Тестер блока питания компьютера обзор

Обновлено: 06.07.2024

При ремонте или испытании компьютерных блоков питания ATX часто возникает необходимость оценить их нагрузочные характеристики, такие как допустимые отклонения выходных напряжений, уровень пульсаций и конечно же максимальную выходную мощность. Без специального оборудования, в виде эквивалента нагрузки, осциллографа и некоторых других устройств протестировать соответствие стандарту характеристик, указанных производителем на наклейке блока питания крайне сложно. Одни создают специальные стенды, другие пользуются набором автомобильных ламп, третьи используют мощные проволочные резисторы в качестве нагрузочного эквивалента. Его сопротивление у большинства тестеров неизменно и не подбирается специально для каждого испытуемого блока, поэтому функциональность таких приборов ограничена. Мне хотелось сделать простое, но универсальное устройство, позволяющее полуавтоматически устанавливать требуемую нагрузку на шины +5V, +12V, +3,3V, одновременно измеряя соответствующие выходные напряжения и контролируя допустимый уровень их отклонений.



Таким образом был разработан и изготовлен прибор, состоящий из ступенчатого блока нагрузок, модуля управления включением этих нагрузок и платы тестера напряжений компьютерных БП (POWER SUPPLY TESTER), с которой были выпаяны разъемы и нагрузочные резисторы.


Блок нагрузок для каждого канала выходных напряжений 3,3V, 5V и 12V состоит из семи 10-ти ваттных цементных резисторов одинакового сопротивления, один из которых включен постоянно, а остальные шесть подключаются через MOSFET-транзисторы, выступающие в роли электронных ключей. Их поочерёдным открытием и закрытием управляет микросхема LM3914, которая применяется в светодиодных индикаторах с линейной шкалой. Она включена в режиме «столбик». Регулируя переменный резистор, происходит ступенчатое изменение уровня на выходах микросхемы, а значит и поочерёдное открытие или закрытие MOSFETов, которое контролируется загоревшимися светодиодами. Схема включения LM3914 выполнена так, чтобы можно было осуществлять регулировку от минимума (при котором не горит ни один светодиод и все MOSFETы закрыты, но включен один постоянный резистор), до максимума (при котором загораются все шесть светодиодов, MOSFETы открыты и все семь нагрузочных резисторов становятся подсоединенными параллельно). Для отдельной регулировки по каждому каналу использовано три таких модуля на LM3914. Слаботочные линии -5V, -12V и дежурного +5V SB нагружены постоянными маломощными сопротивлениями.

После подключения блока питания ATX к разъемам прибора и включении в сеть, должен загореться фиолетовый светодиод контроля дежурного напряжения +5В_SB. Поскольку этим напряжением питаются и микросхемы LM3914, требуемую нагрузку для каждого канала можно установить как перед запуском БП, так и во время работы, ориентируясь по светодиодным индикаторам.

Запускается тестируемый блок питания кратковременным нажатием кнопки S1, пока в цепи не появится сигнал «Power Good» и не откроется транзистор VT1, который зашунтирует кнопку, о чем будет сигнализировать загорание зелёного светодиода “PG”. Время задержки появления сигнала “PG” будет отображено на дисплее индикатора выходных напряжений. После этого должен заработать кулер и засветиться все светодиоды наличия выходных напряжений. Выключение осуществляется нажатием кнопки SB2. Ее контакты зашунтируют эмиттерный переход транзистора VT1, и он закроется, разомкнув цепь включения блока.

Какой уровень индикаторов выставить для каждого канала определяется исходя из нижеприведённых расчетов. Зная общее сопротивление резисторов при параллельном включении к каждой шине, можно рассчитать какая сила тока будет протекать через нагрузку и какой будет выходная мощность по каждому каналу выходных напряжений 3,3V, 5V и 12V.


Таким образом можно проводить тестирование с различными вариантами нагрузок, причем желательно, чтобы их общая суммарная мощность не превышала 100 процентов максимальной выходной мощности БП. Выход за пределы, в лучшем случае, может привести к срабатыванию защиты от перегрузки по току, а в худшем – к выходу из строя проверяемого блока питания. Всегда нужно обращать внимание и на допустимую комбинацию нагрузок по каждой линии, чтобы не допустить перекос напряжений, возникающий из-за неравномерного их распределения по шинам.

Повышая ток нагрузки контролируется снижение значений выходных напряжений, максимально допустимые отклонения которых не должны превышать 5% от номинала.


Для подключения испытуемого блока питания к тестеру была сделана внешняя плата, на которую припаяны 24-х контактный разъем для питания материнской платы, 4-х контактный разъем питания процессора, 6-ти контактный – для дополнительного питания видеокарты, SATA и Molex – для подключения жестких дисков и оптических приводов.


Тестер выполнен в стандартном корпусе блока питания ATX. В нижней части корпуса на посадочные места устанавливается плата нагрузок с ключами. На нагрузочные резисторы через термопасту по всей площади устанавливается радиатор размерами 130х110х45, который крепится к плате и обдувается родным кулером. Плата с микросхемами управления и светодиодами индикации включения нагрузок и состояний всех линий (+5V_Standy (дежурное), PowerGood, +3.3V, +5V, +12V, -12V, -5V (для старых БП)), а также тактовыми кнопками включения и выключения расположена в верхней части корпуса, который специально для удобств выбран с уже имеющимися для них отверстиями. Понадобилось только выпилить место под экран тестера напряжений. Цвет индикаторных светодиодов, а также светодиодов наличия напряжения на линиях, подобран в соответствии со стандартными цветами проводов блока питания.

Печатные платы выполнены в программе Sprint-Layout 6.0.



В качестве ключей подойдут любые n-канальные MOSFET-транзисторы в корпусе TO252, взятые с материнских плат.

Также необходимо не забыть вывести провода для подключения платы индикации выходных напряжений к соответствующим выводам, откуда были выпаяны разъёмы.

Выдает ли свои чистые 500 Ватт качественный блок питания известного бренда с сертификацией «80 Plus» или недорогой бюджетный блок питания с небольшим весом? Этим прибором с успехом удаётся проверить.

Описание тестера для компьютерного блока питания.Пишу первый раз, поэтому не судите строго за статью.В общем однажды надоело мне тыкаться прибором проверять напряжения, которые выдает напряжения и замыкать контакты для запуска блока питания скрепкой (пинцетом).И тогда я задумался, а как мне ускорить данный процесс. И первое что пришло мне в голову сделать диагностическую плату, которая будет показывать наличие напряжения по различным каналам с помощью светодиодов. Включать блок питания с помощью кнопки с фиксацией, а при необходимости подключать прибор к двум контактам и с помощью кнопок (обязательно без фиксации) подключать проверяемые напряжения.

По прошествии некоторого времени, я понял, что этого стало то же недостаточно. Так как некоторые блоки питания могли и не запустится при хорошей нагрузки, и мне их возвращали обратно. И вот тогда я и задумался о том, что надо еще и нагрузку для тестирования сделать.Долго соображал, как совместить плату диагностики и тестовую нагрузку. В итоге нарисовал схему с помощью программы Proteus и даже частично протестировал. Очень удобная программа, мне нравится. Еще для не сложных схем использую Sprint-Layout для рисования схем и Splan для рисования плат. Далее исходники будут доступны для скачивания.За основу взял корпус блока питания от компьютера, причем именно с двумя разъемами 220 вольт (у которого есть выход на монитор). И тут же родилась еще одна параллельная идея. Когда подключаешь неисправный блок питания то не знаешь есть ли у него короткое замыкание на входе или нет. Что бы не стрельнуло обычно его подключают через лампочку, если лампочка не светится, то смело можно подключать и без лампочки.Тут же быстренько сообразил схему с выключателем, для того что бы не отключая проверяемый блок питания можно было отключить лампочку. Естественно еще стоит дополнительный предохранитель на случай если все-таки что-то пойдет не так. В самой кнопке есть неонка которая светится красным цветом, когда лампочка замкнута выключателем. Очень информативно получилось всегда видно, когда задействована лампочка, а когда нет.

Отвлекся я немного от основной темы.Процесс совмещения контроля и нагрузки подошёл к второй стадии, подбор комплектующих. Долго определялся с радиатором для охлаждения нагрузочных резисторов, выбрал от процессора 472 сокета с максимальной площадью и установил его напротив вентилятора.

Далее подбирал из того что было, с резисторами, транзисторами и светодиодами все понятно. А вот с нагрузочными резисторами пришлось соображать. Покупать по 100 рублей за штуку не было никакого желания. Нашел у себя резисторы на 2,4 ома 5 ватт с возможностью крепления на радиатор. Откуда они у меня появились уже не помню. По схеме видно, как они подключены. Там еще есть нагрузочные резисторы на -5 и -12 вольт, их поставил для общей пользы, на них нагрузка составляет около 200-400 миллиампер.

В итоге получилась такая нагрузка: +3.3 В = 2.5 А, +5 В = 4А, +12 = 5А/11А (там стоит переключатель так же с индикацией, который при включении (загорается красная лампочка в нем) дает нагрузку 11 А. Выключатель был установлен потому что не все блоки питания могут выдать такую нагрузку, надо смотреть табличку на блоке питания какие максимальные токи он выдерживает. В общем практика показала, что такой нагрузки вполне достаточно для обычных компьютеров. Отдельно выведен выключатель с зеленой подсветкой для проверки блока питания без нагрузки. И последнее есть коннектор для измерения напряжения на выходе блока питания, к которому подключается вольтметр, и с помощью переключателей выбирается проверяемое напряжение (3.3, 5, 12 и 5 Stb). Переключатели взял со средней точкой для экономии места, а без фиксации чтобы не подключить два напряжения одновременно.

А теперь самое интересное, сборка.Вот тут-то же пришлось голову поломать. Во-первых, как это оптимально расположить и соблюсти температурный режим. Во-вторых, не запутаться при подключении.

Думаю, объяснять тут особо нечего, на фото все видно. Единственное задумался как плату со всей мелочевкой закрепить, корпус то металлический. Подсмотрел как крепят некоторые материнские платы и сделал так же. Есть такие вставки, которые двойные, у них одна защелка чуть меньше чем вторая. Так вот, просверлил в плате дырки под маленькие защелки, а в крышке корпуса побольше. И сперва с наружи вставил вставки в металлическую крышку, а затем к ним изнутри зафиксировал саму плату, как это иногда делается при фиксации материнских плат.

Когда подключал плату ко всему остальному нашёл пару ошибок в разводке платы, пришлось корректировать как саму плату, так и рисунок платы в оригинале. Поэтому данная плата теперь без ошибок.Транзисторы предназначены для управления светодиодами, так как на прямую они не работают.Плату диагностики теперь использую при ремонте блоков питания, так как она легкая и компактная, и висит на проводе не мешая. По ней определяю все ли напряжения присутствуют, а потом уже основательно проверяю с помощью нагрузки.Вроде бы ничего не забыл. Будут вопросы или предложения пишите, по возможности отвечу.

Привет! Продолжаем говорить о компьютерных железках и способах их диагностики. Те, кому постоянно приходится сталкиваться с ремонтами и настройкой компьютеров знают, что любая проблема решается гораздо быстрее если под рукой есть правильный инструмент. Поэтому выкладываю небольшой обзор китайского тестера блока питания — Power Supply Tester.

Правильное питание — залог здоровья! И это касается не только нас с вами, но и наших компьютеров. Вот и проверим как хорошо этот тестер разбирается в компьютерной диете.

Вообще, я уже выкладывал статью о том как протестировать блок питания с помощью мультиметра, но не все они достаточно компактны, чтобы постоянно носить их с собой. Да и в удобстве использования и наглядности метод с мультиметром явно проигрывает. Что касается точности измерений, то это выясним далее.


Как видно устройство достаточно компактно. Разъемы питания процессора и дополнительного питания видеокарты подписаны, для избежания некорректного подключения. Всю нужную информацию прибор выводит на дисплей, а также может сигнализировать о неполадках писком через встроенный спикер.

Для проверки достаточно подключить тестер к разъемам блока питания и включить сам блок в розетку. После этого БП стартует и на дисплее тестера отображаются показатели по разным линиям напряжения. Заметьте, что с таким тестером не требуется никаких лишних движений со скрепками.


На дисплее можно увидеть показатели основных напряжений +5V, +12V, +3.3V (нижний ряд), думаю, тут не нужно пояснений. А также:

  • -12V используется в основном для COM-портов.
  • +12V (обозначен как +12V2) берется с разъема питания процессора, или доп. питания видеокарты, если их подключать поочередно. Обратите внимание, что все разъемы подписаны — 4 pin, 6pin, 8pin.
  • +5VSB — дежурное питание. Линия должна иметь напряжение +5 вольт ±5%. Поддерживает питание устройств, которые должны быть включены постоянно, даже когда компьютер находится в спящем режиме.
  • PG — в данном случае время до получения сигнала Power_Good, после которого подается питание на процессор. В интернете нашел информацию, что значение должно быть в диапазоне 100 — 500 мс, (у всех протестированных мной БП это значение было близко к 300 мс). Если это значение будет слишком большим, то компьютер с таким блоком питания может не стартануть. Если блок питания совсем не выдает напряжение PG, то тестер начинает пищать и на дисплее моргает соответствующий показатель.

Для наглядности выложу таблицу допустимых диапазонов напряжений по линиям.


В результате проверки мультиметром всех основных показатели напряжений, расхождения составили несколько сотых вольта (простительно, так как он округляет до десятых), из чего я сделал вывод, что китайский Power Supply Tester неплох. Вот пара фотографий в качестве доказательств.


Дежурное питание (5VSB)


Чуть не забыл. Данный тестер проверяет блок питания без нагрузки, поэтому во время тестов обязательно подключайте хотя бы пару вентиляторов. Если при подключении потребителя напряжение на какой-либо из линий падает, то скорее всего высохли конденсаторы и такой блок не будет работать.

Как видно прибор достаточно информативен и прост в использовании и отлично подойдет начинающим диагностам компьютерных неполадок. Я даже убежден, что пользоваться таким тестером сможет каждый пользователь. Конечно, по детальности измерений он не сравниться с обычным мультиметром, но в большинстве случаев этого и не требуется. Его вполне достаточно чтобы определить что «пациент скорее жив, чем мертв». ? Именно эту информацию и хотят услышать от нас владельцы компьютеров.

Как итог, считаю, что Power Supply Tester полностью оправдывает свою стоимость, поэтому добавлю его в свои инструменты.

Тестер блока питания компьютера

При постоянной диагностики компьютеров, под рукой всегда должен быть мультиметр. Я на сайте Aliexpress нашел ему замену, для диагностики блоков питания. Ознакомиться с гаджетом вы можете здесь.

Тестер блока питания компьютера

Тестер блока питания не большого размера, прямоугольной формы. На передней панели расположены три светодиода с надписями +12V, +3.3V, +5V и led дисплей.

Тестер блока питания компьютера

Светодиоды обозначают наличие этого напряжения в блоке питании. На дисплее указывается более точное напряжение по всем линиям питания: +12V, +3.3V, +5V, -12V, 5VSВ и задержка. Сам прибор оснащен дополнительным спикером, который реагирует на значение задержки. Если показатели слишком высокие или низкие, то он издает характерный писк, это означает что нужно обратить внимание на содержимое БП. Допустимые значения PG 230-270, в других случаях блок будет уходить в защиту.

С левой стороны тестера, подключаются разъемы 4P, 6P, 8P и для Floppy-ка.

Тестер блока питания компьютера

Снизу — питание IDE, вверху – Sata.

Тестер блока питания компьютера

Тестер блока питания компьютера

Справа подключается самая большая колодка питания.

Тестер блока питания компьютера

Одна особенность этого прибора: нельзя просто взять и проверить отдельно какой ни будь разъем, так как дисплей не засветится. Нужно в любом случае подключать 24 pin-вую колодку питания, так как именно она запускает блок питания и сам тестер. Кстати попрошу заметить при подключении тестера, кулер блока начинает крутиться и блок находится полностью во включенном состоянии. К тому же, если какое-то из питаний на этой колодке отсутствует, то старта не будет. Этот нюанс очень облегчает диагностику, а сам прибор экономит время.

При моем первом использовании, я обнаружил, что диод +3,3V не светится. Я проверил тестер на нескольких блоках питания, но результат тот же. Пришел к выводу, что брак в самом устройстве. Или лампочка не рабочая, или не до пайка на самой плате. Китайцы не очень ответственно относятся к созданию плат. На них всегда есть плохая пайка и остатки флюса. Разобрать тестер и убедиться в своей правоте не получается, так как у меня не доходят до этого руки. Спор на сайте открывать не стал, ведь это же пустяк, а не поломка. Всем удачных покупок.

Читайте также: