В информатике количество информации определяется как объем оперативной памяти

Обновлено: 07.07.2024

Информация является одним из фундаментальных понятий современной науки наряду с такими понятиями, как «вещество» и «энергия».

Общее определение этому термину дать невозможно. Однако в раз-личных предметных областях даётся специализированное определение информации, подходящее для данной предметной области. В рамках этого задания мы будем говорить о математической теории информации и рассмотрим два подхода - содержательный (Клод Шеннон) и алфавитный (А.Н.Колмогоров). Начнём с определения понятия «инфор-мация» в каждом из этих подходов.

В содержательном подходе, информация - это снятая неопределённость. Неопределённость некоторого события - это количество возможных результатов (исходов) данного события.

Например, если мы подбрасываем вверх монету, то она может упасть двумя различными способами (орлом вверх или решкой вверх). Соответственно, у данного события два возможных исхода. Если же подбрасывать игральный кубик, то исходов будет шесть.

После таких определений понятия «информация» можно говорить об её измерении. Введём несколько основных единиц измерения информации.

Для каждой основной единицы измерения информации существуют производные более крупные единицы измерения. Поскольку чаще всего мы будем использовать в качестве основной единицы бит, рассмотрим производны е единиц ы измерения для бита. На практике чаще всего используется не бит, а байт.

`1` байт (`1`B) `= 8` бит;

Далее существует две линейки производных единиц для байта – линейка десятичных приставок и линейка двоичных приставок. В случае десятичных приставок каждая следующая единица измерения равна `1000` предыдущих единиц. Обозначаются десятичные приставки латинскими буквами (буква префикса из системы СИ и заглавная «B», обозначающая «байт») Итак:

`1` килобайт (`1` kB) `= 1000` B (1000 байт);

`1` мегабайт (`1` MB) `= 1000` kB ;

`1` гигабайт (`1` GB) `= 1000` MB;

`1` терабайт (`1` TB) `= 1000` GB;

`1` петабайт (`1` PB) `= 1000` TB;

`1` эксабайт (`1` EB) `= 1000` PB;

`1` зеттабайт (`1` ZB) `= 1000` EB;

`1` йоттабайт(`1` YB) `= 1000` ZB.

Более крупных единиц на настоящий момент не введено.

При использовании двоичных приставок, каждая следующая едини-ца измерения равна 1024 предыдущих единиц. В России принято обозначать двоичные приставки, записывая префикс заглавной русской буквой и после него слово «байт» целиком и тоже русскими буквами. За рубежом для обозначения двоичных приставок между префиксом и «B» добавляется маленькая буква «i» (от слова «binary»). Кроме того, все префиксы записываются заглавными буквами. Итак:

Единицей измерения количества информации является бит – это наименьшаяединица.

1 Кб (килобайт) = 1024 байта= 2 10 байтов

1 Мб (мегабайт) = 1024 Кб = 2 10 Кб

1 Гб (гигабайт) = 1024 Мб = 2 10 Мб

1 Тб (терабайт) =1024 Гб = 2 10 Гб

Формулы, которые используются при решении типовых задач:

Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2 i .

i – информационный вес одного символа.

Основная литература:

  1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.

Дополнительная литература:

  1. Босова Л. Л. Информатика: 7–9 классы. Методическое пособие. // Босова Л. Л., Босова А. Ю., Анатольев А. В., Аквилянов Н.А. – М.: БИНОМ, 2019. – 512 с.
  2. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 1. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  3. Босова Л. Л. Информатика. Рабочая тетрадь для 7 класса. Ч 2. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2019. – 160 с.
  4. Гейн А. Г. Информатика: 7 класс. // Гейн А. Г., Юнерман Н. А., Гейн А.А. – М.: Просвещение, 2012. – 198 с.

Теоретический материал для самостоятельного изучения.

Что же такое символ в компьютере? Символом в компьютере является любая буква, цифра, знак препинания, специальный символ и прочее, что можно ввести с помощью клавиатуры. Но компьютер не понимает человеческий язык, он каждый символ кодирует. Вся информация в компьютере представляется в виде нулей и единичек. И вот эти нули и единички называются битом.

Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется один бит.

Алфавит любого понятного нам языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита связана с разрядностью двоичного кода соотношением: N = 2 i .

Эту формулу можно применять для вычисления информационного веса одного символа любого произвольного алфавита.

Рассмотрим пример:

Алфавит древнего племени содержит 16 символов. Определите информационный вес одного символа этого алфавита.

Составим краткую запись условия задачи и решим её:

16 = 2 i , 2 4 = 2 i , т. е. i = 4

Ответ: i = 4 бита.

Информационный вес одного символа этого алфавита составляет 4 бита.

Математически это произведение записывается так: I = К · i.

32 = 2 i , 2 5 = 2 i , т.о. i = 5,

I = 180 · 5 = 900 бит.

Ответ: I = 900 бит.

I = 23 · 8 = 184 бита.

Как и в математике, в информатике тоже есть кратные единицы измерения информации. Так, величина равная восьми битам, называется байтом.

Бит и байт – это мелкие единицы измерения. На практике для измерения информационных объёмов используют более крупные единицы: килобайт, мегабайт, гигабайт и другие.

1 Кб (килобайт) = 1024 байта= 2 10 байтов

1 Мб (мегабайт) = 1024 Кб = 2 10 Кб

1 Гб (гигабайт) = 1024 Мб = 2 10 Мб

1 Тб (терабайт) =1024 Гб = 2 10 Гб

Материал для углубленного изучения темы.

Как текстовая информация выглядит в памяти компьютера.

Набирая текст на клавиатуре, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111. Теперь возникает вопрос, какой именно восьмизначный двоичный код поставить в соответствие каждому символу?

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код ‑ просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для разных типов компьютеров используются различные таблицы кодировки.

Таблица ASCII (или Аски), стала международным стандартом для персональных компьютеров. Она имеет две части.


В этой таблице латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Это правило соблюдается и в других таблицах кодировки и называется принципом последовательного кодирования алфавитов. Благодаря этому понятие «алфавитный порядок» сохраняется и в машинном представлении символьной информации. Для русского алфавита принцип последовательного кодирования соблюдается не всегда.

Запишем, например, внутреннее представление слова «file». В памяти компьютера оно займет 4 байта со следующим содержанием:

01100110 01101001 01101100 01100101.

А теперь попробуем решить обратную задачу. Какое слово записано следующим двоичным кодом:

01100100 01101001 01110011 01101011?

В таблице 2 приведен один из вариантов второй половины кодовой таблицы АSСII, который называется альтернативной кодировкой. Видно, что в ней для букв русского алфавита соблюдается принцип последовательного кодирования.


Вывод: все тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные для нас буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в форме двоичного кода.

Из памяти же компьютера текст может быть выведен на экран или на печать в символьной форме.

Разбор решения заданий тренировочного модуля

Информационный вес символа алфавита и мощность алфавита связаны между собой соотношением: N = 2 i .

Давайте разберемся с этим, ведь нам придется измерять объем памяти и быстродействие компьютера.

Единицей измерения количества информации является бит – это наименьшая (элементарная) единица.

Байт – основная единица измерения количества информации.

Байт – довольно мелкая единица измерения информации. Например, 1 символ – это 1 байт.

Производные единицы измерения количества информации

1 килобайт (Кб)=1024 байта =2 10 байтов

1 мегабайт (Мб)=1024 килобайта =2 10 килобайтов=2 20 байтов

1 гигабайт (Гб)=1024 мегабайта =2 10 мегабайтов=2 30 байтов

1 терабайт (Гб)=1024 гигабайта =2 10 гигабайтов=2 40 байтов

Запомните, приставка КИЛО в информатике – это не 1000, а 1024, то есть 2 10 .

Методы измерения количества информации

Итак, количество информации в 1 бит вдвое уменьшает неопределенность знаний. Связь же между количеством возможных событий N и количеством информации I определяется формулой Хартли:

Алфавитный подход к измерению количества информации

Вероятностный подход к измерению количества информации

Этот подход применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

I – количество информации,

N – количество возможных событий,

Pi – вероятность i-го события.

Задача 1.

Имеется 4 равновероятных события (N=4).

Задача 2.

Чему равен информационный объем одного символа русского языка?

В русском языке 32 буквы (буква ё обычно не используется), то есть количество событий будет равно 32. Найдем информационный объем одного символа. I=log2 N=log2 32=5 битов (2 5 =32).

Примечание. Если невозможно найти целую степень числа, то округление производится в большую сторону.

Задача 3.

Чему равен информационный объем одного символа английского языка?

Задача 4.

Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний (“включено” или “выключено”). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

С помощью N лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2 N сигналов.

2 5 < 50 <2 6 , поэтому пяти лампочек недостаточно, а шести хватит. Значит, нужно 6 лампочек.

Задача 5.

Метеостанция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

В данном случае алфавитом является множество чисел от 0 до 100, всего 101 значение. Поэтому информационный объем результатов одного измерения I=log2101. Но это значение не будет целочисленным, поэтому заменим число 101 ближайшей к нему степенью двойки, большей, чем 101. это число 128=2 7 . Принимаем для одного измерения I=log2128=7 битов. Для 80 измерений общий информационный объем равен 80*7 = 560 битов = 70 байтов.

Задача 6.

Определите количество информации, которое будет получено после подбрасывания несимметричной 4-гранной пирамидки, если делают один бросок.

Пусть при бросании 4-гранной несимметричной пирамидки вероятности отдельных событий будут равны: p1=1/2, p2=1/4, p3=1/8, p4=1/8.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

I = -[1/2 * log2(1/2) + 1/4 * log2(1/4) + 1/8 * log(1/8) + 1/8 * log(1/8)] = 14/8 битов = 1,75 бита.

Задача 7.

В книге 100 страниц; на каждой странице - 20 строк, в каждой строке - 50 символов. Определите объем информации, содержащийся в книге.

Задача 8.

Оцените информационный объем следующего предложения:

Тяжело в ученье – легко в бою!


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Количество информации"

Процесс познания приводит к накоплению информации (знаний), то есть к уменьшению неопределенности знания.


Измерить объём накопленных знаний нельзя, а вот оценить уменьшение незнания можно, если известно количество возможных вариантов исхода.


- формула Хартли,

где N - количество вариантов исхода;

В своей деятельности человек постоянно использует различные единицы измерения. Например, время измеряется в секундах, минутах, часах; расстояние - в метрах, километрах; температура - в градусах и т.д.


Для измерения количества информации тоже существуют свои единицы. Минимальную единицу количества информации называют битом.

Давайте рассмотрим примеры:

1. При бросании монеты возможны два варианта исхода (орёл или решка). Заранее не известен результат, мы имеем некоторую неопределённость. После падения монеты виден один вариант вместо двух (неопределённость исчезла).


2. До проверки контрольной работы учителем возможны четыре вариант исхода («2», «3», «4», «5»). После получения оценки остался один вариант (неопределённость исчезла).


Следующей по величине единицей является байт. Байт - это единица измерения количества информации, состоящая из восьми последовательных и взаимосвязанных битов.


Т.к. в компьютере информация кодируется с помощью двоичной знаковой системы, поэтому в кратных единицах измерения количества информации используется коэффициент 2 n .

Существуют кратные байту единицы измерения количества информации:

1 килобайт (Кбайт) = 2 10 байтов = 1024 байтов;

1 мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт;

1 гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт.

В этих единицах измеряются объемы памяти компьютера, размеры файлов.


Таким образом, количество экзаменационных билетов равно 32.



Разложим стоящее в левой части уравнения число 8 на сомножители и представим его в степенной форме:


Итак, мы получили:


Алфавит — это набор символов, которые используются в некотором языке с целью представления информации.

В качестве символов могут быть использованы буквы, цифры, скобки, специальные знаки.

Мощность алфавита — это количество символов в алфавите, которое вычисляется по формуле:

Например, мощность алфавита, состоящего из \(26\) латинских букв и дополнительных символов (скобки, пробел, знаки препинания (\(11\) шт.), \(10\) цифр), — \(47\).

1. определим, какое количество бит необходимо для кодировки одного символа. Так как мощность используемого алфавита \(N\)\(=\) 256 , то \(i\) \(=\) 8 (использовали формулу N = 2 i ).

Поскольку \(1\) байт \(=\) \(8\) бит, \(1\) Кбайт \(=\) \(1024\) байт, получим:

65536 бит \(=\) 65536 8 байт \(=\) 8192 байт \(=\) 8192 1024 Кбайт \(=\) 8 Кбайт.

Любая компьютерная техника работает в двоичном коде, понимая только значения \(0\) — «сигнал есть» и \(1\) — «сигнала нет». Эти значения хранятся в бите — наименьшей единице измерения информации. Однако удобнее использовать более крупные единицы измерения информации, которые приведены в таблице.

\(1\) байт\(8\) бит \(=\) 2 3 бит
\(1\) Кбайт (килобайт) 2 10 байт
\(1\) Мбайт (мегабайт) 2 10 Кбайт
\(1\) Гбайт (гигабайт) 2 10 Мбайт
\(1\) Тбайт (терабайт) 2 10 Гбайт

1) определить, сколько Мбайт информации содержится в \(512\) битах. Ответ дай в виде степени числа \(2\).

2) Какое количество бит содержится в 1 256 Гбайт памяти? Ответ дай в виде степени числа \(2\).

Читайте также: