Схема блока питания bn44 00605a неисправности

Обновлено: 06.07.2024

В статье описывается схемотехника блока питания BN44-00260A, который используется в ЖК телевизорах SAMSUNG, в частности, в моделях "Samsung LN19B450/ LN22B360C5D/LN22B460B2D/ LN26B460B2D/LN32B460B2D".

У производителя, Samsung ElectroMechanics, он обозначается PSIV121C01A. Надеемся, что данный материал поможет провести диагностику этого узла, определить дефектные элементы и восстановить работоспособность блока питания и, соответственно, телевизора.

Конструктивно все элементы блока питания размещены на одной плате. Внешний вид электромонтажной платы BN44-00260A приведен на рис. 1.

Рис. 1. Внешний вид платы блока питания BN44-00260A

Рассматриваемый блок питания BN44-00260A функционально можно разделить на следующие узлы:

- корректор коэффициента мощности (ККМ или PFC - Power Factor Corrector);

- главный источник питания;

- DC/AC-преобразователь (далее - инвертор) питания люминесцентных ламп задней подсветки ЖК панели.

Рассмотрим схемотехнику этих узлов более подробно.

Корректор коэффициента мощности

ККМ служит для повышения КПД источника питания за счет уменьшения реактивной составляющей нагрузки питающей сети. Он выполняет следующие функции:

- придает потребляемому от сети току форму, близкую к синусоидальной;

- ограничивает выходную мощность источника;

- защищает сеть от короткого замыкания;

- защищает источник питания от пониженного и повышенного напряжения.

На рис. 2 приведена принципиальная электрическая схема ККМ и главного источника питания.

ККМ реализован по схеме повышающего преобразователя (Boost), в составе которого имеются дроссель (индуктор) LP801S, силовой ключ - MOSFET-транзистор QP802S и управляющий контроллер UP801S типа FAN7530 фирмы Fairchild Semiconductor Особенность микросхемы FAN7530 состоит в том, что она обеспечивает работу ККМ в режиме критической проводимости CRM (Critical Conduction Mode), т.е. на границе прерывистого и непрерывного токов через индуктор. Принцип работы ККМ иллюстрирует рис. 3. Силовой MOSFET-транзистор включается при переходе тока в индукторе через ноль (сигнал Turn On на рис. 3), а выключается сигналом Turn Off, который вырабатывается при сравнении пилообразного напряжения внутреннего генератора ИМС с напряжением усилителя сигнала ошибки, на входе которого присутствует выходное напряжение ККМ. Таким образом, время включения силового ключа фиксировано, а время выключения можно регулировать.

Рис. 3. Иллюстрация принципа работы ККМ с управляющим контроллером FAN7530

Микросхема FAN7530 обеспечивает защиту от высокого напряжения на выходе (OVP), от обрыва обратной связи, токовую защиту силового ключа (OCP) и защиту от низкого напряжения питания (UVL). При напряжении питания 12 В (выв. 8) в рабочем режиме потребляемый ток равен 1,5 мА. Выходной тотемный каскад ИМС обеспечивает ток (выв. 7) +500/-800 мА. Назначение выводов FAN7530 приведено в таблице 1.

Таблица 1. Назначение выводов микросхемы FAN7530

Инвертирующий вход усилителя сигнала ошибки. К нему подключается выход повышающего конвертора через резистивный делитель, понижающий напряжение до 2,5 В

Вывод для установки крутизны спада пилообразного напряжения (ПН) внутреннего генератора, через резистор подключается к "земле". Ток через резистор пропорционален крутизне спада ПН. Напряжение на выводе стабилизировано на уровне 2,9 В

Выход усилителя сигнала ошибки, компоненты цепи компенсации подключаются между этим выводом и "землей"

Сигнальная и силовая "земля"

Выходной сигнал драйвера, пиковые значения вытекающего и втекающего токов равны, соответственно, +500 и -800 мА

Напряжение питания (11. 21 В)

Узел на элементах UB802, UB801 служит для защиты источника в аварийных ситуациях. Микросхема UB802 типа KIA393 (аналог LM393) представляет собой сдвоенный компаратор. На прямые входы компараторов (выв. 3 и 5) через делитель RB803-RB808 подается напряжение, пропорциональное выходному напряжению ККМ, а на инверсные входы (выв. 2, 6) - опорное напряжение 2,5 В от стабилизатора UB801 (КА431, аналог LM431). Выходы компараторов (выв. 1 и 7) управляют узлом на транзисторах QB802, QB803 (аналог динистора) и узлом включения питания инвертора соответственно. Если по каким-либо причинам напряжение на выходе ККМ становится ниже номинального значения (400 В), на выходах компараторов формируется высокий потенциал, в результате выключается инвертор (см. описание ниже), открывается аналогдинистора QB802 QB803 и выключается стабилизатор 15,5 В, а значит и ККМ.

Если происходит короткое замыкание в схеме основного источника и перегорает предохранитель PM802S, ККМ также выключается из-за того, что контроллер UP801S питается от схемы основного источника.

Основной источник питания

Основной источник питания (см. принципиальную схему на рис. 2) выполнен по схеме обратноходового преобразователя. Он вырабатывает постоянные стабилизированные напряжения 13 В (на рис. 2 обозначается 13V), 5,1 В (5,1V) и дежурное напряжение 5,3 В (STB5,3V). Преобразователем управляет ШИМ контроллер UM802S типа ICE3BR0665J фирмы Infineon. Микросхема выполнена по технологии CoolMOS®-F3R и включает в себя полевой транзистор CoolMOS® и ШИМ контроллер с токовым управлением, что позволяет снизить потребление в режиме ожидания (без нагрузки) и электромагнитное излучение (ЭМИ), а также сократить число внешних элементов. Особенности этой микросхемы:

  • встроенный мощный полевой транзистор CoolMOS® на напряжение 650 В со встроенным элементом запуска (Startup Cell);
  • экономичный прерывистый режим (Active Burst Mode), обеспечивающий потребление источником 0,1 Вт без нагрузки;
  • прецизионный генератор рабочей частоты 67 кГц;
  • схемы защиты OVP (Over Voltage Protection), OLP (Over Load Protection) и TSD (Thermal Shutdown) с рестартом;
  • потребляемый рабочий ток в дежурном режиме 0,95. 1,25 мА и в рабочем режиме 5. 10 мА. Назначение выводов микросхемы ICE3BR0665J приведено в таблице 2.

Таблица 2. Назначение выводов микросхемы ICE3BR0665J (корпус SO-8)

Вывод для подключения внешнего конденсатора схемы "мягкого" запуска и презапуска

Напряжение обратной связи. Инверсный вход ШИМ компаратора. В стандартном включении сюда подключается коллектор транзистора оптрона цепи обратной связи и фильтрующий конденсатор (вторым выводом к "земле")

Вывод для подключения внешнего резистора - токового датчика силового ключа, в микросхеме этот вывод подключен к истоку CoolMOS®

Сток мощного транзистора CoolMOS®. Подключается через обмотку импульсного трансформатора к выходу ККМ

Напряжение питания схемы управления 8,5. 21 В

Архитектура микросхемы приведена на рис. 4. После запуска микросхема питается от обмотки 5-6 импульсного трансформатора ТM801S, выпрямителя DM802 CM804 и параметрического стабилизатора RM805 RM807 RM808 ZD803 ZD804. Цепь обратной связи по напряжению из элементов UM851, PC801S, контролирующая вторичное напряжение 5,1 В, формирует напряжение обратной связи на входе компаратора (выв. 2). При увеличении напряжения на управляющем выводе UM851 ток через светодиод оптрона PC801S увеличивается, что приводит к уменьшению управляющего напряжения на выв. 2 UM801S и к уменьшению рабочего цикла схемы. И наоборот, уменьшение напряжения на управляющем выводе UM851 приводит к увеличению рабочего цикла. В результате происходит групповая стабилизация вторичных напряжений 13 и 5,1 В.

Рис. 4. Архитектура микросхемы ICE3BR0665J и типовая схема включения

Компаратор схемы экономичного прерывистого режима в составе микросхемы (его вход подключен к выв. 4) контролирует напряжение обратной связи. Уровень 1,32 В на выв. 4 соответствует минимальной нагрузке источника, при этом через ключ начинает заряжаться конденсатор схемы "мягкого" запуска CM802 от внутреннего источника 4,4 В. Когда напряжение на нем достигает уровня 4,4 В, включается режим Active Burst Mode. В этом режиме потребляемый микросхемой ток уменьшается до 1,05 мА, напряжение на выв. 4 изменяется в пределах 3,4. 4 В. При превышении уровня 4 В ИМС снова переключается в рабочий режим.

Пиковое значение тока через силовой ключ CoolMOS® ограничено на заданном уровне и контролируется по выв. 4. В обычном режиме секция OCP включается при напряжении на этом выводе 0,88. 1,13 В, а в активном прерывистом режиме - при напряжении 0,22. 0,29 В.

Основные параметры встроенного транзистора CoolMOS®: VDS=650 В, ID=4,5 A, RDS(ON)=0,59. 0,66 Ом (при Tj=25°C и ID=4,5 А).

Вторичное напряжение 5,1 В поступает на выходной разъем также через ключ на N-MOSFET-транзисторе QM853 со встроенным диодом Шоттки типа STM4820 (UDS=30 В, ID=8,9 A, RDS(ON)=20 мОм (при UGS=10 В)). Ключ управляется этим же сигналом Power On/Off.

Диагностика неисправностей ККМ и основного источника питания

Если ТВ не включается и индикатор на передней панели не светится, скорее всего, это связано с неисправностью основного ИП. Для того чтобы в этом убедиться, измеряют дежурное напряжение 5,3 В на выходе источника - контакте 3 разъема CNM802. Если напряжение равно нулю, отключают ТВ от сети и проверяют омметром предохранители FS801S и FM802S.

Если перегорел только предохранитель FS801S, проводят осмотр элементов платы на наличие обгоревших корпусов, разъемов, вздутие корпусов электролитических конденсаторов. Подозрительные элементы выпаивают и проверяют омметром. Как правило, причиной перегорания этого предохранителя служат следующие элементы: варистор VX801S (INR14D751 - VRMS=460 В, VDC=615 В), элементы сетевого фильтра (RX802S, CX801S, CX802S, LX802S), диодный мост BD801S, конденсатор СP801S, MOSFET-транзистор QP802S (VDS=650 В, ID=6,5 A). Все эти элементы проверяют вначале визуально (обгорание, вздутие корпуса), а затем омметром на короткое замыкание, неисправные заменяют. Электролитические конденсаторы желательно проверить измерителем ESR (эквивалентное последовательное сопротивление) на отсутствие утечки.

Если перегорел предохранитель FM802S, проблема связана с основным источником. Как и в предыдущем случае, проводят осмотр элементов платы на наличие обгоревших корпусов, разъемов и вздутых корпусов электролитических конденсаторов во вторичных цепях. Подозрительные элементы выпаивают и проверяют омметром исправность.

Как правило, причиной перегорания FM802S служат следующие элементы: MOSFET-транзистор в составе UM801S (выв. 3 - исток, выв. 4, 5 - сток), элементы демпфера DM801, CM805, RM811. Все эти элементы проверяют вначале визуально (обгорание, вздутие корпуса), а затем омметром на короткое замыкание, неисправные заменяют. Электролитические конденсаторы желательно проверить измерителем ESR.

Если ТВ не включается, индикатор не светится, а предохранители исправны, проверяют на обрыв цепь от сетевого разъема CN801S до диодного моста (фактически, это термистор NT811S (5D13 - 5 Ом, 5 А) и обмотки LX801S/802S) и от выхода моста до выв. 1 IC101. При отсутствии обрыва в цепи вероятнее всего неисправны элементы основного источника. Подают питание на ИИП и контролируют сигнал на выв. 5 UM801S - импульсы фиксированной частоты размахом не менее 300 В.

Если импульсов нет, проверяют цепь питания в рабочем режиме (обмотку 5-6 ТМ801S, DM802, DM803, RM805-RM807, CM808, ZD803). Если импульсы на выв. 5 UM801S появляются и сразу же пропадают, проверяют вторичные цепи источника на отсутствие короткого замыкания, исправность элементов в цепи обратной связи (при обрыве в этой цепи напряжение на выв. 4 становится больше 4. 5 В). По наличию и уровню напряжения на выв. 4 можно судить о режиме работы источника (см. описание).

Для ускорения процесса диагностики источника, в первую очередь, проверяют все электролитические конденсаторы измерителем ESR и силовые диоды в первичной и вторичной цепях. Затем отключают выход источника от нагрузки - отсоединяют разъем CNM802 и подают на источник питание. Он должен работать в энергосберегающем режиме Burst Mode (см. описание) и на выходе должно присутствовать дежурное напряжение 5,3 В. Если этого не происходит, проверяют элементы в цепи обратной связи, внешние элементы UM801S и сам контроллер.

Если источник работает в режиме Active Burst Mode, подключают его к нагрузке и проверяют работоспособность в этом режиме: включение источника в рабочий режим при подаче сигнала Power On/Off, появление при этом вторичных напряжений 13 и 5,1 В.

ККМ работает только в рабочем режиме (см. описание), при этом постоянное напряжение на выходе (линия PFC_OUT) должно быть равно 400 В. Если ККМ не включается сигналом Power On/Off, выясняют причину (см.описание) и устраняют ее.

Инвертор питания CCFL-ламп подсветки

Принципиальная схема этого узла приведена на рис. 5. Он выполнен по двухкаскадной схеме: предварительный каскад выполнен по схеме несимметричного полумостового преобразователя, а выходной - по схеме симметричного полумостового преобразователя.

Каждое плечо полумоста предварительного каскада выполнено по двухкаскадной схеме: драйвере на MOSFET-транзисторе QI801 (QI802 - во втором плече) типа 2N7002 и двухтактном каскаде на комплементарных биполярных транзисторах QI802, QI803 (QI805, QI806) типов KTN2222A и KTN2207A соответственно. Основные параметры применяемых транзисторов:

- 2N7002: N-канальный D-MOS, Ptot=300 мВт, VDS=60 В, ID=180 мА, IDM-800 мА, RDS(ON)=5 Ом при ID=500 мА и VGS=10 В;

- KTN2222A/KTN2907A: NPN/PNP-проводимости, P=625 мВт, VCE=40/- 40 В, IС=600/-600 мА, fT=300/200 МГц, hFE=100. 300 (при IB-10/-10 мА), IC=150/-150 мА, (VCE=10/-10 В).

Предварительный каскад инвертора питается напряжением 13 В (13Vm). Нагрузкой полумоста служит первичная обмотка импульсного трансформатора DT801S. Трансформатор гальванически развязывает низковольтные и высоковольтные цепи преобразователя и формирует противофазные сигналы для управления выходным каскадом. Каждое плечо полумоста этого узла выполнено по двухкаскадной схеме - драйвере на NPN-транзисторе (QI810, QI811 типа KTN2907A, см. параметры выше) и выходном высоковольтном MOSFET-транзисторе (QI820, QI821, N-MOSFET, VD>500 В, ID>4 A). Выходной каскад питается напряжением 400 В от ККМ. Выход полумоста подключен к первичным обмоткам импульсных трансформаторов TI801S, TI801S, включенным последовательно, через развязывающий конденсатор CI892. Каждый трансформатор имеет по две вторичных высоковольтных обмотки, к которым подключены четыре лампы CCFL.

А что на NCP тоже нет даташита?
Возми и сравни со стандартной схемой включения.
оптрон, TL-ку проверить.

ссылка скрыта от публикации

Неисправности ТВ Прошивка ТВ Схема ТВ Справочник по ТВ Ремонт подсветки ТВ Программаторы для ТВ Аббревиатуры в ТВ Ремонт LCD панелей ТВ

Какие типовые неисправности в телевизоре?

При вопросах диагностики, определению неисправного элемента и устранению дефекта, создайте свою новую тему в форуме. В разделе уже рассмотрены все типовые неисправности ТВ связанные с изображением и функционированием:

  • не включается
  • неисправность матрицы
  • вертикальные полосы
  • горизонтальные полосы
  • нет подсветки
  • уменьшить ток подсветки
  • перезагружается
  • замена прошивки
  • не светят лампы
  • темный экран
  • неисправность материнской платы
  • проблема звука
  • не ловит каналы
  • как отключить защиту

Где скачать прошивку телевизора?

На сайт уже закачаны дампы и ПО прошивок (Firmware) - Eeprom, Flash, Nand, eMMC и USB. Они находятся в каталоге - прошивки телевизоров, либо непосредственно в темах этого раздела при запросах на конкретную модель. Часть прошивок отсортирована и размещена в отдельных каталогах:

При запросе не найденной прошивки обязательно указывайте какой тип прошивки Вам необходим, марку шасси (основная плата) и тип LCD панели (матрицы).

Где скачать схему телевизора ?

Начинающие мастера, и не только, часто ищут принципиальные схемы, схемы соединений, блоков питания, пользовательские и сервисные инструкции. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

  • Service Manual - сервисная инструкция по ремонту и настройке
  • Schematic Diagram - принципиальная электрическая схема
  • Service Bulletin - сервисный бюллетень (дополнительная информация для ремонта)
  • Part List - список запчастей (элементов) устройства

Где скачать справочник ?

Большинство справочной литературы можно скачать в каталоге "Энциклопедия ремонта", и на отдельных страницах:

Какие неисправности подсветки телевизора?

Неисправность подсветки - это частая поломка современных ЖК телевизоров, которая выявляется как простейшими, так и специализированными приборами. Практически каждый день сервисный центр принимает звонки на ремонт:

  • Нет изображения на экране
  • Пятна на панели
  • Потух экран, а звук остался
  • Нет картинки на дисплее
  • Мерцает изображение

Какой программатор использовать для ремонта ТВ?

Programmer (программатор) - это устройство для записи (считывания) информации в память микросхем или другое устройство. При смене прошивки телемастера выбирают программаторы, недостатки и достоинства которых рассмотрены в отдельных темах:

  • Postal-2,3 - универсальный программатор по протоколам I2C, SPI, MW, IСSP и UART. Подробно - Программатор Postal - сборка, настройка
  • TL866 (TL866A, TL866CS) - универсальный программатор через USB интерфейс
  • CH341A - самый дешевый (не дорогой) универсальный программатор через USB интерфейс для FLASH и EEPROM микросхем
  • RT809H - универсальный программатор EMMC-Nand, FLASH, EEPROM памяти через интерфейсы ICSP, I2C, UART, JTAG
  • Willem - с параллельным и последовательным интерфейсом, поддержка чипов EEPROM, Flash, PIC, AVR и др.
  • JTAG адаптеры - используются для программирования и для отлаживания прошивок

Какие используются сокращения в схемах и на форуме?

При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

Сокращение Краткое описание
LVDSLow-voltage differential signaling - Стандарт для передачи низковольтных дифференциальных сигналов
PanelLCD (ЖК) панель - Жидкокристаллический экран (матрица, дисплей)
T-CONTiming Controller - Плата контроллер панели (матрицы)
LEDLight Emitting Diode - Светодиод (Светоизлучающий диод)
MOSFETMetal Oxide Semiconductor Field Effect Transistor - Полевой транзистор с МОП структурой затвора
EEPROMElectrically Erasable Programmable Read-Only Memory - Электрически стираемая память
eMMCembedded Multimedia Memory Card - Встроенная мультимедийная карта памяти
LCDLiquid Crystal Display - Жидкокристаллический дисплей (экран)
SCLSerial Clock - Шина интерфейса I2C для передачи тактового сигнала
SDASerial Data - Шина интерфейса I2C для обмена данными
ICSPIn-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
IIC, I2CInter-Integrated Circuit - Двухпроводный интерфейс обмена данными между микросхемами
PCBPrinted Circuit Board - Печатная плата
PWMPulse Width Modulation - Широтно-импульсная модуляция (ШИМ)
SPISerial Peripheral Interface Protocol - Протокол последовательного периферийного интерфейса
USBUniversal Serial Bus - Универсальная последовательная шина
DMADirect Memory Access - Модуль для считывания и записи RAM без задействования процессора
ACAlternating Current - Переменный ток
DCDirect Current - Постоянный ток

Как отремонтировать (восстановить) LCD панель телевизора?

LCD Panel (ЖК панель, матрица) - сложный и дорогой компонент в телевизорах. Во многих случаях ее восстановление требует опыт и специальное оборудование. Неисправность может быть вызвана залитием жидкостью, механическим повреждением, внутренним дефектом. По теме ремонта LCD панелей рассмотены вопросы:

Поступил в ремонт телевизор с заявленной неисправностью:

При включении телевизора дежурка мигает 5 раз,

затем тухнет. Изображения нет.

Произведено вскрытие и осмотр деталей.

Для начала произведен внешний осмотр БП телевизора :

Блок питания распространенный среди моделей телевизоров UE32F50**

Диагностика блока указывает исправность блока. Все наряжения в норме. присутствуют 5v,13v, присутствует сигнал PS\ON, основные модули телевезора исправны, аппарат включается в рабочий режим, о чем свидетельствует даже индикация лэда дежурного режима на передней панели. Однако напряжение на конденсаторе C9102 в линии питания светодиодов подсветки при включении поднимается до 230V и затем медленно падает до 180v. Затем снова попытка запуска и снова падение напряжение, что свидетельствует о том. что LED драйвер SEM5027A уходит в защиту и отключает подсветку телевизора, после чего снова делает попытку запуска.

Samsung UE32F5000AK 010

Произведена разборка матрицы CY-HF320BGSV1V, обнаружено:

Подсветка состоит из 5-ти светодиодных лент по 9 светодиодов каждой ленте , светодиоды LUMENS SMD 3535 1Вт 3v. Диагностика показывает обрыв по одному светодиоду в каждой ленте.

Samsung UE32F5000AK 001

Произведена замена светодиодов аналогично статье по ремонту телевизоров ORION и LG 540 и 541 серий. Ссылка на полный комплект светодиодных лент для ремонта данной модели телевизора Samsung UE32F5000AK приведена в конце статьи.

Samsung UE32F5000AK 002

Особенности при ремонте подсветки телевизоров серии UE32F5000:

Данные модели телевизоров комплектуются двумя видами матриц CY-HF320BGSV1V и HF320BGA-B1 с разными по длине светодиодными линейками:

ВНИМАНИЕ: Линейки Lumens D2GE-320SC0-R3[12,12,27] (650 мм) не совместимы с Lumens D2GE-320SC1-R3[13,04,23] - (655 мм)
ЕСЛИ НА ЛЕНТЕ ЕСТЬ МАРКИРОВКА SHARP_FHD нужно ставить ленты 655 мм, иначе линзы не сойдуться и ленты не подойдут по креплению к корыту матраца.

при этом маркировка 2013SVS32H = D2GE-320SC0-R3

BN44-00605A доработка, уменьшение тока подсветки.

Как показывает практика ремонта с целью исключения повторных неиправностей светодиодов подсветки в обязательном случае следует уменьшить ток. В данном случае минус подсветки идет на сток полевика, его исток через резистор R9110 (3.6 Om) приходит на конденсатор C9192. (номинал резистора подписан на плате) Данный резистор и является датчиком тока в данной схеме с применением драйвера SEM5027A. Увеличив номинал данного ресистора добиваемся уменьшения тока питающего светодиоды.

Samsung UE32F5000AK 009

Для уменьшения тока до 250 mA необходимо заменить резистор R9110 на резистор номиналом 4.6 Om. Я всегда ставлю 5.6 Om еще более уменьшая ток. Возвратов, слава богу, пока еще не было. данных моделей в ремонте было около 10-ка и практически все с неисправностью подсветки, за исключением грозовых.

Здравствуйте! Сегодня у нас на ремонте блок питания телевизора SAMSUNG UE40J5100 . Модель блока питания BN44-00703A. Если честно, то блок не очень хорош в ремонте, если берёшься впервые! Но сегодня мы рассмотрим очередную "невключайку" и запустим её! Пусть работает!)))

На фото выше сам блок питания а внизу фото блока со стороны монтажа с видимыми номиналами резисторов. Конечно не совсем чётко получилось, но как есть.

В блоке питания были выбиты полевой транзистор, оборваны резисторы и пробиты шим контроллеры дежурного режима с PFC!

Ну, поехали! Прибор на проверку диодов , на всякий случай разряжаем входную "банку" и смотрим пробои полупроводников и обрывы резисторов!

Ну что, начнём с дежурки! У нас нет никаких напряжений на выходе!

Дежурка у нас собрана на шим контроллере FA5760N и двух выходных полевиках. Полевые транзисторы целы- не пробиты, а вот низкоомный резистор в обрыве!

Ну давайте по порядку!

Выпаиваем пробитый полевик который стоит в PFC чтобы он нам не мешал производить ремонт дежурки. Вот этот транзистор на фото. И пока про него забудем.

Далее меняем оборванный резистор. (0,18 Ом )

Включаем через лампочку и сморим, что там у нас появилось и появилось-ли вообще хоть что-то!? )))) Лампочка вспыхнула и плавно погасла, напряжений на выходе никаких.

Меряем напряжение на шим-ке дежурного режима.

Согласно примерной схеме - родной схемы этого блока я не нашёл - питание на ней должно быть порядка 15 вольт. А на ней еле набирается 2,8 вольта и шимка заметно и быстро нагревается! Ну здесь становится ясно , что её нужно менять! Меняем, соблюдая все правила безопасности - разряжаем входной конденсатор!

И опять включаем! И меряем напряжение на выходе блока питания - должно быть, в этой схеме, 13 вольт. У меня появилось! Ура! Пол дела сделано! Едем дальше!

В данном блоке присутствует PFC- корректор мощности. Вот тут и получилась у меня засадка , но правда не большая!

Транзистор который мы вначале выпаяли я заменил на любимый 10n60- 10 ампер 600 вольт N- канал.

Включаем нагрузку - я весь телик подключил. И что получается!? Телевизор пытается запуститься но не получается! Нет подсветки и получилось что-то наподобие циклической перезагрузки!

Что мы делаем дальше! Меряем напряжение на входном конденсатор! ВНИМАНИЕ В ПОЛНОСТЬЮ ИСПРАВНОМ БЛОКЕ НА КОНДЕНСАТОРЕ ДОЛЖНО БЫТЬ 390-400 ВОЛЬТ В РАБОЧЕМ РЕЖИМЕ.

А у меня всего 290! НЕ РАБОТАЕТ PFC! В данной схеме он собран на контроллере sem3051 такого у нас в магазинах не было! Ищем аналог и находим подходящую -FAN7530! НО В НЕКОТОРЫХ СХЕМАХ НЕ РАБОТАЛО- возможно брак был! МНЕ ПОВЕЗЛО! Но об этом чуть позже.

Вместо "родной" , запаиваю fan7530 и опять не работает! Давай искать дальше и нахожу оборванный резистор на 33 Ом в smd корпусе, как ни старнно стабилитрон не пробит и не оборван.

После его замены, телевизор успешно стартанул!

Но я на этом не успокоился , а вдруг родная шимка тоже жива, меняю их местами, ставлю все на место включаю ))) Был услышан едва заметный щелчок и появился легкий запах сгоревших деталей ))) Ну слава Богу обошлось повторно сгоревшим резистором на 33 ом и всё.

Заменил шим-ку PFC опять на fan7530 , заменил резистор и после прогона телевизор отдан клиенту!

И чуть не забыл! Если кому-то потребуется понизить ток подсветки , то есть один простой способ! На плате установлен переменный резистор! На фото ниже я его вам показываю! ПОВОРОТОМ ПРОТИВ ЧАСОВОЙ СТРЕЛКИ ТОК УМЕНЬШАЕТСЯ. Что я и сделал установив оптимальную яркость в меню и визуально - резистором!

Вот так мы отремонтили самсунг! )))

Надеюсь статья была полезной! Если так - то очень рад! Всем спасибо за внимание!

SAMSUNG UE32D5800VW

В таких случаях неисправность следует искать в первую очередь в модуле питания BN44-00460A. Необходимо замерить его вторичные выходные напряжения, а в случае их отсутствия проверить в преобразователях на предмет короткого замыкания силовые ключи (AOTF12N65L) и выпрямительные диоды.
При пробоях полупроводников во вторичных цепях любого преобразователя, как правило, он может работать в аварийном режиме короткого замыкания без выходных напряжений, а при КЗ в элементах первичной цепи чаще всего сразу обрывается сетевой предохранитель и реже токовый датчик в истоке ключа.
Пробой ключей Mos-Fet, используемых в импульсных источниках, часто бывает вызван неисправностями других элементов, например, питающих, частотозадающих, демпферных. а так же элементов Отрицательной Обратной Связи стабилизации. Микросхема ШИМ (PWM) FAN7602CMX так же может быть причиной неисправности силового ключа преобразователя и проверяется заменой.

- Изображение отсутствует, но есть звук и реакция на пульт ДУ. Либо на секунду изображение может появиться сразу после включения.

В большинстве случаев неисправность вызвана отсутствием подсветки дисплея. Причиной тому может быть обрыв в цепи светодиодов, либо проблема в стабилизации их питания.
Чтобы выявить обрыв в линейках светодиодов без разборки панели потребуется источник тока. Открыть переходы, соединённые последовательно, простым мультиметром невозможно, необходимо напряжения в несколько десятков вольт.

- Телевизор не включается, на пульт не реагирует. Индикатор моргает либо сигнализирует дежурный режим.

Ремонт или диагностика материнской платы BN41-01661B следует начать с проверки стабилизаторов и преобразователей питания, необходимых для питания микросхем и матрицы. При необходимости, следует обновить или заменить ПО (программное обеспечение). При ремонте платы MB, необходимо проверить её компоненты K4B1G1646G-BCH9, WT61P805, NTP-7411S. Неисправные элементы следует заменить. Если применяются чипы с технологией пайки BGA, проблема в её реализации обнаруживаются методом локального нагрева чипа.

Если телевизор нормально работает от внешних устройств, но не настраивается на телевизионные каналы, возможна неисправность тюнера BN40-00196A. В таких случаях в первую очередь следует убедиться в наличии питающих напряжений на соответствующих его выводах. Так же необходимо убедиться в возможности обмена данными тюнера и процессора по шине I2C. Иногда причиной неработоспособности тюнера может быть программный сбой.

Владельцам телевизора UE32D5800VW рекомендуем для ремонта обращаться только к квалифицированным специалистам с необходимым опытом работы! Попытки самостоятельного ремонта без соответствующих знаний и навыков могут привести к необратимым негативым последствиям!

Схема блока питания BN44-00460A.

Ограничение тока драйвера. BN44-00460A. Общие рекомендации

Чтобы уменьшить ток подсветки в LED-драйверах с популярным контроллером SEM5025 в блоках питания BN44-00460A, следует пропорционально увеличить общее сопротивление измерительного низкоомного резистора (датчика тока подсветки) R9120 3.6 Ohm, например до 4.3 - 4.7 Ohm.

Дополнительно по ремонту MainBoard

Внешний вид MainBoard BN41-01661B показан на рисунке ниже:

BN41-01661B

BN41-01661B может применяться в телевизорах:

SAMSUNG UE32D4000NW UE32D4000 (Panel LD320AGC-C1 (V315B5-P10)), SAMSUNG UE40D5000PN (Panel LD400BGC-C2), SAMSUNG UE40D5000PW (Panel LD400BGC-C2 DD01), SAMSUNG UE32D5800VW UE32D5800 (Panel LTJ320HN02-L), SAMSUNG UE40D5800 UE40D5800VW (Panel LTJ400HM04-L ), SAMSUNG UE37D5000PW UE37D5000 (Panel LD370BGB-C1), SAMSUNG UE46D5000PW UE46D5000 (Panel LTG460HN01-V).

Внешний вид блока питания

Основные особенности устройства SAMSUNG UE32D5800VW:

Установлена матрица (LED-панель) LTJ320HN02-L.
В управлении матрицей используется Тайминг-Контроллер (T-CON) LSJ320HN01-S.
Для питания светодиодов подсветки применён преобразователь, совмещённый с блоком питания, управляется ШИМ-контроллером SEM5025. В качестве силовых элементов LED-драйвера применяются ключи типа AOTF9N50.
Формирование необходимых питающих напряжений для всех узлов телевизора SAMSUNG UE32D5800VW осуществляет модуль питания BN44-00460A, либо его аналоги c использованием микросхем FAN7602CMX и силовых ключей типа AOTF12N65L.
MainBoard - основная плата (материнская плата) представляет собой модуль BN41-01661B, с применением микросхем K4B1G1646G-BCH9, WT61P805, NTP-7411S и других.
Тюнер BN40-00196A обеспечивает приём телевизионных программ и настройку на каналы.

Внимание мастерам!

Информация на этом сайте накапливается из записей ремонтников и участников форумов.
Будьте внимательны! Возможны опечатки или ошибки!

Читайте также: