Транзистор в процессоре под микроскопом как выглядит

Обновлено: 07.07.2024

Чтобы создать сверхмощный процессор, достаточно простого.

Песок. В наших компьютерах в буквальном смысле песок, вернее — составляющий его кремний. Это основной элемент, благодаря которому в компьютерах всё работает. А вот как из песка получаются компьютеры.

Что такое процессор

Процессор — это небольшой чип внутри вашего компьютера или телефона, который производит все вычисления. Об основе вычислений мы уже писали — это транзисторы, которые собраны в сумматоры и другие функциональные блоки.

Если очень упрощённо — это сложная система кранов и труб, только вместо воды по ним течёт ток. Если правильным образом соединить эти трубы и краны, ток будет течь полезным для человека образом и получатся вычисления: сначала суммы, потом из сумм можно получить более сложные математические операции, потом числами можно закодировать текст, цвет, пиксели, графику, звук, 3D, игры, нейросети и что угодно ещё.

Кремний

Почти все процессоры, которые производятся в мире, делаются на кремниевой основе. Это связано с тем, что у кремния подходящая внутренняя атомная структура, которая позволяет делать микросхемы и процессоры практически любой конфигурации.

Самый доступный источник кремния — песок. Но кремний, который получается из песка, на самом первом этапе недостаточно чистый: в нём есть 0,5% примесей. Может показаться, что чистота 99,5% — это круто, но для процессоров нужна чистота уровня 99,9999999%. Такой кремний называется электронным, и его можно получить после цепочки определённых химических реакций.

Когда цепочка заканчивается и остаётся только чистый кремний, можно начинать выращивать кристалл.

Кристалл и подложка

Кристаллы — это такие твёрдые тела, в которых атомы и молекулы вещества находятся в строгом порядке. Проще говоря, атомы в кристалле расположены предсказуемым образом в любой точке. Это позволяет точно понимать, как будет вести себя это вещество при любом воздействии на него. Именно это свойство кристаллической решётки используют на производстве процессоров.

Самые распространённые кристаллы — соль, драгоценные камни, лёд и графит в карандаше.

Большой кристалл можно получить, если кремний расплавить, а затем опустить туда заранее подготовленный маленький кристалл. Он сформирует вокруг себя новый слой кристаллической решётки, получившийся слой сделает то же самое, и в результате мы получим один большой кристалл. На производстве он весит под сотню килограмм, но при этом очень хрупкий.


Готовый кристалл кремния.

После того, как кристалл готов, его нарезают специальной пилой на диски толщиной в миллиметр. При этом диаметр такого диска получается около 30 сантиметров — на нём будет создаваться сразу несколько десятков процессоров.

Каждую такую пластинку тщательно шлифуют, чтобы поверхность получилась идеально ровной. Если будут зазубрины или шероховатости, то на следующих этапах диск забракуют.


Готовые отполированные пластины кремния.

Печатаем транзисторы

Когда диски отполированы, на них можно формировать процессоры. Процесс очень похож на то, как раньше печатали чёрно-белые фотографии: брали плёнку, светили сверху лампой, а снизу клали фотобумагу. Там, куда попадал свет, бумага становилось тёмной, а те места, которые закрыло чёрное изображение на плёнке, оставались белыми.

С транзисторами всё то же самое: на диск наносят специальный слой, который при попадании света реагирует с молекулами диска и изменяет его свойства. После такого облучения в этих местах диск начинает проводить ток чуть иначе — сильнее или слабее.

Чтобы так поменять только нужные участки, на пути света помещают фильтр — прямо как плёнку в фотопечати, — который закрывает те места, где менять ничего не надо.

Потом получившийся слой покрывают тонким слоем диэлектрика — это вещество, которое не проводит ток, типа изоленты. Это нужно, чтобы слои процессора не взаимодействовали друг с другом. Процесс повторяется несколько десятков раз. В результате получаются миллионы мельчайших транзисторов, которые теперь нужно соединить между собой.

Соединяем всё вместе

То, как соединяются между собой транзисторы в процессоре, называется процессорной архитектурой. У каждого поколения и модификации процессоров своя архитектура. Все производители держат в секрете тонкости архитектуры, потому что от этого может зависеть скорость работы или стоимость производства.

Так как транзисторов много, а связей между ними нужно сделать немало, то поступают так: наносят токопроводящий слой, ставят фильтр и закрепляют проводники в нужном месте. Потом слой диэлектрика и снова токопроводящий слой. В результате выходит бутерброд из проводников, которые друг другу не мешают, а транзисторы получают нужные соединения.


Токопроводящие дорожки крупным планом. На фото они уже в несколько слоёв и не мешают друг другу.

В чём сложность

Современные процессоры производятся на нанометровом уровне, то есть размеры элементов измеряются нанометрами, это очень мало.

Если, например, во время печати очень толстый мальчик упадёт на пол в соседнем цехе, еле заметная ударная волна прокатится по перекрытиям завода и печатная форма немного сдвинется, а напечатанные таким образом транзисторы окажутся бракованными. Пылинка, попавшая на пластину во время печати — это, считай, загубленное ядро процессора.

Поэтому на заводах, где делают процессоры, соблюдаются жёсткие стандарты чистоты, все ходят в масках и костюмах, на всех воздуховодах стоят фильтры, а сами заводы находятся на сейсмических подушках, чтобы толчки земной коры не мешали производить процессоры.

Крышка и упаковка

Когда дорожки готовы, диск отправляют на тесты. Там смотрят на то, как работает каждый процессор, как он греется и сколько ему нужно энергии, заодно проверяют на брак.

После тестов диск разрезают на готовые процессорные ядра.

Пластина со множеством одинаковых процессорных ядер. Робот вырезает ядра из готовой пластины.

После этого к ядру процессора добавляют контакты, чтобы можно было вставить его в материнскую плату, и накрывают крышкой. Чёрный или металлический прямоугольник, из которого торчат ножки, — это как раз крышка.

Крышка выполняет две функции: защищает сам кристалл от повреждений и отводит от него тепло во время работы. Дело в том, что миллионы транзисторов при работе нагреваются, и если процессор не остужать, то он перегреется и кристалл может испортиться. Чтобы такого не произошло, на крышку процессора ставят воздушные кулеры или делают водяное охлаждение.

Система на чипе

Чипы процессоров уже настолько маленькие, что под одной крышкой можно поместить какое-нибудь ещё устройство. Например, видеосистему — то, что обсчитывает картинку перед выводом на экран. Или устройство радиосвязи с антенной.

В какой-то момент на маленьком чипе площадью около 1 см 2 уже можно было поместить процессор, видео, модем и блютус, сделать всё нужное для поддержки памяти и периферии — в общем, система на чипе. Подключаете к этому хозяйству экран, нужное количество антенн, портов и кнопок, а главное — здоровенную батарею, и у вас готовый смартфон. По сути, все «мозги» вашего смартфона находятся на одном маленьком чипе, а 80% пространства за экраном занимает батарея.

Comet Lake и Zen 2 рассмотрели под микроскопом, 7-нм транзисторы AMD и 14-нм транзисторы Intel практически одинаковы

На канале техноблогера Романа «Der8auer» Хартунга (Roman Hartung) появилось интересное сравнение техпроцессов ведущих производителей процессоров. Образцами стали 14-нм транзисторы процессоров Comet Lake от Intel и 7-нм транзисторы TSMC в процессорах Zen 2 AMD. Как показало подробное рассмотрение, разницы между ними не так велика, как считают многие. Если по логике 14 от 7 отличаться должен в два раза, на практике оказалось, что это не так.

Рассмотрению подверглись 14-нм процессор Intel Core i9-10900K (техпроцесс 14+++) и 7-нм процессор AMD Ryzen 9 3950X производства TSMC. Внимания ужесточились участки процессоров с кеш-памятью второго уровня. Так как в отличии от блоков логики, они примерно одинаковы по структуре.

При рассмотрении образцов электронным микроскопом, было выявлено следущее: 14-нм транзисторы Intel имеют ширину затвора 24 нм, а 7-нм транзисторы AMD/TSMC 22 нм, при одинаковой высоте затвора. Так что можно смело сказать, что 7 нм это просто выдумка маркетологов.

Несмотря на сходство, техпроцесс TSMC оказался несколько лучше, так как на квадратный миллиметр можно разместить 90 млн транзисторов. А новый 10-нм техпроцесс Intel наоборот лучше, чем 7-нм техпроцесс TSMC, так как вмещает 100,8 млн транзисторов.

Поэтому можно сделать вывод, что Intel отстает от AMD не так сильно, как можно подумать, а 7-нм является просто маркетинговым ходом. Конечно, можно спорить относительно того, как именно проводится измерение параметров техпроцессов, но это не меняет сути. А тем временем остается ждать новые техпроцессы и обзоры на них.

ЦП - это ужасно сложная аппаратная часть. Даже самые слабенькие Atom-процессоры от Intel содержат более 40 миллионов транзисторов на куске кремния размером с ноготь.

Когда вы представляете процессор, вы, вероятно, думаете о небольшом квадрате монтажной платы с металлическим корпусом, установленным на нем. Это процессорный пакет. Корпус не снимается, но если бы вы его разберёте, то обнаружите один или несколько маленьких квадратиков кремния под ним. Это штампы, который содержит функциональные возможности процессора.

Маленький квадратик-кристалл процессора, большой-графическое ядро. Маленький квадратик-кристалл процессора, большой-графическое ядро.

В любой компьютерной системе наиболее важным компонентом является процессор, который также обычно называют микропроцессором. Компьютерный процессор обрабатывает информацию и интерфейсы со многими другими системными элементами для извлечения данных для обработки и возврата обработанных данных.

Скорость компьютерного процессора является важным фактором в определении производительности ПК, то есть как быстро выполняются инструкции.

Процессор также является одним из самых дорогих компонентов на материнской плате. Это очень тонкое и чувствительное устройство , поэтому с ним следует обращаться с осторожностью. Сам процессор представляет собой плоскую пластину из кремния, состоящую из миллионов транзисторов, протравленных на кремниевую пластину, чтобы сформировать огромную схему компьютерной логики.

Керамическая или металлическая крышка размещается над микросхемой для ее защиты и для отвода тепла к радиатору. На это защитное керамическое или металлическое покрытие обычно наносят информацию о процессоре.

Что же содержит процессор?

Процессор может содержать один или несколько блоков обработки. Каждый блок называется ядром . Ядро содержит , блок управления и регистры, Обычно компьютеры имеют два (двух), четырех (четырех) или больше ядер. Процессоры с несколькими ядрами имеют больше возможностей для запуска нескольких программ одновременно.

Вот так выглядит процессор Сore 2 Duo под микроскопом.

Однако удвоение количества ядер не будет просто удваивать скорость компьютера. Процессорные ядра должны взаимодействовать друг с другом по каналам, и это увеличивает некоторую дополнительную скорость.

Процессор AMD Phenom II X6 1090T под микроскопом. На фотографии кристалла можно различит шесть ядер с кэш-памятью на каждом, а также общий разделяемый кэш, занимающий четверть площади кристалла. Процессор AMD Phenom II X6 1090T под микроскопом. На фотографии кристалла можно различит шесть ядер с кэш-памятью на каждом, а также общий разделяемый кэш, занимающий четверть площади кристалла.

Тактовая частота.

Как правило, на компьютере установлена ​​максимальная тактовая частота, но эту скорость можно изменить в настройках BIOS компьютера, Некоторые люди увеличивают тактовую частоту процессора, чтобы попытаться заставить их работать быстрее - это называется разгон .

Кэш - это небольшой объем памяти, который является частью процессора. Он используется для временного удержания инструкций и данных, которые процессор может повторно использовать.

Процессор AMD Phenom II X6 1090T под микроскопом. На фотографии кристалла можно различит шесть ядер с кэш-памятью на каждом, а также общий разделяемый кэш, занимающий четверть площади кристалла. Процессор AMD Phenom II X6 1090T под микроскопом. На фотографии кристалла можно различит шесть ядер с кэш-памятью на каждом, а также общий разделяемый кэш, занимающий четверть площади кристалла.

Блок управления процессора автоматически проверяет кеш для инструкций перед запросом данных из ОЗУ. Извлечение инструкций и данных из ОЗУ - относительно медленный процесс. Передача их и из кэша занимает меньше времени, чем передача в оперативную память и обратно.

Чем больше кэш-памяти, тем больше данных можно хранить ближе к процессору.

Кэш бывает первого, второго и третьего уровня, соответственно L1,L2 и L3

L1 обычно является частью самого чипа CPU и является самым маленьким и самым быстрым для доступа. L2 и L3 кэши больше чем L1 . Это дополнительные кеши, построенные между ЦП и ОЗУ. Иногда L2 встроен в процессор вместе с L1. Извлечение данных из L2 и L3 занимает немного больше времени, чем из L1. Чем больше памяти L2 и L3 доступно, тем быстрее может работать компьютер.

Графическое ядро

Во многие современные процессоры встраиваются графические ядра, которые играют роль видеокарты. Даже если в компьютере нет видеокарты, процессор с графическим ядром будет выполнять её функции

Известный техноблогер Роман «Der8auer» Хартунг (Roman Hartung) решил воочию убедиться и показать всем, что между 14-нм транзисторами в процессорах Intel и 7-нм транзисторами TSMC в процессорах AMD не такая большая разница, как нам хотят внушить маркетологи. Здравый смысл говорит, что числа «14» и «7» отличаются в два раза, но на практике для техпроцессов всё обстоит по-другому.

Высекание образцов из процессоров для изучения под сканирующим электронным микроскопом (Der8auer)

Высекание образцов из процессоров для изучения под сканирующим электронным микроскопом (Der8auer)

В качестве подопытных Der8auer выбрал лучшее, что сегодня есть у компаний Intel и AMD из массовых продуктов для ПК. Образцы с транзисторами он извлёк из 14-нм процессора Intel Core i9-10900K (техпроцесс 14+++) и 7-нм процессора AMD Ryzen 9 3950X производства тайваньской компании TSMC. В качестве образцов для изучения были выбраны участки процессоров с кеш-памятью второго уровня. Транзисторы в блоках логики имеют разброс по размерам затворов и рёбер, тогда как в составе ячеек памяти они более-менее одинаковые и представляют собой регулярную (повторяющуюся) последовательность удобную для сравнения.

Сравнение шага затворов и вертикальных рёбер транзисторов в процессорах Intel и AMD (Der8auer)

Сравнение шага затворов и вертикальных рёбер транзисторов в процессорах Intel и AMD (Der8auer)

Изучение каждого из образцов процессоров под сканирующим электронным микроскопом показало, что 14-нм транзисторы Intel характеризуются шириной затвора 24 нм, а 7-нм транзисторы AMD/TSMC имеют затворы шириной 22 нм (высоты затворов также примерно одинаковые). Ни о 14, ни, тем более, о 7 нм речь, как видим, не идёт. В оправдание современных маркетологов скажем, что это расхождение началось после техпроцесса с нормами 90 нм и ускорилось после перехода от транзисторов с планарными затворами к вертикальным.

Der8auer

Тем не менее, 7-нм техпроцесс TSMC оказался немного лучше 14-нм техпроцесса Intel с возможностью размещения на одном квадратном миллиметре 90 млн транзисторов. В случае 10-нм техпроцесса Intel эта компания немного вырывается вперёд, поскольку обещает на каждый квадратный миллиметр размещать 100,8 млн транзисторов. Но это сравнение тоже имеет свои нюансы.

Так, три года назад для 10-нм техпроцесса Intel предложила не просто считать транзисторы из того или иного блока на процессоре, а выбирать их целенаправленно и использовать весовые коэффициенты. Для метрики Intel берутся транзисторы из элементарной логики. Во-первых, это транзисторы из двухвходовых элементов NAND (не путать с памятью NAND-флеш), которым присваивается весовой коэффициент 0,6. Во-вторых, используются транзисторы из триггеров с минимум 25 затворами, которым придаётся коэффициент 0,4. Из этих данных выводится плотность размещения транзисторов, которая, например, как в сравнении Der8auer, будет отличаться от реальной для транзисторов в кеш-памяти.

И снова кому-то придётся брать образцы процессоров, препарировать их и буквально вручную считать реальное число транзисторов. И так будет до тех пор, пока в индустрии не придут к согласию по поводу новой метрики, и если туда не сунут свой нос маркетологи.

Читайте также: