Транзитные модули загружаются в оперативную память только на время выполнения своих функций

Обновлено: 07.07.2024

Простейшая структуризация ОС состоит в разделении всех компонентов ОС на модули, выполняющие основные функции ОС (ядро), и модули, выполняющие вспомогательные функции ОС. Вспомогательные модули ОС оформляются либо в виде приложений (утилиты и системные обрабатывающие программы), либо в виде библиотек процедур. Вспомогательные модули загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Модули ядра постоянно находятся в оперативной памяти, то есть являются резидентными. При наличии аппаратной поддержки режимов с разными уровнями полномочий устойчивость ОС может быть повышена путем выполнения функций ядра в привилегированном режиме, а вспомогательных модулей ОС и приложений - в пользовательском. Это дает возможность защитить коды и данные ОС и приложений от несанкционированного доступа. ОС может выступать в роли арбитра в спорах приложений за ресурсы. Ядро, являясь структурным элементом ОС, в свою очередь, может быть логически разложено на следующие слои (начиная с самого нижнего): машинно-зависимые компоненты ОС; базовые механизмы ядра; менеджеры ресурсов; интерфейс системных вызовов. В многослойной системе каждый слой обслуживает вышележащий слой, выполняя для него некоторый набор функций, которые образуют межслойный интерфейс. На основе функций нижележащего слоя следующий вверх по иерархии слой строит свои функции - более сложные и более мощные, которые, в свою очередь, оказываются примитивами для создания еще более мощных функций вышележащего слоя. Многослойная организация ОС существенно упрощает разработку и модернизацию системы. Микроядерная архитектура является альтернативой классическому способу построения операционной системы, в соответствии с которым все основные функции операционной системы, составляющие многослойное ядро, выполняются в привилегированном режиме. В микроядерных ОС в привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром. Все остальные высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме. Микроядерные ОС удовлетворяют большинству требований, предъявляемых к современным ОС, обладая переносимостью, расширяемостью, надежностью и создавая хорошие предпосылки для поддержки распределенных приложений. За эти достоинства приходится платить снижением производительности, что является основным недостатком микроядерной архитектуры.

Частотный принцип реализации системных программ основан на выделении в алгоритмах и в обрабатываемых массивах ОС действий и данных по частоте их использования. Следствием применения частотного принципа в современных ОС - наличие многоуровневого планирования при организации работы ОС.

Принцип модульности отражает технологические и эксплуатационные свойства системы, предусматривая оформление функционально законченных компонентов ОС в виде отдельных модулей.

Принцип функциональной избирательности предусматривает выделение некоторого множества важных модулей, которые должны быть постоянно в “горячем” режиме для обеспечения эффективного управления вычислительным процессом. Этот выделенный набор модулей называют ядром ОС. При формировании состава ядра ОС ищут компромисс между двумя разноречивыми требованиями: в состав ядра должны войти наиболее часто используемые модули; объем памяти, занимаемый ядром ОС, должен быть как можно меньше.

Принцип генерируемости определяет такой способ исходного представления системной программы ОС, который позволяет настраивать эту системную программу исходя из конкретной конфигурации аппаратных средств и круга решаемых проблем.

Принцип функциональной избыточности предусматривает обеспечение возможности выполнения одной и той же работы различными средствами.

Принцип перемещаемости предусматривает такое построение модулей ОС, при котором результаты работы не зависят от места их расположения.

Принцип защиты информации определяет необходимость разработки мер, ограждающих программы и данные пользователя от искажений или нежелательных влияний друг от друга, а также пользователей на ОС и обратно.

Принцип независимости программ от внешних устройств заключается в том, что связь программ с конкретными внешними устройствами осуществляется не на уровне подготовки программных устройств (трансляции или компиляции исходного кода, генерации выполняемого модуля), а в период планирования операционной системой ее выполнения.

Принцип открытости и наращиваемости ОС предусматривает возможность доступа к ней для анализа пользователями, специалистами, обслуживающим персоналом, а также изменения конфигурации ОС и ее мощности без осуществления процессов генерации.

Под архитектурой операционной системы понимают структурную и функциональную организацию ОС на основе некоторой совокупности программных модулей. В состав ОС входят исполняемые и объектные модули стандартных для данной ОС форматов, программные модули специального формата (например, загрузчик ОС, драйверы ввода-вывода ), конфигурационные файлы, файлы документации, модули справочной системы и т.д.

На архитектуру ранних операционных систем обращалось мало внимания: во-первых, ни у кого не было опыта в разработке больших программных систем, а во-вторых, проблема взаимозависимости и взаимодействия модулей недооценивалась. В подобных монолитных ОС почти все процедуры могли вызывать одна другую. Такое отсутствие структуры было несовместимо с расширением операционных систем. Первая версия ОС OS/360 была создана коллективом из 5000 человек за 5 лет и содержала более 1 млн строк кода. Разработанная несколько позже операционная система Mastics содержала к 1975 году уже 20 млн строк [17]. Стало ясно, что разработка таких систем должна вестись на основе модульного программирования.

Большинство современных ОС представляют собой хорошо структурированные модульные системы, способные к развитию, расширению и переносу на новые платформы. Какой-либо единой унифицированной архитектуры ОС не существует, но известны универсальные подходы к структурированию ОС. Принципиально важными универсальными подходами к разработке архитектуры ОС являются [5, 10, 13, 17]:

  • модульная организация;
  • функциональная избыточность;
  • функциональная избирательность;
  • параметрическая универсальность;
  • концепция многоуровневой иерархической вычислительной системы, по которой ОС представляется многослойной структурой;
  • разделение модулей на две группы по функциям: ядро – модули, выполняющие основные функции ОС, и модули, выполняющие вспомогательные функции ОС;
  • разделение модулей ОС на две группы по размещению в памяти вычислительной системы: резидентные, постоянно находящиеся в оперативной памяти, и транзитные, загружаемые в оперативную память только на время выполнения своих функций;
  • реализация двух режимов работы вычислительной системы: привилегированного режима (режима ядра – Kernel mode ), или режима супервизора ( supervisor mode ), и пользовательского режима ( user mode ), или режима задачи (task mode);
  • ограничение функций ядра (а следовательно, и количества модулей ядра) до минимального количества необходимых самых важных функций.

Первые ОС разрабатывались как монолитные системы без четко выраженной структуры (рис. 1.2).

Для построения монолитной системы необходимо скомпилировать все отдельные процедуры, а затем связать их вместе в единый объектный файл с помощью компоновщика (примерами могут служить ранние версии ядра UNIX или Novell NetWare). Каждая процедура видит любую другую процедуру (в отличие от структуры, содержащей модули, в которой большая часть информации является локальной для модуля, и процедуры модуля можно вызвать только через специально определенные точки входа).

Однако даже такие монолитные системы могут быть немного структурированными. При обращении к системным вызовам, поддерживаемым ОС, параметры помещаются в строго определенные места, такие как регистры или стек , а затем выполняется специальная команда прерывания, известная как вызов ядра или вызов супервизора. Эта команда переключает машину из режима пользователя в режим ядра, называемый также режимом супервизора, и передает управление ОС. Затем ОС проверяет параметры вызова, для того чтобы определить, какой системный вызов должен быть выполнен. После этого ОС индексирует таблицу, содержащую ссылки на процедуры, и вызывает соответствующую процедуру.

Монолитная архитектура

Такая организация ОС предполагает следующую структуру [13]:

  • главная программа, которая вызывает требуемые сервисные процедуры;
  • набор сервисных процедур, реализующих системные вызовы;
  • набор утилит, обслуживающих сервисные процедуры.

В этой модели для каждого системного вызова имеется одна сервисная процедура. Утилиты выполняют функции, которые нужны нескольким сервисным процедурам. Это деление процедур на три слоя показано на рис. 1.3.

Классической считается архитектура ОС, основанная на концепции иерархической многоуровневой машины, привилегированном ядре и пользовательском режиме работы транзитных модулей. Модули ядра выполняют базовые функции ОС: управление процессами , памятью, устройствами ввода-вывода и т.п. Ядро составляет сердцевину ОС, без которой она является полностью неработоспособной и не может выполнить ни одну из своих функций. В ядре решаются внутрисистемные задачи организации вычислительного процесса, недоступные для приложения.

Структурированная архитектура

Особый класс функций ядра служит для поддержки приложений, создавая для них так называемую прикладную программную среду. Приложения могут обращаться к ядру с запросами – системными вызовами – для выполнения тех или иных действий, например, открытие и чтение файла , получение системного времени, вывода информации на дисплей и т.д. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования – API ( Application Programming Interface ).

Для обеспечения высокой скорости работы ОС модули ядра ( по крайней мере, большая их часть) являются резидентными и работают в привилегированном режиме ( Kernel mode ). Этот режим, во-первых, должен обезопасить работу самой ОС от вмешательства приложений, и, во-вторых, должен обеспечить возможность работы модулей ядра с полным набором машинных инструкций, позволяющих собственно ядру выполнять управление ресурсами компьютера, в частности, переключение процессора с задачи на задачу, управлением устройствами ввода-вывода, распределением и защитой памяти и др.

Остальные модули ОС выполняют не столь важные функции, как ядро , и являются транзитными. Например, это могут быть программы архивирования данных, дефрагментации диска , сжатия дисков, очистки дисков и т.п.

Вспомогательные модули обычно подразделяются на группы:

  • утилиты – программы, выполняющие отдельные задачи управления и сопровождения вычислительной системы;
  • системные обрабатывающие программы – текстовые и графические редакторы (Paint, Imaging в Windows 2000), компиляторы и др.;
  • программы предоставления пользователю дополнительных услуг (специальный вариант пользовательского интерфейса, калькулятор, игры, средства мультимедиа Windows 2000);
  • библиотеки процедур различного назначения, упрощения разработки приложений, например, библиотека функций ввода-вывода, библиотека математических функций и т.п.

Эти модули ОС оформляются как обычные приложения, обращаются к функциям ядра посредством системных вызовов и выполняются в пользовательском режиме ( user mode ). В этом режиме запрещается выполнение некоторых команд, которые связаны с функциями ядра ОС ( управление ресурсами , распределение и защита памяти и т.п.).

В концепции многоуровневой (многослойной) иерархической машины структура ОС также представляется рядом слоев. При такой организации каждый слой обслуживает вышележащий слой, выполняя для него некоторый набор функций, которые образуют межслойный интерфейс . На основе этих функций следующий верхний по иерархии слой строит свои функции – более сложные и более мощные и т.д. Такая организация системы существенно упрощает ее разработку, т.к. позволяет сначала "сверху вниз" определить функции слоев и межслойные интерфейсы, а при детальной реализации, двигаясь "снизу вверх", – наращивать мощность функции слоев. Кроме того, модули каждого слоя можно изменять без необходимости изменений в других слоях (но не меняя межслойных интерфейсов!).

Многослойная структура ядра ОС может быть представлена, например, вариантом, показанным на рис. 1.4.

Многослойная структура ОС

В данной схеме выделены следующие слои.

  1. Средства аппаратной поддержки ОС. Значительная часть функций ОС может выполняться аппаратными средствами [10]. Чисто программные ОС сейчас не существуют. Как правило, в современных системах всегда есть средства аппаратной поддержки ОС, которые прямо участвуют в организации вычислительных процессов. К ним относятся: система прерываний, средства поддержки привилегированного режима, средства поддержки виртуальной памяти, системный таймер , средства переключения контекстов процессов (информация о состоянии процесса в момент его приостановки), средства защиты памяти и др.
  2. Машинно-зависимые модули ОС. Этот слой образует модули, в которых отражается специфика аппаратной платформы компьютера. Назначение этого слоя – "экранирование" вышележащих слоев ОС от особенностей аппаратуры (например, Windows 2000 – это слой HAL (Hardware Abstraction Layer ), уровень аппаратных абстракций).
  3. Базовые механизмы ядра. Этот слой модулей выполняет наиболее примитивные операции ядра: программное переключение контекстов процессов , диспетчерскую прерываний, перемещение страниц между основной памятью и диском и т.п. Модули этого слоя не принимают решений о распределении ресурсов, а только обрабатывают решения, принятые модулями вышележащих уровней. Поэтому их часто называют исполнительными механизмами для модулей верхних слоев ОС.
  4. Менеджеры ресурсов. Модули этого слоя выполняют стратегические задачи по управлению ресурсами вычислительной системы. Это менеджеры (диспетчеры) процессов ввода-вывода, оперативной памяти и файловой системы. Каждый менеджер ведет учет свободных и используемых ресурсов и планирует их распределение в соответствии запросами приложений.
  5. Интерфейс системных вызовов. Это верхний слой ядра ОС, взаимодействующий с приложениями и системными утилитами , он образует прикладной программный интерфейс ОС. Функции API, обслуживающие системные вызовы, предоставляют доступ к ресурсам системы в удобной компактной форме, без указания деталей их физического расположения.

Повышение устойчивости ОС обеспечивается переходом ядра в привилегированный режим. При этом происходит некоторое замедление выполнения системных вызовов. Системный вызов привилегированного ядра инициирует переключение процессора из пользовательского режима в привилегированный, а при возврате к приложению – обратное переключение. За счет этого возникает дополнительная задержка в обработке системного вызова (рис. 1.5). Однако такое решение стало классическим и используется во многих ОС ( UNIX , VAX , VMS , IBM OS/390, OS/2 и др.).

Обработка системного вызова

Многослойная классическая многоуровневая архитектура ОС не лишена своих проблем. Дело в том, что значительные изменения одного из уровней могут иметь трудно предвидимое влияние на смежные уровни. Кроме того, многочисленные взаимодействия между соседними уровнями усложняют обеспечение безопасности. Поэтому, как альтернатива классическому варианту архитектуры ОС, часто используется микроядерная архитектура ОС.

Суть этой архитектуры состоит в следующем. В привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром. Микроядро защищено от остальных частей ОС и приложений. В его состав входят машинно-зависимые модули, а также модули, выполняющие базовые механизмы обычного ядра. Все остальные более высокоуровневые функции ядра оформляются как модули, работающие в пользовательском режиме. Так, менеджеры ресурсов , являющиеся неотъемлемой частью обычного ядра, становятся "периферийными" модулями, работающими в пользовательском режиме. Таким образом, в архитектуре с микроядром традиционное расположение уровней по вертикали заменяется горизонтальным. Это можно представить, как показано на рис. 1.6.

Переход к микроядерной архитектуре

Схематично механизм обращений к функциям ОС, оформленным в виде серверов, выглядит, как показано на рис. 1.7.

Клиент-серверная архитектура

Схема смены режимов при выполнении системного вызова в ОС с микроядерной архитектурой выглядит, как показано на рис. 1.8. Из рисунка ясно, что выполнение системного вызова сопровождается четырьмя переключениями режимов (4 t), в то время как в классической архитектуре – двумя. Следовательно, производительность ОС с микроядерной архитектурой при прочих равных условиях будет ниже, чем у ОС с классическим ядром.

Обработка системного вызова в микроядерной архитектуре


Рис. 1.8. Обработка системного вызова в микроядерной архитектуре

В то же время признаны следующие достоинства микроядерной архитектуры [17]:

  • единообразные интерфейсы;
  • простота расширяемости;
  • высокая гибкость;
  • возможность переносимости;
  • высокая надежность;
  • поддержка распределенных систем;
  • поддержка объектно-ориентированных ОС.

По многим источникам вопрос масштабов потери производительности в микроядерных ОС является спорным. Многое зависит от размеров и функциональных возможностей микроядра. Избирательное увеличение функциональности микроядра приводит к снижению количества переключений между режимами системы, а также переключений адресных пространств процессов.

Может быть, это покажется парадоксальным, но есть и такой подход к микроядерной ОС, как уменьшение микроядра.

Для возможности представления о размерах микроядер операционных систем в ряде источников [17] приводятся такие данные:

Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:

ядро - модули ОС, выполняющие основные функции;

модули, выполняющие вспомогательные функции ОС.

Модули ядра выполняют такие базовые функции ОС, как управление процессами, памятью, устройствами ввода-вывода и т. п. Ядро составляет сердцевину операционной системы. Без него ОС является полностью неработоспособной и не сможет выполнить ни одну из своих функций.

В состав ядра входят функции, решающие внутрисистемные задачи организации вычислительного процесса, такие, как переключение контекстов, загрузка/выгрузка страниц, обработка прерываний. Эти функции недоступны для приложений. Другой класс функций ядра служит для поддержки приложений, создавая для них так называемую прикладную программную среду. Приложения могут обращаться к ядру с запросами - системными вызовами - для выполнения тех или иных действий, например, для открытия и чтения файла, вывода графической информации на дисплей, получения системного времени и т. д. Функции ядра, которые могут вызываться приложениями, образуют интерфейс прикладного программирования - API.

Функции, выполняемые модулями ядра, являются наиболее часто используемыми функциями операционной системы, поэтому скорость их выполнения определяет производительность всей системы в целом. Для обеспечения высокой скорости работы ОС все модули ядра или большая их часть постоянно находятся в оперативной памяти, то есть являются
резидентными.

Ядро является движущей силой всех вычислительных процессов в компьютерной системе, и крах ядра равносилен краху всей системы. Поэтому разработчики операционной системы уделяют особое внимание надежности кодов ядра, в результате процесс их отладки может растягиваться на многие месяцы.

Обычно ядро оформляется в виде программного модуля некоторого специального формата, отличающегося от формата пользовательских приложений. Термин «ядро» в разных ОС трактуется по-разному. Одним из определяющих свойств ядра является работа в привилегированном
режиме.

Остальные модули ОС выполняют весьма полезные, но менее обязательные функции. Например, к таким вспомогательным модулям могут быть отнесены программы архивирования данных на магнитной ленте, дефрагментации диска, текстового редактора. Вспомогательные модули ОС оформляются либо в виде приложений, либо в виде библиотек про-цедур.

Поскольку некоторые компоненты ОС оформлены как обычные приложения, то есть в виде исполняемых модулей стандартного для данной ОС формата, то часто бывает очень сложно провести четкую грань между операционной системой и приложениями. Решение о том, является какая-либо программа частью ОС или нет, принимает производитель ОС. Среди многих факторов, способных повлиять на это решение, немаловажными являются перспективы того, будет ли программа иметь массовый спрос у потенциальных пользователей данной ОС.

Вспомогательные модули ОС обычно подразделяются на следующие группы:

утилиты -программы, решающие отдельные задачи управления и сопровождения компьютерной системы, такие, например, как программы сжатия дисков, архивирования данных на магнитную ленту;

системные обрабатывающие программы - текстовые или графи-ческие редакторы, компиляторы, компоновщики, отладчики;

программы предоставления пользователю дополнительных услуг – специальный вариант пользовательского интерфейса, калькулятор и даже игры;

библиотеки процедур различного назначения, упрощающие разработку приложений, например библиотека математических функций, функций ввода-вывода и т. д.

Как и обычные приложения, утилиты, обрабатывающие программы и библиотеки ОС для выполнения своих задач, обращаются к функциям ядра посредством системных вызовов.

Разделение операционной системы на ядро и модули-приложения обеспечивает легкую расширяемость ОС. Чтобы добавить новую высокоуровневую функцию, достаточно разработать новое приложение, и при этом не требуется модифицировать ответственные функции, образующие ядро системы. Однако внесение изменений в функции ядра может оказаться гораздо сложнее, и сложность эта зависит от структурной организации самого ядра. В некоторых случаях каждое исправление ядра может потребовать его полной перекомпиляции.




Модули ОС, оформленные в виде утилит, системных обрабатывающих программ и библиотек, обычно загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными. Постоянно в оперативной памяти располагаются только самые необходимые коды ОС, составляющие ее ядро. Такая организация ОС экономит оперативную память компьютера.

Важным свойством архитектуры ОС, основанной на ядре, является возможность защиты кодов и данных операционной системы за счет выполнения функций ядра в привилегированном режиме.

Операционная система (ОС) «СтаРТ» – это комплекс взаимосвязанных системных программ для организации взаимодействия пользователя с компьютером и выполнения других программ, разработанных для архитектуры RHEL. ОС относятся к составу системного программного обеспечения и являются основной его частью. Сборка ОС «СтаРТ» производится в Российской Федерации с использованием общедоступных программных библиотек, компонентов и исходных кодов.

ОС «СтаРТ» предназначена для эксплуатации в корпоративной ИТ-инфраструктуре в качестве серверной или настольной операционной системы, а также в виртуальной машине. Технические требования для работы ОС указаны в таблице ниже:

Архитектура вычислительного процессора

AMD, Intel (x86_64)

Количество ядер процессора (шт)

Объем оперативной памяти (Гбайт)

Объем дискового пространства (Гбайт)

Поддержка графического интерфейса

Поддержка сетей TCP-IP

Отличительными свойствами ОС «СтаРТ» являются:

· Использование ядра Linux kernel не ниже 4.18.0-80.11.2.el8_0.x86_64

· Установка и запуск приложений архитектуры RHEL в контейнере rpm из репозитария разработчика ОС «СтаРТ».

· Поддержка кириллицы и российских стандартов мер и единиц измерения, часовых поясов.

· Возможность использования удобного графического интерфейса для запуска приложений.

· Поддержка имеющихся на рынке запоминающих устройств (дисков, приводов, флеш-карт памяти, RAID-массивов, других носителей данных).

· Поддержка имеющихся на рынке МФУ, сканеров, принтеров (при наличии драйверов производителя устройств).

· Возможность персонификации настроек настольной редакции ОС «СтаРТ».

· Возможность применения корпоративных политик для массового управления настольной редакции ОС «СтаРТ».

· Аутентификация пользователя при входе в ОС «СтаРТ», в том числе и в главном каталоге корпоративной ИТ-инфраструктуры.

· Разграничение прав пользователей на отдельные компоненты ОС «СтаРТ».

· Ведение системных журналов ОС «СтаРТ», возможность их анализа администратором Системы.

Архитектура и состав ОС «СтаРТ»

В состав ОС «СтаРТ» входят следующие модули:

· Ядро операционной системы - kernel

· Программный модуль, управляющий файловыми системами.

· Командный процессор - shell - выполняющий команды пользователя.

· Драйверы периферийных устройств и динамические модули.

· Программные модули графического оконного менеджера.

· Библиотеки системных функций и сетевые службы.

· Прикладные программы общего и системного назначения.

Схематичное представление архитектуры ОС «СтаРТ» представлено на Рис.1.

Рис.1.jpg

Рис.1. Архитектура ОС «СтаРТ»

Структура ядра ОС составляет две основные группы: собственно ядро kernel и загружаемые модули, выполняющие вспомогательные функции ОС. Одним из определяющих свойств ядра является работа в привилегированном режиме.

Рис.2.jpg

Рис.2. Структура ядра ОС «СтаРТ»

Ядро kernel выполняет базовые функции ОС, такие как управление процессами, системой прерываний, памятью, устройствами ввода-вывода, и функции организации вычислительного процесса (API): переключение контекстов, загрузка/вы­грузка страниц, обработка прерываний.

Помимо модулей, которые постоянно находятся в оперативной памяти, в ОС имеются библиотеки процедур различного назначения, упрощающие работу при­ложений и обеспечивающие межпроцессное взаимодействие между ОС и прикладными программами. Библиотеки обычно загружаются в оперативную память только на время выполнения своих функций, то есть являются транзитными.

Основные функции ОС «СтаРТ»:

· управление устройствами компьютера (ресурсами), т.е. согласованная работа всех аппаратных средств ПК: стандартизованный доступ к периферийным устройствам, управление оперативной памятью и др.

· управление процессами, т.е. выполнение программного кода и его взаимодействие с устройствами компьютера.

· управление доступом к данным как в виде файлов, так и в виде сетевых ресурсов.

· управление локальной и сетевой файловыми структурами.

· пользовательский интерфейс, т.е. диалог с пользователем.

Дополнительные функции ОС «СтаРТ»:

· параллельное или псевдопараллельное выполнение задач (многозадачность).

· взаимодействие между процессами: обмен данными, взаимная синхронизация.

· защита самой системы, а также пользовательских данных и программ от злонамеренных действий пользователей или приложений.

· разграничение прав доступа и многопользовательский режим работы (аутентификация, авторизация).

Дистрибутив ОС «СтаРТ»:

Рис.3.jpg

Дистрибутив ОС «СтаРТ» поставляется в виде ISO-образа для загрузки с сервера компании-поставщика. В дистрибутиве имеются драйверы для часто встречающегося оборудования и чипов вычислительных систем, однако, при необходимости можно запросить у поставщика обновленную версию под конкретное устройство, если таковое не было сделано на этапе установки.

СтаРТ.jpg

Установка производится либо путем монтирования полученного ISO-образа через виртуальный привод, либо путем записи ISO-образа на DVD-R носитель и последующей загрузки с него. В процессе установки необходимо выбрать параметры в соответствии с целями и условиями установки. За дополнительной информацией обращайтесь к поставщику дистрибутива.

При оформлении подписки доступно онлайн обновление ОС «СтаРТ» и установка пакетов программ для различных профилей использования серверной или настольной версии системы.

Дистрибутив образа операционной системы можно скачать по ссылке:

Цена выдается по запросу.

Читайте также: