Время ядра процессора что это

Обновлено: 04.07.2024

Чтобы посмотреть, сколько времени ваша система работает в режиме ядра по сравнению с работой в пользовательском режиме, можно воспользоваться Системным монитором (Performance Monitor).

Выполните следующие действия:

  1. Запустите Системный монитор (Performance Monitor), открыв меню Пуск (Start) и выбрав пункты Панель управления - Администрирование -Системный монитор (AllPrograms - AdministrativeTools– Performance Monitor). На расположенном слева древовидном раскрывающемся списке инструментов Производительность (Performance) выберите пункты Средства наблюдения (Monitoring Tools) - Системный монитор (Performance Monitor).
  2. Щелкните на кнопке добавления (+), которая находится на панели инструментов.
  3. Раскройте раздел счетчиков Процессор (Processor), щелкните на пункте % работы в привилегированном режиме (% Privileged Time counter) и, удерживая в нажатом состоянии клавишу Ctrl, щелкните на пункте % работы в пользовательском режиме (% User Time).
  4. Щелкните на кнопке "Добавить (Add)", а затем на кнопке OK.
  5. Откройте окно командной строки и проведите непосредственное сканирование своего диска C по сети, набрав команду dir\\%computername%\c$/s.

системный-монитор

6. По окончании работы закройте окно инструментального средства. Такую же картину можно быстро просмотреть с помощью Диспетчера задач (Task Manager). Щелкните на вкладке Производительность (Performance), а затем выберите в меню Вид (View) пункт Вывод времени ядра (Show Kernel Times). На графике загруженности центрального процессора зеленым цветом будет показана его общая загруженность, а красным — загруженность в режиме ядра.

Чтобы увидеть, сколько времени в режиме ядра и в пользовательском режиме использует сам Системный монитор (Performance Monitor), запустите его еще раз, но при этом добавьте отдельные счетчики процесса % работы в пользовательском режиме (% User Time) и % работы в привилегированном режиме (% Privileged Time) для каждого процесса в системе:

  1. Если Системный монитор (Performance Monitor) не запущен, запустите его снова. (Если он уже запущен, начните работу с пустого отображения, щелкнув в области графиков правой кнопкой мыши и выбрав пункт "Удалить все счетчики" (Remove All Counters.)
  2. Щелкните на кнопке добавления (+), которая находится на панели инструментов.
  3. В доступной области счетчиков раскройте раздел Процесс (Process).
  4. Выберите счетчики % работы в пользовательском режиме (% User Time) и % работы в привилегированном режиме (% Privileged Time).
  5. Выберите несколько процессов в области Экземпляры выбранного объекта (Instance) (например, mmc, csrss и Idle).
  6. Щелкните на кнопке "Добавить" (Add), а затем на кнопке OK.
  7. Интенсивно подвигайте мышью в разные стороны.
  8. Выберите на панели инструментов пункт "Выделить" (Highlight) или нажмите сочетание клавиш Ctrl+H, чтобы включить режим выделения. Текущий выбранный счетчик будет выделен черным цветом.
  9. Прокрутите список счетчиков вниз для определения процессов, чьи потоки были запущены при перемещении указателя мыши, и обратите внимание на то, в каком режиме они были запущены, в пользовательском или в режиме ядра.

Вы должны увидеть (найдя в столбце Экземпляр (Instance) процесс mmc), что график времени выполнения процесса, принадлежащего Системному монитору, в режиме ядра и в пользовательском режиме при перемещении мыши пошел вверх, поскольку в нем выполняется прикладной код в пользовательском режиме, и вызываются Windows-функции, запускаемые в режиме ядра. Обратите также внимание на активность потока, принадлежащего процессу csrss и выполняемого в режиме ядра при перемещении мыши.

Эта активность возникает благодаря тому, что этому процессу принадлежит исходный поток ввода той подсистемы Windows, выполняемой в режиме ядра, которая обрабатывает ввод с клавиатуры и с мыши. И наконец, процесс Idle, который, как можно заметить, тратит почти 100 % своего времени на работу в режиме ядра, на самом деле процессом не является, это ложный процесс, используемый для подсчета холостых циклов центрального процессора.

Судя по режиму, в котором запускаются потоки процесса Idle, когда Windows нечего делать, процесс ожидания происходит в режиме ядра.

Кроме того, я обязательно включаю в Диспетчере задач отображение времени ядра. Для этого нужно открыть вкладку «Быстродействие» (Performance) и выбрать опцию «Вывод времени ядра» (Show kernel times) в меню «Вид» (View). После этого на графике появляется красная кривая, которая отображает активность приложений, работающих в режиме ядра. На рис. A показан Диспетчер задач Windows Server с выводом времени ядра.

Вывод времени ядра в Диспетчере задач


Рисунок A

Верхние точки графика указывают на пользовательскую активность в консоли. С приложениями консоли взаимодействуют и процессы базы данных, но главная особенность графика заключается в разнице между временем ядра (красная линия) и временем пользователя (зеленая линия).

Когда привилегированные процессы или приложения, работающие в режиме ядра, потребляют ресурсы процессора, разрыв между двумя кривыми уменьшается. На рис. B показан как раз такой случай.

Вывод времени ядра в Диспетчере задач


Рисунок B

Вывод времени ядра позволяет выявить случаи чрезмерной активности сервера в ходе административного сеанса. При запуске инструментов администрирования на локальном сервере можно отследить, не слишком ли много на это уходит пользовательских ресурсов процессора. Лучше всего это видно при 100-процентной загрузке процессора. Если кривая времени ядра на пике — значит, основную нагрузку на сервер создают системные процессы. Если кривая времени ядра не совпадает с кривой времени пользователя — значит, административный сеанс потребляет слишком много ресурсов процессора.

Вывод времени ядра возможен во всех версиях Windows. Подробнее об этом рассказывается на сайте TechNet .

А вы пользуетесь этой функцией? Помогает ли вам вывод времени ядра при диагностике? Поделитесь своим опытом в комментариях!

Автор: Rick Vanover
Перевод SVET


Оцените статью: Голосов

Технологии многопоточности процессоров: принцип работы и сферы применения

Физические ядра, логические ядра, технологии многопоточности — все это разрабатывалось инженерами для увеличения производительности компьютерного железа, требования к которому постоянно растут. Программы и игры требуют все больше ресурсов. Как же производители процессоров увеличивают мощность своих детищ? Процессор является «сердцем» компьютера и выполняет вычисления, необходимые для работы софта. Модели CPU отличаются между собой даже в рамках одного семейства. Например, Intel Core i7 отличается от i5 технологией многопоточности под названием «Hyper-Threading», о которой далее пойдет речь (Core i3, i9, и некоторые Pentium также обладают данной технологией).

Принцип работы процессорных ядер и многопоточности

В современных операционных системах одновременно работает множество процессов.
Нагрузка от операционной системы на процессор идет по так называемому конвейеру, на который «выкладываются» нужные задачи для ядра. В качестве примера возьмем одно ядро процессора на частоте 4 ГГц с одним ALU (арифметико-логическое устройство) и одним FPU (математический сопроцеесор). Частота в 4 ГГц означает, что ядро исполняет 4 миллиарда тактов в секунду. К ядру по конвейеру поступают задачи, требующие исполнительной мощности, на которые тратится процессорное время.


Часто происходят случаи, когда для выполнения необходимой операции процессору приходится ждать данные из кеша более низкой скорости (L3 кеш), или же оперативной памяти. Данная ситуация называется кэш-промах. Это происходит, когда в кэше ядра не была найдена запрошенная информация и приходится обращаться к более медленной памяти. Также существуют и другие причины, заставляющие прерывать выполнение операции ядром, что негативно сказывается на производительности.

Данный конвейер можно представить, как настоящую сборочную линию на заводе — рабочий (ядро) выполняет работу, поступающую к нему на ленту. И если необходимо взять нужный инструмент, работник отходит, оставляя конвейер простаивать без работы. То есть, исполняемая задача прерывается. Инструментом, за которым пошел рабочий, в данном случае является информация из оперативной памяти или же L3 кэша. Поскольку L1 и L2 кэш намного быстрее, чем любая другая память в компьютере, работа с вычислениями теряет в скорости.

На конвейере с одним потоком не могут выполняться одновременно несколько процессов. Ядро постоянно прерывает выполнение одной операции для другой, более приоритетной. Если появятся две одинаково приоритетные задачи, одна из них обязательно будет остановлена, ведь ядро не сможет работать над ними одновременно. И чем больше поступает задач одновременно, тем больше прерываний происходит.

Способы увеличения производительности процессоров

Разгон

При увеличении частоты ядра повышается количество исполняемых операций за секунду. Казалось бы, с возрастанием производительности процессора проблемы должны исчезнуть. Но все не так просто, как хотелось бы думать. Прирост от увеличения частоты ЦП нелинейный. Множество процессов все еще делят одно ядро между собой и обращаются к памяти. Кроме того, не решается проблема с кэш-промахами и прерываниями операций, поскольку объем кэша от разгона не изменяется. Разгон — не самый лучший способ решения проблемы нехватки потоков. В пример можно привести всю ту же сборочную линию: рабочий увеличивает темп работы, но по-прежнему не умеет собирать два и более заказа одновременно.

Увеличение количества потоков на ядро

В процессорах Intel данная технология носит название Hyper-Threading, а в процессорах от Amd — SMT. Производители добавляют еще один регистр для работы со вторым конвейером. Пока один поток простаивает, ожидая нужные данные, свободная вычислительная мощность может быть использована вторым потоком. На кристалл же добавлен еще один контроллер прерываний и набор регистров.

Появляется возможность избавиться от последствий прерывания операций и сокращения времени простоя процессорной мощности. Благодаря чему ядро с двумя потоками выполняет больше работы за одинаковый отрезок времени, нежели в случае с однопотоком. На примере с рабочим: у конвейера появляется вторая сборочная линия, на которую выкладываются заказы. Пока производство на первой ленте простаивает в ожидании нужных инструментов, рабочий приступает к работе на второй ленте, сокращая время перерыва.


Стоит учитывать, что логический поток это не второе ядро, как может показаться с первого взгляда. Это лишь дополнительная «линия производства», чтобы более эффективно использовать доступную мощность. Из минусов технологии Hyper-Threading или SMT можно выделить увеличение тепловыделения, недостаток кэша (кэш на два потока по-прежнему общий), и проблемы с оптимизацией некоторых программ или игр, не способных отличать настоящее ядро от логического потока.

Именно по этой причине процессоры серии i7 «горячее» и имеют больше кэша по сравнению с i5. Использование технологии многопоточности может принести примерно до 30 % прироста производительности. Все это применимо как к Intel Hyper-Threading, так и к AMD SMT, поскольку технологии во многом схожи. Может возникнуть вопрос: «Если можно добавить второй поток, то почему бы не добавить третий и четвертый?» Это реализуемо, но не имеет смысла, поскольку кэш одного ядра достаточно мал для большего количества потоков и прироста производительности практически не будет.

Увеличение количества ядер

Это самый действенный способ решения проблемы, поскольку каждый конвейер теперь располагает своим FPU, ALU и кэшем, который не придется делить с другим потоком. Разные процессы используют разные ядра, из-за чего реже происходят кэш-промахи и конфликты приоритетных задач. Способ, разумеется, несет в себе некоторые издержки для производителей: дороговизна разработки и производства, увеличение тепловыделения и размера кристалла, и, как результат, повышается итоговая стоимость процессора.


Сферы применения многопоточных процессоров

С развитием компьютерных технологий перечень программ, использующих многопоточность, неуклонно растет. Это дает огромный простор разработчикам для создания нового софта и игр. Например, сейчас каждый современный triple-A проект оптимизирован для многопоточных процессоров, что позволяет наслаждаться игрой, получая высокий уровень fps на многоядерном CPU.

Еще больше распространены многоядерные системы в среде разработчиков. Программы для 3D-моделирования, монтажа видео и создания музыки требуют параллельного выполнения большого количества задач, с чем хорошо справляются системы с Hyper-Threading или SMT. В операционных системах мощность одного потока может тратиться на фоновые задачи (Skype, браузер, мессенджер), в то время как остальные задействуются для тяжелой игры или программы.

Но далеко не всегда увеличение количества потоков означает увеличение общей производительности. Почему же SMT процессоры порой уступают немногопоточным собратьям? Дело в программной поддержке. Иногда плохо оптимизированные программы не могут отличать логический поток от настоящего ядра, из-за чего на одно ядро может попасть две тяжелых задачи и замедлить работу. Тем не менее, подобные технологии имеют огромный потенциал, главное — грамотно реализовать его на программном уровне.

Вы когда-нибудь задумывались о том, как построены современные процессоры, что такое ядра и на что они влияют? Почему процессор может выполнять сразу несколько операций, что такое многопоточность и как это все работает? Как ЦП позволяет обрабатывать компьютеру одновременно большое количество данных. Итак, давайте разбираться в архитектуре данного устройства.

Общее понятие архитектуры процессора ПК

Под понятием архитектуры процессора подразумеваются важные с точки зрения построения и функциональности особенности чипа, которые связаны как с его программной моделью, так и с физической конструкцией.

процессор

Архитектура набора команд (ISA) – это набор инструкций процессора и других его функций (например, система и нумерация регистров или режимы адресации памяти), имеющих программную часть ядра, которые не зависят от внутренней реализации.

В свою очередь, физическое построение системы называется микроархитектурой (uarch). Это детальная реализация программной модели, которая связана с фактическим выполнением операций. Микроархитектура представляет собой конфигурацию, определяющую отдельные элементы, например, логические блоки, а также связи между ними.

Стоит отметить, что ЦП, выполняющие одинаковую программную модель, могут значительно отличаться друг от друга микроархитектурой – например, устройства от фирм AMD и Intel. Современные чипы имеют идентичную программную архитектуру x86, но абсолютно разную микроархитектуру.

Роль количества ядер, их влияние на производительность

Первоначально ЦП имели только одно ядро. Однако на рубеже XX и XXI веков инженеры пришли к выводу, что стоит увеличить их количество. Это должно было позволить получить более высокую вычислительную мощность, а также позволить обрабатывать несколько задач одновременно.

двухъядерный процессор

Но для начала стоит разобраться с главным мифом. Принято считать, что чем больше ядер у процессора, тем больше мощности он будет предлагать. Но на практике все не так просто. Реальное влияние на производительность оказывают и другие факторы – например, тактовая частота, объем кэша, архитектура, количество потоков.

Дополнительные ядра означают, что процессор способен одновременно справляться с большим количеством задач. Однако здесь нельзя забывать об одном: несмотря на популяризацию четырех-, шести- или восьмиядерных процессоров, приложения используют один или два потока. Поэтому количество потоков ядра также важно учитывать.

Что такое потоки и на что влияет их количество

Потоки – это виртуальный компонент или код, который разделяет физическое ядро процессора на несколько ядер. Одно ядро имеет до 2 потоков.

одно ядро два потока

Например, если процессор двухъядерный, то он будет иметь 4 потока, а если восьмиядерный – 16 потоков.

Поток создается активным процессом. Каждый раз, когда открывается приложение, оно само создает поток, который будет обрабатывать задачи этого конкретного приложения. Поэтому, чем больше приложений будет открыто, тем больше потоков будет создано.

Потоки создаются операционной системой для выполнения задачи конкретного приложения. Они управляются планировщиком, который является стандартной частью каждой ОС.

Существует один поток (код того ядра, выполняющий вычисления, также известный как основной поток) на ядре, который, когда получает информацию от пользователя, создает другой поток и выделяет ему задачу. Аналогично, если он получает другую инструкцию, он формирует второй поток и выделяет ему задачу, создавая таким образом многопоточность.

Единственный факт, который ограничивает создание потоков, – количество основных потоков, предоставляемых физическим процессором. А их количество зависит от ядер.

Потоки стали жизненно важной частью вычислительной мощности, поскольку они позволяют выполнять несколько задач одновременно. Это повышает производительность компьютера, а также позволяет сделать его способным к многозадачности. Благодаря этой технологии становится возможно просматривать веб-страницы, слушать музыку и скачивать файлы в фоновом режиме одновременно.

Рекомендации по выбору процессора

При выборе ЦП некоторые характеристики будут важнее других – это зависит от предпочтений пользователя.

Для офиса

Для большинства офисных компьютеров подойдут двух- или четырехъядерные процессоры. Однако если вычислительные потребности более интенсивны, например, при программировании и графическом дизайне, для начала стоит выяснить, сколько ядер потребуется для используемого программного обеспечения.

Частота является еще одним фактором, который следует принимать во внимание. Хотя частота – это не единственное, что определяет скорость, она оказывает существенное влияние. Используемое программное обеспечение будет влиять на скорость. Например, при регулярном использовании Adobe CS 6, лучше всего подойдет процессор со скоростью не менее 2 ГГц.

Для инженерных задач

Как правило, компьютеры для инженерных задач обязаны обрабатывать много информации за короткий промежуток времени.

компьютер для инженерных задач

При покупке ЦП для такого компьютера важен многоядерный процессор. В идеале нужно искать такой чип, который предлагает гиперпоточность. Это обеспечит большую вычислительную мощность.

Для работы с графикой

При работе с графикой требования к процессору отличаются. Для обработки 2D графики – подойдут бюджетные варианты, 2 или 4 ядра с тактовой частотой 2,4 ГГц вполне справятся с задачей.

Для работы с 3D графикой лучше всего выбирать 4 или 6-ядерные чипы, с тактовой частотой 3 ГГц и выше, а также с поддержкой многопоточности.

Для игрового ПК

Потребности геймеров специфичны, когда дело доходит до вычислительной мощности компьютера.

геймер

Первое, что нужно учитывать – это количество ядер. В дополнение к числу ядер, геймерам также важно учитывать тактовую частоту. Для современных игр потребуется частота 3,8 ГГц или выше.

Еще стоит обратить внимание на тепловыделение. Нынешние игры довольно требовательные, поэтому процессор быстро нагревается. У системного блока должна быть качественная система охлаждения, которая поможет адекватно удовлетворить потребности устройства, чтобы компоненты не перегревались.

Для стриминга

Выбор ЦП для стриминга зависит от сборки самого ПК.

Для бюджетных компьютеров подойдут любые четырехъядерные процессоры, которые смогут раскрыть видеокарту.

Для профессионального стриминга понадобится ЦП с 6, 8, 16 ядрами и тактовой частотой 4 ГГц и выше. Тут выбор будет завесить от купленной видеокарты и нужного разрешения для стрима.

Читайте также: