосистемы и так далее.

Процессорная шина

Любой процессор архитектуры x86CPU обязательно оснащён процессорной шиной. Эта шина служит каналом связи между процессором и всеми остальными устройствами в компьютере: памятью, видеокартой, жёстким диском и так далее. Так, классическая схема организации внешнего интерфейса процессора (используемая, к примеру, компанией Intel в своих процессорах архитектуры х86) предполагает, что параллельная мультиплексированная процессорная шина, которую принято называть FSB (Front Side Bus), соединяет процессор (иногда два процессора или даже больше) и контроллер, обеспечивающий доступ к оперативной памяти и внешним устройствам. Этот контроллер обычно называют северным мостом , он входит в состав набора системной логики ( чипсета ).

Используемая Intel в настоящее время эволюция FSB – QPB , или Quad-Pumped Bus, способна передавать четыре блока данных за такт и два адреса за такт! То есть за каждый такт синхронизации шины по ней может быть передана команда либо четыре порции данных (напомним, что шина FSB–QPB имеет ширину 64 бит, то есть за такт может быть передано до 4х64=256 бит, или 32 байт данных). Итого, скажем, для частоты FSB, равной 200 МГц, эффективная частота передачи адреса для выборки данных будет эквивалентна 400 МГц (2х200 МГц), а самих данных – 800 МГц (4х200 МГц) 3 .

3 Кстати, именно результирующей «учетверённой» частотой передачи данных (как и в случае с «удвоенной» передачей DDR-шины, где данные передаются дважды за такт) хвастаются производители и продавцы, умалчивая тот факт, что для многочисленных мелких запросов, где данные в большинстве своём умещаются в одну 64-байтную порцию (и, соответственно, не используются возможности DDR или QDR/QPB), на чтение/запись важнее именно частота тактирования.

Различия реализации классической архитектуры и АМD-K8

Различия реализации классической архитектуры и АМD-K8

Ещё одним довольно заметным отличием архитектуры К8 является отказ от асинхронности, то есть обеспечение синхронной работы процессорного ядра, ОЗУ и шины HyperTransport, частоты которых привязаны к «шине» тактового генератора (НТТ), которая в этом случае является опорной. Таким образом, для процессора архитектуры К8 частоты ядра и шины HyperTransport задаются множителями по отношению к НТТ, а частота шины памяти выставляется делителем от частоты ядра процессора 4

4 Пример: для системы на базе процессора Athlon 64-3000+ (1,8 ГГц) с установленной памятью DDR-333 стандартная частота ядра (1,8 ГГц) достигается умножением на 9 частоты НТТ, равной 200 МГц, стандартная частота шины HyperTransport (1 ГГц) – умножением НТТ на 5, а частота шины памяти (166 МГц) – делением частоты ядра на 11.

В классической же схеме с шиной FSB и контроллером памяти, вынесенным в северный мост, возможна (и используется) асинхронность шин FSB и ОЗУ, а опорной частотой для процессора выступает частота тактирования 5 (а не передачи данных) шины FSB, частота же тактирования шины памяти может задаваться отдельно. Из наиболее свежих чипсетов возможностью раздельного задания частот FSB и памяти обладает NVIDIA nForce 680i SLI, что делает его отличным выбором для тонкой настройки системы (разгона).

Вы здесь: Главная Системные платы Типы, назначение и функционирование шин Шина процессора

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

  • Арифметико логическое устройство (АЛУ)
  • Страничный механизм в процессорах 386+. Механизм трансляции страниц
  • Организация разделов на диске
  • Диск Picture CD
  • White Book/Super Video CD
  • Прямой доступ к памяти, эмуляция ISA DMA (PC/PCI, DDMA)
  • Карты PCMCIA: интерфейсы PC Card, CardBus
  • Таблица дескрипторов прерываний
  • Разъемы процессоров
  • Интерфейс Slot A

Шина процессора


Общие сведения о шине процессора

Шина процессора — соединяет процессор с северным мостом или контроллером памяти MCH. Она работает на частотах 66–200 МГц и используется для передачи данных между процессором и основной системной шиной или между процессором и внешней кэш-памятью в системах на базе процессоров пятого поколения. Схема взаимодействия шин в типичном компьютере на базе процессора Pentium (Socket 7) показано на рисунке.

На этом рисунке четко видна трехуровневая архитектура, в которой на самом верхнем уровне иерархии находится шина процессора, далее следует шина PCI и за ней шина ISA. Большинство компонентов системы подключается к одной из этих трех шин.

В системах, созданных на основе процессоров Socket 7, внешняя кэш-память второго уровня установлена на системной плате и соединена с шиной процессора, которая работает на частоте системной платы (обычно от 66 до 100 МГц). Таким образом, при появлении процессоров Socket 7 с более высокой тактовой частотой рабочая частота кэш-памяти осталась равной сравнительно низкой частоте системной платы. Например, в наиболее быстродействующих системах Intel Socket 7 частота процессора равна 233 МГц, а частота шины процессора при множителе 3,5х достигает только 66 МГц. Следовательно, кэш-память второго уровня также работает на частоте 66 МГц. Возьмем, например, систему Socket 7, использующую процессоры AMD K6-2 550, работающие на частоте 550 МГц: при множителе 5,5х ч астота шины процессора равна 100 МГц. Следовательно, в этих системах частота кэш-памяти второго уровня достигает только 100 МГц.

Проблема медленной кэш-памяти второго уровня была решена в процессорах класса P6, таких как Pentium Pro, Pentium II, Celeron, Pentium III, а также AMD Athlon и Duron. В этих процессорах использовались разъемы Socket 8, Slot 1, Slot 2, Slot A, Socket A или Socket 370. Кроме того, кэш-память второго уровня была перенесена с системной платы непосредственно в процессор и соединена с ним с помощью встроенной шины. Теперь эта шина стала называться шиной переднего плана (Front-Side Bus — FSB), однако я, согласно устоявшейся традиции, продолжаю называть ее шиной процессора.

шина процессора

Включение кэш-памяти второго уровня в процессор позволило значительно повысить ее скорость. В современных процессорах кэш-память расположена непосредственно в кристалле процессора, т.е. работает с частотой процессора. В более ранних версиях кэш-память второгоуровня находилась в отдельной микросхеме, интегрированной в корпус процессора, и работала с частотой, равной 1/2, 2/5 или 1/3 частоты процессора. Однако даже в этом случае скорость интегрированной кэш-памяти была значительно выше, чем скорость внешнего кэша, ограниченного частотой системной платы Socket 7.

В системах Slot 1 кэш-память второго уровня была встроена в процессор, но работала только на его половинной частоте. Повышение частоты шины процессора с 66 до 100 МГц привело к увеличению пропускной способности до 800 Мбайт/с. Следует отметить, что в большинство систем была включена поддержка AGP. Частота стандартного интерфейса AGP равна 66 МГц (т.е. вдвое больше скорости PCI), но большинство систем поддерживают порт AGP 2x, быстродействие которого вдвое выше стандартного AGP, что приводит к увеличению пропускной способности до 533 Мбайт/с. Кроме того, в этих системах обычно использовались модули памяти PC100 SDRAM DIMM, скорость передачи данных которых равна 800 Мбайт/с.

В системах Pentium III и Celeron разъем Slot 1 уступил место гнезду Socket 370. Это было связано главным образом с тем, что более современные процессоры включают в себя встроенную кэш-память второго уровня (работающую на полной частоте ядра), а значит, исчезла потребность в дорогом корпусе, содержащем несколько микросхем. Скорость шины процессора увеличилась до 133 МГц, что повлекло за собой повышение пропускной способности до 1066 Мбайт/с. В современных системах используется уже AGP 4x со скоростью передачи данных 1066 Мбайт/с.

шина процессора

Шина процессора на основе hub-архитектуры

Обратите внимание на hub-архитектуру Intel, используемую вместо традиционной архитектуры “северный/южный мост”. В этой конструкции основное соединение между компонентами набора микросхем перенесено в выделенный hub-интерфейс со скоростью передачи данных 266 Мбайт/с (вдвое больше, чем у шины PCI), что позволило устройствам PCI использовать полную, без учета южного моста, пропускную способность шины PCI. Кроме того, микросхема Flash ROM BIOS, называемая теперь Firmware Hub, соединяется с системой через шину LPC. Как уже отмечалось, в архитектуре “северный/южный мост” для этого использовалась микросхема Super I/O. В большинстве систем для соединения микросхемы Super I/O вместо шины ISA теперь используется шина LPC. При этом hub-архитектура позволяет отказаться от использования Super I/O. Порты, поддерживаемые микросхемой Super I/O, называются традиционными (legacy), поэтому конструкция без Super I/O получила название нетрадиционной (legacy-free) системы. В такой системе устройства, использующие стандартные порты, должны быть подсоединены к компьютеру с помощью шины USB. В этих системах обычно используются два контроллера и до четырех общих портов (дополнительные порты могут быть подключены к узлам USB).

В системах, созданных на базе процессоров AMD, применена конструкция Socket A, в которой используются более быстрые по сравнению с Socket 370 процессор и шины памяти, но все еще сохраняется конструкция “северный/южный мост”. Обратите внимание на быстродействующую шину процессора, частота которой достигает 333 МГц (пропускная способность — 2664 Мбайт/с), а также на используемые модули памяти DDR SDRAM DIMM, которые поддерживают такую же пропускную способность (т.е. 2664 Мбайт/с). Также следует заметить, что большинство южных мостов включает в себя функции, свойственные микросхемам Super I/O. Эти микросхемы получили название Super South Bridge (суперъюжный мост).

Система Pentium 4 (Socket 423 или Socket 478), созданная на основе hub-архитектуры, показана на рисунке ниже. Особенностью этой конструкции является шина процессора с тактовой частотой 400/533/800 МГц и пропускной способностью соответственно 3200/4266/6400 Мбайт/с. Сегодня это самая быстродействующая шина. Также обратите внимание на двухканальные модули PC3200 (DDR400), пропускная способность которых (3200 Мбайт/с) соответствует пропускной способности шины процессора, что позволяет максимально повысить производительность системы. В более производительных системах, включающих в себя шину с пропускной способностью 6400 Мбайт/с, используются двухканальные модули DDR400 с тактовой частотой 400 МГц, благодаря чему общая пропускная способность шины памяти достигает 6400 Мбайт/с. Процессоры с частотой шины 533 МГц могут использовать парные модули памяти (PC2100/DDR266 или PC2700/DDR333) в двухканальном режиме для достижения пропускной способности шины памяти 4266 Мбайт/с. Соответствие пропускной способности шины памяти рабочим параметрам шины процессора является условием оптимальной работы.

Процессор Athlon 64, независимо от типа гнезда (Socket 754, Socket 939 или Socket 940), использует высокоскоростную архитектуру HyperTransport для взаимодействия с северным мостом или микросхемой AGP Graphics Tunnel. Первые наборы микросхем для процессоров Athlon 64 использовали версию шины HyperTransport с параметрами 16 бит/800 МГц, однако последующие модели, предназначенные для поддержки процессоров Athlon 64 и Athlon 64 FX в исполнении Socket 939, используют более быструю версию шины HyperTransport с параметрами 16 бит/1 ГГц.

Наиболее заметным отличием архитектуры Athlon 64 от всех остальных архитектур ПК является размещение контроллера памяти не в микросхеме северного моста (или микросхеме MCH/GMCH), а в самом процессоре. Процессоры Athlon 64/FX/Opteron оснащены встроенным контроллером памяти. Благодаря этому исключаются многие “узкие места”, связанные с внешним контроллером памяти, что положительно сказывается на общем быстродействии системы. Главный недостаток этого подхода состоит в том, что для добавления поддержки новых технологий, например памяти DDR2, придется изменять архитектуру процессора.

Поскольку шина процессора должна обмениваться информацией с процессором с максимально возможной скоростью, в компьютере она функционирует намного быстрее любой другой шины. Сигнальные линии (линии электрической связи), представляющие шину, предназначены для передачи данных, адресов и сигналов управления между отдельными компонентами компьютера. Большинство процессоров Pentium имеют 64-разрядную шину данных, поэтому за один цикл по шине процессора передается 64 бит данных (8 байт).

шина процессора

Тактовая частота , используемая для передачи данных по шине процессора, соответствует его внешней частоте. Это следует учитывать, поскольку в большинстве процессоров внутренняя тактовая частота, определяющая скорость работы внутренних блоков, может превышать внешнюю. Например, процессор AMD Athlon 64 3800+ работает с внутренней тактовой частотой 2,4 ГГц, однако внешняя частота составляет всего 400 МГц, в то время как процессор Pentium 4 с внутренней частотой 3,4 ГГц имеет внешнюю частоту, равную 800 МГц. В новых системах реальная частота процессора зависит от множителя шины процессора (2x, 2,5x, 3x и выше). Шина FSB, подключенная к процессору, по каждой линии данных может передавать один бит данных в течение одного или двух периодов тактовой частоты. Таким образом, в компьютерах с современными процессорами за один такт передается 64 бит.

Пропускная способность шины процессора

Для определения скорости передачи данных по шине процессора необходимо умножить разрядность шины данных (64 бит, или 8 байт, для Celeron/Pentium III/4 или Athlon/Duron/ Athlon XP/Athlon 64) на тактовую частоту шины (она равна базовой (внешней) тактовой частоте процессора).

шина процессора

Например, при использовании процессора Pentium 4 с тактовой частотой 3,6 ГГц, установленного на системной плате, частота которой равна 800 МГц, максимальная мгновенная скорость передачи данных будет достигать примерно 6400 Мбайт/с. Этот результат можно получить, используя следующую формулу:
800 МГц × 8 байт (64 бит) = 6400 Мбайт/с.

Для более медленной системы Pentium 4:
533,33 МГц × 8 байт (64 бит) = 4266 Мбайт/с;
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с.

Для системы Athlon XP (Socket A) получится следующее:
400 МГц × 8 байт (64 бит) = 3200 Мбайт/с;
333 МГц × 8 байт (64 бит) = 2667 Мбайт/с;
266,66 МГц × 8 байт (64 бит) = 2133 Мбайт/с.

Для системы Pentium III (Socket 370):
133,33 МГц × 8 байт (64 бит) = 1066 Мбайт/с;
100 МГц × 8 байт (64 бит) = 800 Мбайт/с.

Максимальную скорость передачи данных называют также пропускной способностью шины (bandwidth) процессора.

Шиной (Bus) называется вся совокупность линий (проводников на материнской плате), по которым обмениваются информацией компоненты и устройства ПК. Шины предназначены для обмена информацией между двумя и более устройствами. Шина, связывающая только два устройства, называется портом. На рис. 1 дана структура шины.

Шина имеет места для подключения внешних устройств – слоты, которые в результате становятся частью шины и могут обмениваться информацией со всеми другими подключенными к ней устройствами.

схема шины персонального компьютера cpu контроллеры памяти и контроллеры шины

Рис. 1. Структура шины

Шины в ПК различаются по своему функциональному назначению:

  • системная шина (или шина CPU) используется микросхемами Cipset для пересылки информации к CPU и обратно (см. также рис. 1);
  • шина кэш-памяти предназначена для обмена информацией между CPU и кэш-памятью (см. также рис. 1);
  • шина памяти используется для обмена информацией между оперативной памятью RAM и CPU;
  • шины ввода/вывода информации подразделяются на стандартные и локальные.

Локальная шина ввода/вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами, картами сканера и др.) и системной шиной под управлением CPU. В настоящее время в качестве локальной шины используется шина PCI. Для ускорения ввода/вывода видеоданных и повышения производительности ПК при обработке трехмерных изображений корпорацией Intel была разработана шина AGP (Accelerated Graphics Port).

Стандартная шина ввода/вывода используется для подключения к перечисленным выше шинам более медленных устройств (например, мыши, клавиатуры, модемов, старых звуковых карт). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время – шина USB.

Шина имеет собственную архитектуру, позволяющую реализовывать важнейшие ее свойства – возможность параллельного подключения практически неограниченного числа внешних устройств и обеспечение обмена информацией между ними. Архитектура любой шины имеет следующие компоненты:

  • линии для обмена данными (шина данных);
  • линии для адресации данных (шина адреса);
  • линии управления данными (шина управления);
  • контролер шины.

Контроллер шины осуществляет управление процессором обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы либо в виде совместимого набора микросхем – Chipset.

Шина данных обеспечивает обмен данными между CPU, картами расширения, установленными в слоты, и памятью RAM. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором 80286 имеют 16-разрядную шину данных, с CPU 80386 и 80486 – 32-разрядную, а компьютеры с CPU семейства Pentium – 64-разрядную шину данных.

Шина адреса служит для указания адреса к какому-либо устройству ПК, с которым CPU производит обмен данными. Каждый компонент ПК, каждый регистр ввода/вывода и ячейка RAM имеют свой адрес и входят в общее адресное пространство ПК. По шине адреса передается идентификационный код (адрес) отправителя и (или) получателя данных.

Для ускорения обмена данными используется устройство промежуточного хранения данных – оперативная памятьRAM. При этом решающую роль играет объем данных, которые могут временно храниться в ней. Объем зависит от разрядности адресной шины (числа линий) и тем самым от максимально возможного числа адресов, генерируемых процессором на адресной шине, т.е. от количества ячеек RAM, которым может быть присвоен адрес. Количество ячеек RAM не должно превышать 2 n , где n – разрядность адресной шины. В противном случае часть ячеек не будет использоваться, поскольку процессор не сможет адресоваться к ним.

В двоичной системе счисления максимально адресуемый объем памяти равен 2 n , где n – число линий шины адреса.

Процессор 8088, например, имел 20 адресных линий и мог, таким образом, адресовать память объемом 1 Мбайт (2 20 =1 048 576 байт=1024 Кбайт). В ПК с процессором 80286 разрядность адресной шины была увеличена до 24 бит, а процессоры 80486, Pentium, Pentium MMX и Pentium II имеют уже 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гбайт памяти.

Шина управления передает ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждения приема данных, аппаратного прерывания, управления и других, чтобы обеспечить передачу данных.

Основные характеристики шины

Разрядность шины определяется числом параллельных проводников, входящих в нее. Первая шина ISA для IBM PC была восьмиразрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины современных ПК, например, Pentium IV – 64-разрядные.

Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду.

При расчете пропускной способности, например шины AGP, следует учитывать режим ее работы: благодаря увеличению в два раза тактовой частоты видеопроцессора и изменению протокола передачи данных удалось повысить пропускную способность шины в два (режим 2 х ) или четыре (режим 4 х ) раза, что эквивалентно увеличению тактовой частоты шины в соответствующее число раз (до 133 и 266 МГц соответственно).

Внешние устройства к шинам подключается посредством интерфейса (Interface – сопряжение), представляющего собой совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором.

К числу таких характеристик относятся электрические и временные параметры, набор управляющих сигналов, протокол обмена данными и конструктивные особенности подключения. Обмен данными между компонентами ПК возможен, только если интерфейсы этих компоненты совместимы.

Стандарты шин ПК

Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры. Кроме того, гибкость и унификация системы достигаются за счет введения промежуточных стандартных интерфейсов, таких как интерфейсы необходимы для работы наиболее важных периферийных устройств ввода и вывода.

Системная шина предназначена для обмена информацией между CPU, памятью и другими устройствами, входящими в систему. К системным шинам относятся:

  • GTL, имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц;
  • EV6, спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.

Шины ввода/вывода совершенствуются в соответствии с развитием периферийных устройств ПК. В табл. 2 представлены характеристики некоторых шин ввода/вывода.

Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. В начале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключить дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM – к шине IEEE 1394. Однако наличие огромного парка ПК с шиной ISA будет востребована еще на протяжении некоторого времени.

Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

Таблица 2. Характеристики шин ввода/вывода

Шина VESA, или VLB, предназначена для связи CPU с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными.

Шина PCI была разработана фирмой Intel для процессора Pentium и представляет собой совершено новую шину. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных

материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

Шина AGP – высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер (3D-акселератор) с системой памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот.

Шина USB была разработана лидерами компьютерной и телекоммуникационной промышленности Compaq, DEC, IBM, Intel, Microsoft для подключения периферийных устройств вне корпуса PC. Скорость обмена информацией по шине USB составляет 12 Мбит/с или 15 Мбайт/с. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Все периферийные устройства должны быть оборудованы разъемами USB и подключаться к ПК через отдельный выносной блок, называемый USB-хабом, или концентратором, с помощью которого к ПК можно подключить до 127 периферийных устройств. Архитектура шины USB представлена на рис. 4.

Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Отличительной особенностью шины SCSI является то, что она представляет собой кабельный шлейф. С шинами PC (ISA или PCI) шина SCSI связана через хост-адаптер (Host Adapter). Каждое устройство, подключенное к шине SCSI, может инициировать обмен с другими устройством.

Шина IEEE 1394 это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между

ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбайт/с, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI.

Подключить к компьютеру через интерфейс IEEE 1394 можно практически любые устройств, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой. В настоящее время уже выпускаются адаптеры IEEE 1394 для шины PCI.

В вычислительной системе, состоящей из множества подсистем, необходим механизм для их взаимодействия. Эти подсистемы должны быстро и эффективно обмениваться данными. Например, процессор, с одной стороны, должен быть связан с памятью, с другой стороны, необходима связь процессора с устройствами ввода/вывода. Одним из простейших механизмов, позволяющих организовать взаимодействие различных подсистем, является единственная центральная шина, к которой подсоединяются все подсистемы. Доступ к такой шине разделяется между всеми подсистемами. Подобная организация имеет два основных преимущества: низкая стоимость и универсальность. Поскольку такая шина является единственным местом подсоединения для разных устройств, новые устройства могут быть легко добавлены, и одни и те же периферийные устройства можно даже применять в разных вычислительных системах, использующих однотипную шину. Стоимость такой организации получается достаточно низкой, поскольку для реализации множества путей передачи информации используется единственный набор линий шины, разделяемый множеством устройств.

Главным недостатком организации с единственной шиной является то, что шина создает узкое горло, ограничивая, возможно, максимальную пропускную способность ввода/вывода. Если весь поток ввода/вывода должен проходить через центральную шину, такое ограничение пропускной способности весьма реально. В коммерческих системах, где ввод/вывод осуществляется очень часто, а также в суперкомпьютерах, где необходимые скорости ввода/вывода очень высоки из-за высокой производительности процессора, одним из главных вопросов разработки является создание системы нескольких шин, способной удовлетворить все запросы.

Одна из причин больших трудностей, возникающих при разработке шин, заключается в том, что максимальная скорость шины главным образом лимитируется физическими факторами: длиной шины и количеством подсоединяемых устройств (и, следовательно, нагрузкой на шину). Эти физические ограничения не позволяют произвольно ускорять шины. Требования быстродействия (малой задержки) системы ввода/вывода и высокой пропускной способности являются противоречивыми. В современных крупных системах используется целый комплекс взаимосвязанных шин, каждая из которых обеспечивает упрощение взаимодействия различных подсистем, высокую пропускную способность, избыточность (для увеличения отказоустойчивости) и эффективность.

Магистраль – совокупность всех шин.

Магистрально-модульный принцип организации ЭВМ – подход к организации ЭВМ, позволяющий без конструктивных изменений материнской платы подключать (отключать) дополнительные устройства.

Магистрально-модульная организация получила широкое распространение, поскольку в этом случае все устройства используют единый подход сопряжения модулей центральных процессоров и устройств ввода/вывода с помощью стандартных шин.

Традиционно шины делятся на шины, обеспечивающие организацию связи процессора с памятью, и шины ввода/вывода. Шины ввода/вывода могут иметь большую протяженность, поддерживать подсоединение многих типов устройств и обычно следуют одному из шинных стандартов. Шины процессор-память, с другой стороны, сравнительно короткие, обычно высокоскоростные и соответствуют организации системы памяти для обеспечения максимальной пропускной способности канала память-процессор. На этапе разработки системы для шины процессор-память заранее известны все типы и параметры устройств, которые должны соединяться между собой, в то время как разработчик шины ввода/вывода должен иметь дело с устройствами, различающимися по задержке и пропускной способности.

Как уже было отмечено, с целью снижения стоимости некоторые компьютеры имеют единственную шину для памяти и устройств ввода/вывода. Такая шина часто называется системной. Персональные компьютеры, как правило, строятся на основе одной системной шины.

Необходимость сохранения баланса производительности по мере роста быстродействия микропроцессоров привела к двухуровневой организации шин в персональных компьютерах на основе локальной шины.

Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Типичными примерами локальных шин являются VL-Bus и PCI.

Разработка шины связана с реализацией ряда дополнительных возможностей. Решение о выборе той или иной возможности зависит от целевых параметров стоимости и производительности. Такими возможностями являются:

 раздельные линии адреса и данных;

 более широкие (имеющие большую разрядность) шины данных;

 режим групповых пересылок (пересылки нескольких слов)

Выбор типа синхронизации определяет, является ли шина синхронной или асинхронной. Если шина синхронная, то она включает сигналы синхронизации, которые передаются по линиям управления шины, и фиксированный протокол, определяющий расположение сигналов адреса и данных относительно сигналов синхронизации. Поскольку практически никакой дополнительной логики не требуется для того, чтобы решить, что делать в следующий момент времени, эти шины могут быть и быстрыми, и дешевыми. Однако они имеют два главных недостатка. Все на шине должно происходить с одной и той же частотой синхронизации, поэтому из-за проблемы перекоса синхросигналов синхронные шины не могут быть длинными. Обычно шины процессор-память синхронные.

Асинхронная шина, с другой стороны, не тактируется. Вместо этого обычно используется старт-стопный режим передачи и протокол «рукопожатия» (handshaking) между источником и приемником данных на шине. Эта схема позволяет гораздо проще приспособить широкое разнообразие устройств и удлинить шину без беспокойства о перекосе сигналов синхронизации и о системе синхронизации. Если может использоваться синхронная шина, то она обычно быстрее, чем асинхронная, из-за отсутствия накладных расходов на синхронизацию шины для каждой транзакции. Выбор типа шины (синхронной или асинхронной) определяет не только пропускную способность, но также непосредственно влияет на емкость системы ввода/вывода в терминах физического расстояния и количества устройств, которые могут быть подсоединены к шине. Асинхронные шины по мере изменения технологии лучше масштабируются. Шины ввода/вывода обычно асинхронные.

Обычно количество и типы устройств ввода/вывода в вычислительных системах не фиксируются, что позволяет пользователю самому подобрать необходимую конфигурацию. Шина ввода/вывода компьютера может рассматриваться как шина расширения, обеспечивающая постепенное наращивание устройств ввода/вывода. Поэтому стандарты играют огромную роль, позволяя разработчикам компьютеров и устройств ввода/вывода работать независимо. Появление стандартов определяется разными обстоятельствами.

Одной из популярных шин персональных компьютеров была системная шина IBM PC/XT, обеспечивавшая передачу 8 бит данных. Кроме того, эта шина включала 20 адресных линий, которые ограничивали адресное пространство пределом в 1 Мбайт. Для работы с внешними устройствами в этой шине были предусмотрены также 4 линии аппаратных прерываний (IRQ) и 4 линии для требования внешними устройствами прямого доступа к памяти (DMA). Для подключения плат расширения использовались специальные 62-контактные разъемы. При этом системная шина и микропроцессор синхронизировались от одного тактового генератора с частотой 4.77 МГц. Таким образом, теоретическая скорость передачи данных могла достигать немногим более 4 Мбайт/с.

Шина MCA также обеспечивает 32-разрядную передачу данных, тактируется частотой 10 МГц, имеет средства автоматического конфигурирования и арбитража запросов. В отличие от EISA она не совместима с шиной ISA и используется только в компьютерах компании IBM.

Шина VL-bus, предложенная ассоциацией VESA (Video Electronics Standard Association), предназначалась для увеличения быстродействия видеоадаптеров и контроллеров дисковых накопителей для того, чтобы они могли работать с тактовой частотой до 40 МГц. Шина VL-bus имеет 32 линии данных и позволяет подключать до трех периферийных устройств, в качестве которых наряду с видеоадаптерами и дисковыми контроллерами могут выступать и сетевые адаптеры. Максимальная скорость передачи данных по шине VL-bus может составлять около 130 Мбайт/с.

Шина PCI (Peripheral Component Interconnect) также, как и шина VL-bus, поддерживает 32-битовый канал передачи данных между процессором и периферийными устройствами, работает на тактовой частоте 33 МГц и имеет максимальную пропускную способность 120 Мбайт/с. При работе с процессорами 80486 шина PCI дает примерно те же показатели производительности, что и шина VL-bus. Однако, в отличие от последней, шина PCI является процессорно независимой (шина VL-bus подключается непосредственно к процессору 80486 и только к нему). Ee легко подключить к различным центральным процессорам. В их числе Pentium, Alpha, R4400 и PowerPC.

Основные возможности шины РСI:

 синхронный протокол обмена, предусматривающий подтверждение о приеме, что позволяет пересылать данные со скоростью, максимально возможной для приемного устройства (в отличие от ISA);

 в PC используется 32-разрядная шина РСI с частотой 33 МГц. Однако шина РСI процессорно независимая, и спецификация допускает ширину в 64 разряда и частоту 66 МГц. Это используется, например, в компьютерах компании Sun, в серверах на базе ЦП Alpha и Intel Xeon. Слот 32-разрядной шины РСI имеет 124 контакта (у 64-разрядной есть еще дополнительная секция);

 вставляемые платы автоматически конфигурируются (при старте) по стандарту Plug and Play, т.е. не надо вручную устанавливать перемычки и переключатели, чтобы избежать конфликтов с другими устройствами;

 для пользователя шина предоставляет слоты (не более пяти). Это так называемый сегмент PCI;

 спецификация PCI допускает произвольное число сегментов, образующих древовидную топологию. Для соединения сегментов используются PCI-мосты;

 есть режим Bits mastering, дающий устройству возможность брать управление шиной на себя и тем самым разгрузить ЦП;

 начиная с версии 2.2 (внедрена в 1999 г.) в шину включена линия, управляющая пробуждением компьютера от РСI-устройства, например, модема, сетевой карты.

PCI Special Interest Group в октябре 1999 г. объявила о выходе спецификации PCI-X 1.0. Спецификация представляет собой окончательный вариант преемницы PCI-шины. Основным достоинством новой шины является увеличенная до 133 МГц частота при сохранившейся обратной совместимости с PCI-картами.

Одной из популярных шин ввода-вывода является шина SCSI.

Первоначально SCSI предназначался для использования в небольших дешевых системах и поэтому был ориентирован на достижение хороших результатов при низкой стоимости. Характерной его чертой является простота, особенно в части обеспечения гибкости конфигурирования периферийных устройств без изменения организации основного процессора. Главной особенностью подсистемы SCSI является размещение в периферийном оборудовании интеллектуального контроллера.

Для достижения требуемого высокого уровня независимости от типов периферийных устройств в операционной системе основной машины, устройства SCSI представляются имеющими очень простую архитектуру. Например, геометрия дискового накопителя представляется в виде линейной последовательности одинаковых блоков, хотя в действительности любой диск имеет более сложную многомерную геометрию, содержащую поверхности, цилиндры, дорожки, характеристики плотности, таблицу дефектных блоков и множество других деталей. В этом случае само устройство или его контроллер несут ответственность за преобразование упрощенной SCSI модели в данные для реального устройства.

Начальный стандарт 1986 года, известный теперь под названием SCSI-1, определял рабочие спецификации протокола шины, набор команд и электрические параметры. Шина данных SCSI-1 использовала 50-жильный экранированный кабель, имела разрядность 8 бит, а максимальная скорость передачи составляла 5 Мбайт/сек.

В 1992 году этот стандарт был пересмотрен с целью устранения недостатков первоначальной спецификации (особенно в части синхронного режима передачи данных) и добавления новых возможностей повышения производительности, таких как «быстрый режим» (fast mode), «широкий режим» (wide mode) и помеченные очереди. Этот пересмотренный стандарт получил название SCSI-2 и в настоящее время используется большинством поставщиков вычислительных систем.

Однако поскольку в обычном 50-жильном кабеле просто не хватает жил, комитет SCSI решил расширить спецификацию вторым 66-жильным кабелем (так называемый B-кабель). B-кабель имеет дополнительные линии данных и ряд других сигнальных линий, позволяющие реализовать режим Fast-and-Wide.

В реализации режима Wide SCSI предложена также расширенная адресация, допускающая подсоединение к шине до 16 устройств (вместо стандартных восьми). Это значительно увеличивает гибкость подсистемы SCSI, правда, приводит к появлению дополнительных проблем, связанных с эффективностью ее использования.

Реализация режимов Wide-SCSI и Fast-and-Wide SCSI до 1994 года редко использовалась, поскольку эффективность их применения не была достаточно высокой. Однако широкое распространение дисковых массивов и дисковых накопителей со скоростью вращения 7200 оборотов в минуту делают эту технологию весьма актуальной.

Статьи к прочтению:


Похожие статьи:

Читайте также: