Зачем usb в блоке питания

Обновлено: 06.07.2024

USB устройств различного предназначения развелось нынче, что грибов после дождя: вентиляторы, светильники, чайники и кофеварки, тапочки с подогревом и т.п. Подключать к USB пытаются практически всё, заряжают смартфоны и планшеты. Некоторые из устройств используют USB по основному назначению, но большинство новинок используют USB в качестве источника питания пяти Вольт.


Нехватка разъёмов USB разрешается с использованием хабов, разветвляющих не только интерфейс, но и шины питания. А простых разветвителей USB интерфейса в виде пассивных хабов, можно отыскать сотни, если не тысячи разновидностей. Порой их создают в виде вычурных фигурок, здесь дизайнерской мысли нет предела.

Наряду с обычными (простыми) хабами имеются на рынке и USB-хабы оснащаемые дополнительным внешним или встроенным блоком питания. Зачем такое решение продвигается, сейчас и разберёмся.


Недостаток свободных портов USB для подключения внешних устройств случается чаще всего именно из-за того, что пользователь компьютера подключает в USB разъёмы различные устройства, необходимость в которых весьма сомнительна. Штатных разъёмов USB от четырёх штук, выведенных наружу корпуса компьютера в стандартной конфигурации южного моста чипсета, где как минимум, присутствует два базовых (корневых) хаба, должно хватать в практически любых применениях.

Необходимость расширять количество подключаемых к компьютеру устройств часто заложено в сами внешние устройства. Не исключение составляют кард-ридеры, имеющие на своём борту USB концентраторы. И в других устройствах, часто размещают хаб, просто как буферный элемент схемы для снижения нагрузки на компьютер. Такие устройства имеют возможность подключения своего блока питания или подпитки от второго и последующего портов USB компьютера.


Хабы с внешним питанием предназначены для подключения устройств, которые критичны к питанию от шины компьютера через USB разъём. Ограничение на нагрузочную способность порта USB заложено в спецификации и составляет не более полуампера в стандарте спецификации номер два. А с целью экономии, в том числе и аккумуляторных батарей в ноутбуках, чаще всего производители компьютерной техники выстраивают такие схемы питания, в которых стандартные значения тока нагрузки не обеспечивается.

Не всегда и незачем с каждого разъёма подавать устройству столько энергии, в каком количестве это устройство не нуждается. Перерасход за счёт резервирования обращается в дорогостоящем воплощении конечного изделия. Поэтому с целью экономии схемы питания делают такими, чтобы было достаточно питать буферные элементы схем внешних устройств.

Например, манипулятор «мышь» или флэшка не нуждается в питании мощностью два и более Ватт. Принтеры, подключаемые к компьютерам и ноутбукам по USB, так же имеют отдельный блок питания. Так как никоим образом с одного шинного разъёма USB не обеспечить питание принтера или многофункционального устройства (МФУ).

Умные люди сами соображают, что нельзя уповать на «защиту от дураков» и загружать USB порты, а тем более перегружать, при этом тупо руководствоваться стандартом спецификации интерфейса USB. Поэтому, подключая устройства, заботятся о включении внешних блоков питания устройств и хабов, не экспериментируя и испытывая судьбу, на «выдержит – не выдержит» нагрузку.

Внешний (дополнительный) блок питания хаба обеспечивает распределение нагрузки для интерфейсного разъёма USB. Тем самым нагрузка на схемы главной (материнской) платы компьютера или ноутбука остаётся в пределах допустимых значений. Что оберегает дорогостоящее изделие от выхода из строя по причине перегрузки буферных элементов схем, шин разводки питания и других компонентов.

Типы быстрых зарядок и нюансы используемых кабелей

Современные смартфоны потребляют намного больше энергии, чем их предшественники: больше быстродействие, больше экран, больше памяти, GPS, Bluetooth, Wi-Fi. Все это прекрасно, однако емкости аккумуляторов за прогрессом не поспевают. В результате многие современные смартфоны держат заряд не более суток. Рано или поздно вы забываете поставить вечером гаджет на зарядку, а утром понимаете, что через 15 минут выходить из дома, а заряда — «на донышке». Что делать? Бежать покупать портативный аккумулятор или можно что-то сделать за эти 15 минут?

Как долго должен заряжаться аккумулятор?

Так получилось, что USB стал стандартом для зарядных устройств всех гаджетов. Но разрабатывался этот стандарт, во-первых, давно, во-вторых, совсем не для этого.

Стандарт USB был разработан еще в 1996 году. Устройства тех лет, питающиеся от разъема USB, зачастую не имели контроллеров питания и могли просто сгореть, получив большой ток. Поэтому в стандарте вплоть до версии 2.0 максимальный ток составлял 500 мА, поэтому заряда смартфона с батарейкой емкостью в 3000 мАч требовалось 7-8 часов, хотя сам аккумулятор вполне мог бы потреблять 1,5 А и зарядиться за 2-3 часа.

Именно поэтому зарядка, идущая в комплекте с гаджетом, зачастую заряжает его намного быстрее — она просто выдает повышенный ток, рассчитанный на конкретный аккумулятор.


Сам стандарт разрабатывался для передачи данных, а не для питания. Разъемы и кабели USB не предназначены для больших токов, так что производители гаджетов столкнулись с неприятностями, начав выпускать такие зарядки с токами до 5А и более. Провода кабеля USB довольно тонкие, сопротивление их высоко. Но с увеличением тока падение напряжения на кабеле и его нагрев стали довольно существенными. Кроме того, появились случаи перегрева тонких контактов разъема. Поэтому большинство обычных зарядный устройств дают на выходе до 2А, а зарядка по-прежнему длится часами.

Что такое быстрая зарядка?

Это зарядка токами 1С и выше, то есть токами, кратными емкости аккумулятора. Например, 1А для емкости 1000 м·Ач и так далее. Поначалу такой режим считался крайне неблагоприятным для литий-ионных батарей. Но со временем ситуация изменилась — зарядка током 1С уже не вызывает заметного снижения ресурса у современных аккумуляторов, а зарядка током в 2С приводит к потере примерно 20 % емкости через 500–800 циклов заряда-разряда. Да, если пользоваться быстрой зарядкой ежедневно, через пару лет вы заметите падение емкости. Но вряд ли из-за этого стоит отказываться от возможности зарядить телефон за полчаса.

Чтобы не было потерь на тонких проводах, режимы быстрой зарядки используют повышенное напряжение в кабеле. ЗУ может выдавать напряжение до 20В, а в гаджете оно понизится до требуемых 5В с соответствующим увеличением тока. Например, если ЗУ обеспечивает напряжение 20В и ток 2А, то на аккумуляторе будут 5В и 8А.

Для сохранения совместимости со старыми ЗУ и компьютерными USB, новым зарядным устройствам пришлось «поумнеть» — теперь они не сразу выдают максимальные ток и напряжение, а только после получения запроса от гаджета. К сожалению, способы «общения» ЗУ и гаджета у каждого производителя свои.


Типы быстрой зарядки

Quick Charge — стандарт компании Qualcomm, поддерживается устройствами, собранными на базе чипсетов Snapdragon, начиная с 2013 г. Максимальный поддерживаемый ток — 3А и 5A в версии 4, напряжение может меняться от 3,6 до 20 В, а также до 22 в версии 3 и до 21 в 4+. Стандарт теоретически обеспечивает до 100 Вт мощности, но практически такая мощность устройствами не поддерживается, а штатные ЗУ выдают всего 18 Вт. Контроль температуры в стандарт не вписан, так что нередки случаи перегрева при быстрой зарядке. Сейчас большинство производителей смартфонов обеспечивают контроль температуры при использовании QC. А стандарт QC 4 имеет полную поддержку протокола Power Delivery.


Adaptive Fast Charging компании Samsung основан на Quick Charge 2 и частично с ним совместим, поэтому заряжать его от ЗУ с поддержкой QC 2 можно, но зарядка идет медленнее, чем от штатного. Контроль температуры есть, так что зарядка безопасна.

Motorola Turbopower компанией Lenovo так же разработан на основе стандарта Quick Charge 2, с которым полностью совместим. Отличия незначительны, основное заключается не в самом стандарте, а в наличии штатного ЗУ Motorola на 25 Вт против 18 Вт у поддерживающих QC 2. По скорости зарядки уступает QC и PD последних версий.


Huawei Super Charge применяется на устройствах Huawei и тоже основан на Quick Charge 2. Напряжение может достигать 5В, ток — 5А, давая в итоге максимальную мощность 25 Вт. По скорости зарядки уступает QC и PD последних версий.

Pump Express разработан компанией MediaTek и поддерживается гаджетами, собранными на базе SoC этого производителя. Он также основан на Quick Charge 2, и полностью с ним совместим. Его мощность ограничена 15 Вт, поэтому на емких аккумуляторах он покажет меньшую скорость зарядки по сравнению с другими стандартами. Зато в Pump Express есть контроль температуры аккумулятора, что значительно повышает безопасность зарядки.


Быстрая зарядка Apple совместима с Power Delivery. ЗУ Apple может выдавать до 87 Вт, что позволяет быстро зарядить не только все модели iPhone, начиная с 8, но и емкие аккумуляторы iPad Pro и MacBook 12.


Oppo Vooc (и основанный на ней Dash Charge) выбиваются из остального ряда — это оригинальные, ни с чем не совместимые стандарты. Используются на устройствах OnePlus и Oppo. Зарядное устройство выдает до 25 Вт мощности. Из-за несовместимости стандартов быстрая зарядка осуществима только с помощью оригинальных зарядного устройства и кабеля.

Power Delivery — наиболее перспективный стандарт быстрой зарядки, разработанный консорциумом USB в 2015 году. Стандарт поддерживает напряжения питания до 20 В и ток до 3А, что в итоге дает до 60 Вт мощности. А наиболее перспективным он считается из-за того, что «встроен» в новый стандарт USB 3.1 и теперь любые устройства, использующие разъем Type-C, должны либо поддерживать Power Delivery, либо смириться с недовольством пользователей, пытающихся заряжать гаджеты от ЗУ с поддержкой PD. Apple и Qualcomm уже выбрали первый вариант.

USB 3.1 + Power Delivery = некоторые проблемы

Теперь «умным и быстрым» ЗУ может быть любое устройство, поддерживающее USB 3.1. Заряжаемое устройство определит возможности заряжающего порта, измерив сопротивление между парой контактов разъема — CC и Vbus. Если порт может выдать максимум 0,9 А, как обычный порт USB 3.0, сопротивление будет равно 56 кОм, 22 кОм «скажут» гаджету, что ЗУ может выдать до 1,5 А, а 10 кОм — 3А.


Но как быть с кабелями-переходниками с Type-C на USB 2.0? У первого — 24 контакта, у второго — всего 4, а тех, между которыми ЗУ должно выставлять сигнальное сопротивление, просто нет. Консорциум USB решил встраивать резисторы прямо внутрь кабеля: 10 кОм в кабеля для мощных ЗУ, 22 кОм — для ЗУ с выходным током 1,5 А, ну и для 0,9 А — 56 кОм.

А если перепутать? Чаще всего — ЗУ не даст максимального тока и зарядка будет идти в разы дольше. Если же ЗУ попытается дать гаджету ток больше, чем оно способно, то может выйти из строя, а в худшем случае — испортить и гаджет.

Масла в огонь подлили китайцы, начав засовывать резисторы 10 кОм во все кабели-переходники с Type-C на USB 2.0. В том числе и в дешевые тонкожильные, неспособные выдержать те 3А, которые он якобы должен пропускать.

Чтобы всем стало совсем «весело», консорциум USB регламентировал установку в кабели Type-C маркирующей микросхемы eMarker, информирующей оба подключенных к нему устройства о возможностях кабеля. Проблема в том, что дорогостоящий кабель с микросхемой eMarker может быстро сгореть на паре ЗУ–гаджет, поддерживающей какой-нибудь стандарт быстрой зарядки, отличной от Power Delivery. eMarker питается от 5В, а тот же QickCharge 2 и все основанные на нем протоколы запросто могут поднять напряжение питающей линии до 18 В.

Вывод один — не используйте для быстрой зарядки «случайные» кабели. Это особенно важно для кабелей с разъемами Type-C, но актуально и для старых разъемов: невооруженным глазом не заметить, что у кабеля сечение жил меньше и разъем контактирует неплотно. В результате зарядка будет идти намного дольше, и это еще не самое худшее: возникающий из-за искрения контактов нагрев может привести к повреждению разъема или вообще к воспламенению прилегающего пластика. Настоятельно рекомендуется не пользоваться для зарядки «чужими» проводами, пусть они и выглядят подходящими.



Подключаем. В центре хаба есть неяркий синий светодиод, что есть хорошо — лишняя иллюминация мне не к чему.



В Диспетчере устройств он определяется как Generic Superspeed USB Hub (VID_05E3&PID_0612). Для оценки производительности хаба использовал USB 3.0 флешку Transcend, 64гб SD карточку Lexar 1000X, которая была подключена в обозреваемый хаб через кардридер Transcend RD-F5. Все тесты были проведены в реальных условиях — К хабу кроме указанных устройств были подключены звуковая карта Behringer U-CA202 и Logitech unifying receiver, а во время проведения тестов играла музыка в фоне, и набирался текст в ворде. Различие в скоростях при подключении через хаб и напрямую оказалось в пределах погрешности, звук не заикается, мышь и клавиатура работают нормально. Для проверки нагрузочной способности подключил внешний жесткий диск Seagate Backup Plus 4TB, который хотя и и использует «ноутбучный» жесткий диск, формата 2.5 дюимов, но он толстый — 11мм, так как пластин в нём 4, соответственно, и потребление тока повышенное. Никаких проблем с этим жестким диском не наблюдалось, раскрутился и работал без внешнего диска совершенно без проблем. Для дополнительной проверки также подключил внешний BD-R рекордер Pioneer BDR-XD05B, с работоспособностью которого тоже проблем не заметил — тестовая BD-RE болванка прожглась и прочиталась нормально.



Ну и напоследок — проверяем, а отдаёт ли хаб ток обратно в основное устройство, при подключении внешнего питания? Для проверки собрал такую «схему» — к хабу подключил внешний блок питания, а к входу хаба, выход «белого USB Доктора». Как можете сами убедится — копеечную экономию производитель таки сделал, что для потребителя может вылиться в поврежденный USB порт.


За $4 это вполне нормальный хаб, проблем со стабильностью и нагревом нет, но при подключении внешнего питания, вполне реально сжечь USB порт в вашем компьютере, так что мой совет — не подключайте к нему внешний блок питания. Что касается именно бренда Orico, ничего расчудесного внутри я не увидел, всё на уровне обычного нонейма, и соответственно, платить за него $14, как хотят на алиэкспресс и прочих геар-банггуд-томтоп-бестах — считаю большой глупостью.

Так выпьем же за то, чтоб все неприятности ушли с короной, цены падали, а доходы — росли. Всем здоровья и счастья!




Т.к. покупал во время весенней распродажи, то с помощью купона скинул цену с $6,16 до $5,16.

Заказ отправили Aliexpress Standard Shipping, доехал за 2,5 недели, трек полностью отслеживался.
Был упакован в обычный транспортный пакет с пупыркой, но доехал целым и невредимым. Красивой коммерческой упаковки не было, просто п/э пакет с хабом, кабелем и блоком питания.

Корпус хаба сделан из чёрной пластмассы, матовый, прямоугольный, размеры 10,5 х 3,5 х 2,2 см. На верхней стороне 4 порта USB 3.0 для подключения периферии, рядом с каждым из них — по включателю, а на соседней скошенной грани — по светящемуся при включении индикатору. В углу — маленький синий индикатор включения хаба, в выключенном состоянии похожий на дырочку для кнопки reset.
На торце расположен порт USB3.0 microB для подключения к компьютеру, а рядом гнездо для БП — 3,5 х 1,35 мм. Надпись на хабе всего одна — 4 PORTS USB 3.0 High Speed Hub. Информация о производителе, характеристиках и прочем отсутствует.
Включатели просто отключают питание, подаваемое на разъём USB, так что пользователь должен самостоятельно озаботится предварительным корректным извлечением устройства из ОС. Вот несколько фотографий, где USB-тестеры демонстрируют напряжение на шине питания во включенном и выключенном состояниях:



Блок питания на 5В 1А. Длина кабеля — 113 см, круглый разъём 3,5 х 1,35 мм. Жаль, что не самый популярный — 5,5 мм, таких у меня валяется масса от старых железок. Видимо в корпус такое большое гнездо не помещалось.

Разочарование №1: 1А — это вообще ни о чём. Для USB 3.0 разрешённый ток 0,9А, а некоторые материнские платы могут выдавать и значительно больше. Смысла брать не было абсолютно никакого, но нигде в характеристиках не было указано его параметров.


Кабель USB 3.0 type-A to microB синий, плоский, длиной 55 см, в меру жёсткий.

Разочарование №2: длины кабеля не хватило, чтобы достать из-под стола, а т.к. у меня не было ни одного устройства с таким разъёмом, придётся заказать другой, подлиннее.
Быстро подключил хаб, пока ещё без БП, компьютер радостно нашёл и установил новое устройство. Вставил флешку, нажал на кнопку — индикатор загорелся синим, флешка опозналась и стала доступна в системе. Значит, БП для работы не обязателен.
Меняю флешку на внешний 2,5" HDD. Диск, судя по звуку, раскручивается, в диспетчере устройств появляется новое оборудование и быстро исчезает, опять появляется и опять исчезает, и так до бесконечности. Очевидно, что не хватает питания.
Подключаю БП и компьютер молча отрубается. WTF? В голове проносится куча мыслей: Не надо было при подключенном питании? Спалил? Сработала защита? Где-то КЗ? Кабель или БП неисправны? Пытаюсь включить комп — не реагирует. Выдернул хаб — комп нормально включился.
Хорошо, меряю напряжение на выходе БП — 5,6В. Ну и УГ, можно сразу его в помойку, даже не разбирая. Но другого с таким разъёмом — 3,5 х 1,35 мм нет, так что пусть пока полежит, может потом перепаяю его кабель к нормальному БП.
Значит HDD подключать пока что не судьба (при том, что при подключении непосредственно к порту компьютера, они нормально опознаются и работают).
Возвращаюсь к флешке, подключаю, меряю скорость и… да тут только USB 2.0! Проверяю с помощью ChipEasy и ChipGenius — так и есть, хаб работает в режиме 2.0.
Грусть-печаль. БП — УГ. Провод короткий и, похоже, что не лучшего качества — ни USB 3.0, ни нормально питание передать. Занавес, конец первого акта.

Акт второй
Хаб отправился в ящик до лучших времён, а пока что заказал другой кабель — Robotsky USB 3.0 Type-A to micro-B, длиной 1м.



Сейчас цена $1,97, когда брал, был центов на 20 дешевле.

На сей раз ожидание заняло больше времени — около двух месяцев, т.к. доставка Cainiao Super Economy. Подключил хаб новым проводом — он опознался. Проверяю флешку — работает, проверяю HDD — опять не опознаётся.
Кто всё же виноват не понятно, протестировать кабели отдельно не могу — нет других устройств с таким разъёмом, так что попробую подключить к другому компу, и для чистоты эксперимента на USB-чипе другого производителя. Первый комп был на Intel Core 4Gen с чипсетом B85, второй — на AMD Piledriver с чипсетом A68H.
Кратко результат: хаб устойчиво заводится на 3.0, флешка работает на 3.0, HDD — не заводится с теми же симптомами. Нужно дополнительное питание — хаб жрёт что-то слишком много, но зато уже работает в режиме USB 3.0.
Грусть-печаль. Занавес, конец второго акта.






Переходники для подключения нормального БП в пути уже три месяца, и желание пользоваться этим поделием окончательно пропало. Даже собирать обратно не стал, бросил на столе валяться.
Грусть-печаль. Занавес, конец третьего акта.

Эпилог
Что тут писать, барахло — оно и есть барахло.
Но где же счастливый финал, что я обещал в начале? А вот он: заходит ко мне коллега и спрашивает, нет ли у меня USB-разветвителя, чтобы подключить две USB-лампочки к одному БП. И тут меня осеняет: «Да конечно же есть! Только сегодня и только для тебя! И не на 2, а сразу на 4 лампочки, да ещё и с возможностью их выборочного включения и БП в придачу!» Только подожди, я сейчас потроха обратно в корпус запихну. Вот держи, и что б глаза мои его больше не видели. И можешь не благодарить.
Все рады. Занавес, конец драмы. С глаз долой — из сердца вон, пойду выберу что-нибудь поприличней.

Как снять питающее напряжение, например 5 В, с разъёма USB-C (USB Type C)? Все новейшие ноутбуки, смартфоны, планшеты, внешние аккумуляторы и дорожные зарядные устройства, как правило, устанавливаются уже с портами USB-C. Даже порт USB-C в дешевом зарядном устройстве (Повер Банк) способен поддерживать напряжение постоянного тока до 12 В. Спецификации USB предоставляют информацию о реализации и более высоких уровней подачи питания, доступных через разъемы USB Type C. С обычным USB всё понятно, 4 контакта, где 2 крайних питание. А в новом уже не так всё просто, поэтому будем разбираться.

USB-C и подача питания


Разъем USB Type C обеспечивает ряд новых функций по сравнению с предыдущими поколениями. Усовершенствования включают меньший размер корпуса, большую полосу пропускания сигнала, больше проводков, более высокие номинальные значения напряжения и более высокие токи. Штекера и розетки можно подключать как прямо, так и вверх ногами, что позволяет быстрее и проще вставлять их в гнёзда (давно бы так).


Типичный разъем USB Type C имеет 24 контакта и 4 контакта питания и массы, которые в совокупности пропускают ток до 5 А. Разъем также рассчитан на предельное напряжение до 20 В между контактами питания и заземления, что позволяет передавать мощность 100 Вт.


Обратите внимание, что разъем USB-C разработан для поддержки стандарта USB PD. А значит хост-контроллер и кабель устройства также должны быть настроены для поддержки стандарта. Но не будем отвлекаться и разберемся как снять питание из порта USB-C. А это не просто, вывести 5 В двумя проводками не получится.


Чтобы использовать все функции, штекера и разъемы имеют дополнительные контакты для настройки, позволяющие устройствам согласовывать свое состояние. Поддержка каналов конфигурации может показаться сложной задачей, но ее можно решить просто для базовых вещей.

Самый простой способ - использовать два понижающих резистора 5,1 кОм на линиях канала конфигурации (CC) (A5 = CC1 и B5 = CC2). Контакты CC1 и CC2 важны для базовой работы USB Type-C. Резисторы присоединяются к контактам CC в различных конфигурациях в зависимости от того, является ли приложение выходным портом (DFP), входящим портом (UFP) или электронно маркированным / активным кабелем. Помните, что входящий порт должен подключать действующий понижающий резистор к GND к обоим контактам CC1 и CC2. 5,1 кОм ± 10% - единственный приемлемый резистор, если используется зарядка USB Type-C 1,5 А при 5 В или 3,0 А при 5 В.

Также важно отметить, что USB Power Delivery позволяет динамически изменять конфигурацию питания USB-соединения. Значение по умолчанию 5 В на VBUS можно перенастроить на любой уровень до 20 В. Максимальный ток подачи питания может быть увеличен до 5 А с помощью совместимого кабеля USB PD Type C с электронной маркировкой мощностью 100 Вт. Поэтому чтобы взять 5 В постоянного тока из порта USB-C, можно или припаять пару понижающих резисторов 5,1 кОм к контактам CC обычной коммутационной платы USB-C, (штекер или гнездо), либо выбрать специальную коммутационную плату USB-C с предварительно припаянными понижающими резисторами 5,1 кОм.


Вот приводится простая схема для тех, кто хочет спроектировать и собрать свою самодельную коммутационную плату USB-C для вывода питания.


Коммутационная плата действительно полезна, поскольку она обеспечивает доступ к плотно разнесенным контактам разъема для питания (VBUS и GND), дифференциальных данных USB 2.0 (D + и D-), канала конфигурации (CC) и использования боковой полосы (SBU). Каждый из этих выводов разбит на 1 × 8 рядов выводов с интервалом 0,1" на плате, а также дублированные выводы VBUS и GND для сильноточных устройств. Но эта плата не поддерживает дифференциальные пары USB 3.1 SuperSpeed ​​разъема Type-C (сигналы TX и RX), поэтому тут поддержка только низкоскоростной, полной и высокоскоростной связи USB 2.0!


Для эксперимента выбран блок питания USB-C и DVM и расширен источник постоянного тока от блока питания до коммутационной платы, используя кабель USB-C (питание и данные). Далее фото быстрой тестовой конструкции, которая обеспечивает выход 5 В.

Встречается немало китайских коммутационных плат с одним подтягивающим резистором 56 кОм, как показано на рисунке. Они не подходят для этого дела (на самом деле они предназначены для переходников с вилки USB типа C на розетку USB типа A).


Как видно из таблицы, 56 кОм ± 20% - это рекомендуемый «подтягивающий резистор DFP Rp» для питания USB по умолчанию (500 мА для USB 2.0, 900 мА для USB 3.0).


Несмотря на то что большинство внешних аккумуляторов USB-C и мобильных зарядных устройств могут работать с напряжением до 12 В, продемонстрированный тут метод не позволит брать более 5 В. Имейте в виду этот момент.


Пайка SMD компонентов 1206, 0805, MELF, SO8, SO14, SO28, TQFP32 в домашних условиях обычным паяльником.


Что означают термины переключатель, тумблер и кнопка - в чём главные различия и особенности применения каждого из них.


Тристабильный мультивибратор - схема трёхканального переключателя LED.


Простой переходник для корпусов TQFP с самоцентрированием микросхемы, собранный своими руками.

Читайте также: