Жесткий диск это память энергозависимая энергонезависимая кратковременная

Обновлено: 07.07.2024


Энергозависимой памятью является компьютерная память, требующая для хранения информации наличия электроэнергии (в отличие от энергонезависимой). Пока источник питания подключен к этому виду памяти, данные сохраняются. Как только тот отключается, информация быстро теряется.

Существует несколько областей применения энергозависимых запоминающих устройств. Они даже могут использоваться в качестве основного хранилища данных. Ключевым их преимуществом перед жесткими дисками является быстрая скорость обмена информацией. Кроме того, свойство энергозависимости помогает защитить сведения ограниченного доступа, поскольку они становятся недоступными при отключении источника питания. Большинство видов оперативной памяти (Random-Access Memory, RAM) — энергозависимые.

Существуют следующие основные виды энергозависимой памяти:

Статическая память

Главное преимущество статической оперативной памяти (Static RAM, SRAM) заключается в том, что она намного быстрее динамической. Ее недостаток — высокая цена. Статической памяти не требуется постоянная регенерация. Но в то же время она нуждается в непрерывном токе для поддержания разности напряжений. Для хранения одного бита информации чип статической памяти использует ячейку из 6 транзисторов.

6-транзисторная ячейка статической памяти

Четыре транзистора M1-M4 формируют 2 инвертора с перекрестными обратными связями и непосредственно применяются для хранения одного бита данных. Ячейка памяти имеет 2 устойчивых состояния, которые нужны для хранения 0 или 1. Дополнительные два транзистора управляют доступом к ячейке памяти во время операций считывания и записи данных.

Энергопотребление статической памяти

Энергопотребление зависит от того, как часто осуществляется доступ к статической энергозависимой памяти, но в целом имеет небольшое значение. Иногда она может потреблять столько же электроэнергии, сколько динамическая память (при использовании на высоких частотах). С другой стороны, при нахождении в состоянии ожидания она потребляет совсем небольшое количество электроэнергии: несколько микроватт.

Применение статической памяти

Статическая оперативная память HM472114P-4

Встроенная в чип статическая память применяется:

  • как оперативная память или кэш-память в 32-битных микроконтроллерах;
  • как основная кэш-память в мощных процессорах, например, семейства Х86;
  • в интегральных схемах специального назначения (ASIC);
  • в программируемых пользователем вентильных матрицах (FPGA);
  • в программируемых логических интегральных микросхемах (ПЛИС, CPLD).

Кроме того, статическая энергозависимая память используется:

  • в научных и промышленных подсистемах, в автомобильной электронике;
  • в персональных компьютерах, маршрутизаторах и периферийном оборудовании в качестве внутренней кэш-памяти процессора и буфера жесткого диска или маршрутизатора;
  • в жидкокристаллических дисплеях (LCD-дисплеях) и принтерах для хранения отображаемого или печатаемого изображения.

Преимущества и недостатки статической памяти

  • невысокое энергопотребление;
  • простота (не требуется наличия схемы регенерации);
  • надежность.
  • высокая стоимость;
  • небольшая емкость;
  • большие размеры;
  • изменяющееся энергопотребление.

Динамическая память

Основная схема DRAM

Несмотря на то что оба вида энергозависимой памяти требуют наличия электрического тока для сохранения данных, они имеют некоторые различия. Динамическое оперативное запоминающее устройство (динамическое ОЗУ, DRAM) имеет большую популярность вследствие своей эффективности и стоимости. Для хранения одного бита информации в DRAM на интегральной микросхеме используется один конденсатор и один транзистор. Это позволяет эффективно применять пространство интегральной схемы и делает названный вид памяти недорогим.

Регенерация памяти

Разработка чипа DDR5 на частоте 5200 МГц

Процесс периодического считывания информации из ячеек компьютерной памяти и немедленной ее перезаписи в эти же ячейки без изменения называется регенерацией памяти. Это фоновый процесс для сохранения данных в динамической энергозависимой памяти. Он является определяющей характеристикой для такой разновидности.

Информация в динамической памяти хранится в виде наличия или отсутствия заряда на миниатюрном конденсаторе. С течением времени заряд уменьшается. Поэтому если данные своевременно не регенерировать, их можно полностью потерять. Для защиты от потери данных осуществляются их периодическое считывание и перезапись с помощью внешней схемы. В результате заряд конденсатора восстанавливается до исходного состояния.

Планка синхронной динамической оперативной памяти

Виды динамической памяти

Асинхронная динамическая память — первый тип DRAM, появившийся в конце 1960-х годов. Активно применялся до 1997 года, пока не был заменен синхронной DRAM. Память названа асинхронной вследствие того, что доступ к ней не синхронизируется с тактовым сигналом компьютерной системы.

Синхронная динамическая память нашла широкое применение в современных механизмах. Данный вид энергозависимой памяти компьютера отвечает на сигналы чтения и записи синхронно с сигналом системного тактового генератора. Синхронная память работает на более высоких скоростях по сравнению с асинхронной. С 1993 года этот тип является преобладающим в персональных компьютерах пользователей по всему миру.

Изначально синхронная динамическая память называлась SDRAM. В дальнейшем скорость передачи данных увеличилась в 2 раза и на рынке память появилась под названием DDR1. В дальнейшем были выпущены DDR2, DDR3 и DDR4. Последнее поколение (DDR4) было создано во второй половине 2014 года. В марте 2017 года началась разработка энергозависимых устройств памяти DDR5.

Сегодня мы поговорим о том месте, которое занимает в вашем цифровом устройстве каждый вид памяти. Та память, которую мы сегодня рассмотрим, именуется компьютерной, хотя и применяется не только в ПК, но и в других цифровых устройствах. Речь идет в том числе и о мобильных девайсах: смартфонах и планшетах, которые являются компьютерами по сути. Память служит для хранения данных и бывает нескольких типов. Некоторые типы памяти взаимозаменяемы. Другие же служат для выполнения совершенно различных задач. Проиллюстрируем написанное простым примером. И оперативная память и кеш процессора и флеш-карта вашего смартфона являются компьютерной памятью, хотя на первый взгляд между ними не так уж много общего. О системе памяти новой игровой консоли Xbox One мы недавно рассказывали довольно подробно. И хотя перед нами игровая консоль, ее память в полной мере компьютерная.

Компьютерная память

Какой бывает компьютерная память и в каких устройствах она используется?

Компьютерная память


Все виды компьютерной памяти можно разделить на две большие категории. Энергозависимая и энергонезависимая память. Энергозависимая память теряет все данные при отключении системы. Это происходит потому, что такая память требует постоянной энергетической подпитки и, как только подача электричества прекращается, она перестает функционировать. Энергонезависимая память сохраняет данные вне зависимости от того, включен ваш компьютер или нет. К примеру, большинство типов оперативной памяти относятся к энергозависимой категории.

Наиболее известные представители энергонезависимой категории это ПЗУ (постоянная память) и флеш-память, получившая в последнее время немалое распространение. В частности, карты памяти CompactFlash и SmartMedia.

Прежде всего просто перечислим основные виды компьютерной памяти и только потом начнем их рассматривать:

  • Оперативная память. Оперативное запоминающее устройство. ОЗУ, RAM
  • Постоянная память. Постоянное запоминающее устройство. ПЗУ, ROM
  • Кеш-память, Cache
  • Динамическая оперативная память. Dynamic RAM, DRAM
  • Статическая оперативная память. Static RAM, SRAM
  • Флеш-память, Flash memory
  • Память типа Memory Sticks в виде карт памяти для цифровых фотоаппаратов
  • Виртуальная память, Virtual memory
  • Видеопамять, Video memory
  • Базовая система ввода-вывода, БСВВ, BIOS

Как мы уже писали, память применяется не только в компьютерах, но и в иных цифровых устройствах. Тех «компьютероподобных» устройствах, которые для удобства изложения материала мы будем считать компьютерами, не отвлекаясь на постоянные обсуждения различий между ними. В частности, планшеты многие аналитики относят к компьютерам. Речь идет в том числе и о:

  • Сотовых телефонах
  • Смартфонах
  • Планшетах
  • Игровых консолях
  • Автомобильных радиоприемниках
  • Цифровых медиаплеерах
  • Телевизорах

Прежде, чем разбираться в том, как функционирует каждый вид памяти, поинтересуемся тем, как она вообще работает.

Иерархическая пирамида компьютерной памяти

Иерархическая пирамида компьютерной памяти


С технической точки зрения, компьютерной памятью считается любой электронный накопитель. Быстрые накопители данных используются для временного хранения информации, которой следует быть «под рукой» у процессора. Если бы процессор вашего компьютера за любой нужной ему информацией обращался бы к жесткому диску, компьютер работал бы крайне медленно. Поэтому часть информации временно хранится в памяти, к которой процессор может получить доступ с более высокой скоростью.

Существует определенная иерархия компьютерной памяти. Место определенного вида памяти в ней означает ее «удаленность» от процессора. Чем «ближе» та или иная память к процессору, тем она, как правило, быстрее. Перед нами иерархическая пирамида компьютерной памяти, которая заслуживает подробного рассмотрения.

Вершиной пирамиды является регистр процессора.
За ним следует кеш-память первого (L1)
и второго уровня (L2)
Оперативная память делится на:
физическую и виртуальную
И кеш, и оперативная память являются временными хранилищами информации
Далее идут постоянные хранилища информации:
ПЗУ/BIOS; съемные диски; удаленные накопители (в локальной сети); жесткий диск
Подножие пирамиды образуют устройства ввода, к которым относятся:
клавиатура; мышь; подключаемые медиаустройства; сканер/камера/микрофон/видео; удаленные источники; другие источники

Процессор обращается к памяти в соответствии с ее местом в иерархии. Информация поступает с жесткого диска или устройства ввода (например, с клавиатуры) в оперативную память. Процессор сохраняет сегменты данных, к которой нужен быстрый доступ, в кеш-памяти. В регистре процессора содержатся специальные инструкции. К рассмотрению кеш-памяти и регистра процессора мы еще вернемся.

Роль оперативной памяти в общем «оркестре» компонентов компьютера

Компьютерная память


Работу компьютера следует рассматривать как «оркестр». «Музыкантами» в нем являются все его программные и аппаратные составляющие, в том числе центральный процессор, жесткий диск и операционная система, выполняющая, как известно нашим читателям, пять важнейших невидимых задач. Оперативная память, которую нередко называют просто «памятью» находится в числе наиболее важных компонентов компьютера. С того момента как вы включили компьютер и до того мгновения, когда вы его отключите, процессор будет непрерывно обращаться к памяти. Давайте рассмотрим типичный сценарий работы любого компьютера.

Вы включили компьютер. Он, в свою очередь, загрузил данные из постоянной памяти (ROM) и начал самотестирование при включении (power-on self-test, POST). Компьютер проверяет сам себя и определяет, исправен ли он и готов ли к новому трудовому сеансу. Целью этого этапа работы является проверка того, что все основные компоненты системы работают корректно. В ходе самотестирования контроллер памяти посредством быстрой операции чтения/записи проверяет все ячейки памяти на наличие или отсутствие ошибок. Процесс проверки выглядит так: бит информации записывается в память по определенному адресу, а затем считывается оттуда.

Компьютер загружает из ПЗУ базовую систему ввода-вывода, более известную по английской аббревиатуре BIOS. В этом «биосе» содержится базовая информация о накопителях, порядке загрузки, безопасности, автоматическом распознавании устройств (Plug and Play) и некоторые иные сведения.

Затем наступает черед загрузки операционной системы. Она загружается в оперативную память компьютера с жесткого диска (чаще всего в современном компьютере всё обстоит именно так, но возможны и иные сценарии). Важные компоненты операционной системы обычно находятся в оперативной памяти компьютера на протяжении всего времени работы с ним. Это дает центральному процессору возможность немедленного доступа к операционной системе, что повышает производительность и функциональность всего компьютера в целом.

Когда вы открываете приложение, оно записывается всё в ту же оперативную память. Объем памяти этого типа в наши дни хоть и велик, но при этом все равно значительно уступает ёмкости жесткого диска. В целях экономии оперативной памяти некоторые приложения записывают в нее только свои важнейшие компоненты, а остальные «подгружают» с жесткого диска по мере необходимости. Каждый файл, который загружается работающим приложением, тоже записывается в оперативную память.

Что происходит, когда вы сохраняете файл и закрываете приложение? Файл записывается на жесткий диск, а приложение «выталкивается» из оперативной памяти. То есть и само приложение, и связанные с ним файлы удаляются из оперативной памяти. Тем самым освобождается место для новой информации: других приложений и файлов. Если измененный файл не был сохранен перед удалением из временного хранилища, все изменения будут потеряны.

Из вышесказанного следует, что каждый раз, когда что-то загружается или открывается, оно помещается в оперативную память, то есть во временное хранилище данных. Центральному процессору проще получить доступ к информации из этого хранилища. Процессор запрашивает из оперативной памяти необходимые ему в процессе вычислений данные.

Всё это звучит несколько суховато и не дает полного представления о масштабах событий. Но поистине впечатляюще выглядит то, что в современных компьютерах обмен информацией между центральным процессором и оперативной памятью совершается миллионы раз в секунду.

Любая микропроцессорная система, вне зависимости от типа используемого микроконтроллера или процессора, в обязательном порядке требует памяти (рис. 1). В памяти хранится исполняемая процессором программа. Там же помещаются данные, используемые при вычислениях. Данные могут поступать от датчиков или появляться в результате расчетов, они также могут изначально размещаться в памяти при программировании.

Процессор использует память для хранения программ и данных

Рис. 1. Процессор использует память для хранения программ и данных

В идеальном мире для хранения данных и программ будет достаточно одного вида памяти. Однако в реальности существующие технологии памяти вынуждают пользователя искать компромисс между несколькими параметрами, например, между скоростью доступа, стоимостью и длительность сохранения данных.

Например, жесткий диск (HDD), используемый в большинстве ПК, может хранить большой объем информации и имеет относительно низкую стоимость. Кроме того, информация, размещенная на HDD, не теряется при выключении ПК. В то же время скорость обмена при работе с жестким диском оказывается достаточно низкой.

Оперативная память ПК хотя и отличается высокой ценой и не сохраняет данные при отключении питания, но вместе с тем скорость обмена данными между ОЗУ и процессором оказывается гораздо выше, чем при работе с жестким диском.

Память можно разделить на две основные категории: энергозависимую (volatile) и энергонезависимую (non-volatile). Энергозависимая память теряет свое содержимое при отключении питания. Энергонезависимая память сохраняет данные даже при отключении питания.

В общем случае энергонезависимая память работает медленнее, но стоит дешевле, чем энергозависимая память. Чаще всего энергонезависимая память используется для хранения программ и пользовательских данных. Энергозависимая память в основном необходима для хранения часто используемых данных. Кроме того, в высокопроизводительных устройствах после запуска процессора программа копируется из энергонезависимой памяти в ОЗУ и далее выполняется оттуда.

Энергонезависимая память

Почти вся энергонезависимая память использует одну и ту же базовую технологию для хранения битов данных. Значение каждого бита по существу определяется наличием или отсутствием заряда, хранимого на плавающем затворе МОП-транзистора. От заряда на этом плавающем затворе зависит, находится ли канал МОП-транзистора в проводящем состоянии или нет, тем самым, кодируется логический уровень элементарной ячейки памяти.

Инжекция или удаление заряда изолированного затвора осуществляется за счет подачи высокого напряжения определенной полярности на традиционный затвор транзистора. В результате энергонезависимая память имеет несколько важных особенностей.

Во-первых, чтобы перезаписать бит памяти, его необходимо сначала стереть. При этом механизм записи с переносом заряда характеризуется таким негативным эффектом, как деградация ячейки памяти. Деградация приводит тому, что после многочисленных циклов записи/стирания ячейка памяти теряет способность хранить заряд, то есть перестает выполнять свою главную функцию.

Различные виды энергонезависимой памяти отличаются способом организации битов в микросхеме, что в свою очередь определяет, насколько легко и как быстро к ним можно получить доступ. Таким образом, когда речь заходит об энергонезависимой памяти помимо показателей скорости и стоимости в игру вступают дополнительные факторы. Эти факторы привели к появлению различных технологий энергонезависимой памяти.

Flash

Flash чаще всего используется для хранения программ и констант в микроконтроллерах, а также для хранения загрузчика в ПК.

Существует два основных типа Flash: NAND и NOR. Оба типа Flash имеют свои достоинства и недостатки и применяются в различных приложениях.

NOR Flash, как правило, выступает в роли XIP-памяти (Execute In Place), то есть может использоваться как для хранения, так и для выполнения программ. В большинстве случаев, NOR Flash оказывается дороже и быстрее, чем NAND Flash.

NAND Flash обычно используется в SSD-дисках, USB-накопителях, а также является основным типом памяти для SD-карт.

EEPROM

EEPROM (Electrically Erasable Programmable Read Only Memory) – достаточно медленный и относительно дорогой тип памяти. Вместе с тем EEPROM обеспечивает простоту доступа к данным. Если во Flash организован постраничный доступ к памяти, то EEPROM позволяет записывать и стирать отдельные байты. Таким образом, EEPROM является оптимальным вариантом для хранения данных конфигурации и пользовательской информации во встраиваемых системах.

SSD и SD

В SSD-накопителях (Solid State Drives) и SD-картах (Secure Digital) используется NAND Flash (рис. 2). В таких накопителях работа ведется с большими блоками данных. SSD-накопители и SD-карты обеспечивают более высокую надежность, по сравнению традиционными жесткими дисками (HDD).

Карта памяти SD (32 ГБ)

Рис. 2. Карта памяти SD (32 ГБ)

Для уменьшения влияния недостатков базовой технологии, в первую очередь деградации, в SSD используются специальные технологии, в том числе, схема обнаружения и исправления ошибок, а также схема равномерного использования ячеек памяти.

В отличие от SSD, SD-карты, в силу своего размера, обычно не отличаются большой емкостью и не обладают технологиями, повышающими надежность хранения данных. Следовательно, они в основном используются в приложениях, требующих не очень частого доступа к данным.

Дискретные микросхемы Flash-памяти большого объема (более нескольких Мбайт) оказываются весьма дорогими, если речь идет о мелком и среднесерийном производстве.

Таким образом, если вашему устройству требуется большой объем Flash (сотни Мбайт - Гбайты), то в большинстве случаев более экономичным решением станет использование SD-карты, по крайней мере, до тех пор, пока вы не достигнете крупносерийного производства, при котором стоимость дискретных микросхем Flash не опуститься до разумного значения.

Другие типы энергонезависимой памяти

В этом разделе кратко описаны некоторые другие типы энергонезависимой памяти, которые широко использовались в прошлом.

Постоянная память ROM. Содержимое этой памяти программируется на этапе производства и не может быть изменено в процессе эксплуатации.

Однократно программируемая пользователем память PROM (Programmable ROM). Содержимое этой памяти может быть однократно запрограммировано пользователем.

Стираемая память EPROM (Erasable Programmable ROM). Микросхемы EPROM имеют небольшое окно для стирания содержимого с помощью ультрафиолетового излучения. После стирания память EPROM может быть снова запрограммирована.

Пример устаревшей микросхемы EPROM с окном для стирания УФ-светом

Рис. 3. Пример устаревшей микросхемы EPROM с окном для стирания УФ-светом

Энергозависимая память

Энергозависимая память RAM (Random Access Memory) или оперативное запоминающее устройство (ОЗУ) – это запоминающее устройство, которое сохраняет свое содержимое только при наличии напряжения питания. Существует два типа RAM: статическая и динамическая.

Ячейка динамического RAM или DRAM не только нуждается в присутствии напряжения питания, но и отличается постоянной потерей заряда, из-за чего содержимое DRAM требует периодической регенерации.

Статическая RAM или SRAM не требует регенерации и сохраняет свое содержимое при наличии напряжения питания.

В каких же случаях необходимо использовать SRAM или DRAM вместо любого из описанных выше энергонезависимых типов памяти? Ответ прост – в тех случаях, когда необходима высокая скорость и простота доступа к данным. Оперативная память оказывается не только намного быстрее энергонезависимых типов памяти, но и обеспечивает произвольный доступ к хранящимся в ней данным. Можно записывать или читать данные из любой области памяти с очень высокой скоростью, не беспокоясь о стирании страниц или блоков. Вместе с тем основным недостатком RAM является высокая стоимость. Таким образом, в большинстве вычислительных систем обычно используют комбинацию из RAM и flash-памяти. При этом каждый из этих типов памяти решает конкретные задачи, с учетом оптимального использования их преимуществ.

В категории энергозависимой памяти SRAM оказывается быстрее, чем DRAM, но при этом отличается и более высокой стоимостью. Это связано с тем, что для реализации ячейки SRAM требуется от четырех до шести транзисторов, а для ячейки DRAM требуется только один. Следовательно, на кристалле одного и того же размера можно уместить гораздо больше ячеек DRAM, чем ячеек SRAM.

В то же время для работы с DRAM требуется контроллер, который будет автоматически выполнять периодическую регенерацию содержимого памяти. Таким образом, использование DRAM вместо SRAM имеет смысл только в том случае, если стоимость контроллера перекрывается дешевизной DRAM-памяти.

SRAM чаще всего применяется в тех случаях, когда высокая скорость доступа имеет критическое значение, а объем необходимой памяти оказывается относительно небольшим.

Таким образом, SRAM обычно используется в микроконтроллерах, где небольшой объем статической памяти обеспечивает меньшую стоимость по сравнению с DRAM с собственным контроллером памяти. SRAM также используется в качестве высокоскоростной кэш-памяти внутри микропроцессоров, благодаря высокой скорости доступа.

Виды DRAM

Существуют различные виды DRAM. Исторически первые микросхемы DRAM сначала уступили место FPRAM (Fast Page RAM), которые в свою очередь были заменены на EDO RAM (Extended Data Output RAM), на смену которым, в конце концов, пришли микросхемы синхронной памяти DRAM или SDRAM.

Новые поколения SDRAM используют двойную скорость передачи данных (SDRAM included Double Data Rate). Речь идет о DDR2, DDR3 и DDR4.

Хотя каждое новое поколение SDRAM имело некоторые улучшения по сравнению с предыдущими поколениями, следует отметить, что сама базовая динамическая ячейка ОЗУ оставалась практически без изменений и обеспечивала лишь незначительное увеличение скорости доступа. С другой стороны, плотность размещения ячеек памяти или общее количество битов, упакованных в один чип, значительно увеличилось с течением времени. Тем не менее, основные улучшения в новых поколениях SDRAM были связаны именно с увеличением скорости передачи данных и уменьшением удельного энергопотребления.

SDRAM является основой для всех современных видов DRAM. До появления SDRAM память DRAM использовала асинхронной обмен, то есть после запроса на чтение данные сразу же появлялись на шине данных. В SDRAM данные синхронизируются с помощью тактового сигнала.

Например, после того, как SDRAM-память получает команду чтения, она начинает выставлять данные спустя определенное количество тактов. Эта задержка известна как строб адреса столбца CAS (Column Address Strobe). Она имеет фиксированное значение для каждого модуля памяти.

Кроме того, в SDRAM считывание данных всегда синхронизируется по фронту тактового сигнала. Таким образом, процессор точно знает, когда ожидать запрошенные данные.

DDR DRAM

Говоря о первом поколении SDRAM, его часто называют памятью с однократной скоростью передачи данных или SDR (Single Data Rate). Следующим эволюционным шагом в развитии SDRAM стало появление DDR SDRAM (Double Data Rate SDRAM) или памяти с удвоенной скоростью передачи данных.

На рис. 4 показана разница в обмене данными при работе с SDR и DDR SDRAM. Обратите внимание, что на этом рисунке задержка CAS не показана.

Передача данных при работе с SDR и DDR

Рис. 4. Передача данных при работе с SDR и DDR. Прием данных DDR выполняется как по фронту, так и по срезу тактового сигнала

DDR2, DDR3 и DDR4

При переходе от SDR к DDR передача данных стала вестись как по фронту, так и по срезу тактового сигнала. Далее при переходе от DDR2 к DDR4 SDRAM скорость передачи возрастала за счет использования некоторых хитрых приемов. При этом, как уже упоминалось ранее, скорость доступа к содержимому ячейки памяти DRAM не сильно изменилась из-за ограничений базовой технологии. В реальности эту скорость удалось увеличить всего в два раза.

Модуль DDR-памяти, используемый в компьютерах

Рис. 5. Модуль DDR-памяти, используемый в компьютерах

Не вдаваясь в технические тонкости, можно отметить, что одним из «хитрых» способов повышения скорости передачи является увеличение разрядности шины данных. Очевидно, что если организация памяти позволяет считать за один цикл доступа сразу несколько битов, то это приводит к кратному увеличению скорости передачи данных.

Поскольку доступ к памяти обычно осуществляется последовательно, CAS определяет некоторую задержку между подачей команды чтения и готовностью данных. Следовательно, еще одна хитрость, позволяющая увеличить скорость чтения, заключается в поддержке циклов многократного чтения или в возможности предварительного выбора данных. Эти функции позволяют контроллеру памяти заранее подготовить новый блок данных для следующей передачи.

Наконец, достижения в кремниевой полупроводниковой технологии позволяют снизить рабочее напряжение, а значит уменьшить удельное потребление на бит и увеличить объем памяти при том же энергопотреблении.

Заключение

В большинстве микропроцессорных устройств требуется как энергонезависимая, так и энергозависимая память. Однако выбор оптимального типа памяти зависит от особенностей конкретного приложения.

Память оказывает большое влияние на производительность, стоимость и энергопотребление. По этой причине выбор оптимального типа памяти является очень важной задачей.

Как и в случае со всеми инженерными задачами, разработка электронных устройств очень часто требует поиска компромиссных решений. Теперь, когда вы знаете о достоинствах и недостатках различных типов памяти, вы сможете выбрать оптимальный тип памяти для вашего нового устройства.

Мы увидим также, как эта штука развивалась и «умнела», а вместе с ней «умнел» и весь компьютер. Для начала рассмотрим

Что такое энергонезависимая память?

NVRAM (Non Volatile Random Access Memory) – общее название энергонезависимой памяти. Энергонезависимая память – это такая, данные в которой не стираются при выключении питания. В противоположность ей есть энергозависимая память, данные в которой исчезают при отключении питания. Т.е. когда питание на микросхему (или модуль) памяти подается, она «помнит» данные, когда перестает подаваться – она их «забывает».

Под понятие «энергонезависимая» подпадает несколько видов памяти. Кстати сказать, память (и энергозависимая, и энергонезависимая) имеется не только в компьютере, но и во всех околокомпьютерных и периферийных устройствах:

Контроллер клавиатуры

Даже в компьютерных клавиатурах имеются оба вида памяти.

Оба они упакованы в бескорпусную микросхему («капельку»), покрытую компаундом.

Виды энергонезависимой памяти

Один из видов энергонезависимой памяти именуется ROM (Read Only Memory, память только для чтения). В русскоязычной литературе такая память называется ПЗУ (постоянное запоминающее устройство). Данные в микросхему, которая именуется еще англоязычным термином «chip» (чип, кристалл), записываются при изготовлении. Изменить их потом нельзя.

Еще одна разновидность энергонезависимой памяти – PROM (Programmable ROM). Эквивалентный русскоязычный термин – ППЗУ (Программируемое ПЗУ). В такой микросхеме в исходном состоянии во всех ячейках памяти записана одинаковая информация (нули или единицы). С помощью специальной процедуры программирования в ячейки записывается нужная информация.

Память с УФ стиранием

Происходило это путем пережигания плавких перемычек.

После записи изменить данные в ячейках было нельзя.

Возможность программирования предоставляет гибкость в производстве и использовании. Чтобы записать модифицированную информацию в микросхему, не надо перестраивать технологический процесс производства. Пользователь (точнее, производитель электронной техники) сам записывает нужную ему информацию.

Но однократно программируемая память тоже не всегда хороша. Модифицировать «прошитую» в микросхему информацию нельзя, нужно менять микросхему. Это не всегда удобно и возможно. Поэтому появились многократно программируемые микросхемы. В первых изделиях информация стиралась ультрафиолетовым излучением, для чего использовалась специальная лампа.

В таких микросхемах имелось окошечко, закрытое кварцевым стеклом, которое пропускало УФ излучение. Но все равно это было неудобно, и после научились стирать, и записывать информацию электрическим сигналом. Такую память стали называть EEPROM (Electric Erasable PROM, ЭСППЗУ, электрически стираемое программируемое ПЗУ).

Это и микросхема BIOS в компьютере.

Это и всем известные ныне «флэшки» (портативные накопители данных), твердотельные накопители SSD (Solid State Drive), альтернатива электромеханическим винчестерам, карты памяти, применяемые в фотоаппаратах и т.п.

Отметим, что перезаписать информацию в таких накопителях можно ограниченное (хотя и большое) количество раз.

Проблема времени в компьютере

Микросхема RTC на материнской плате

В первых компьютерах не было микросхемы RTS (Real Time Clock, часы реального времени).

Это было неудобно, и потом ее начали устанавливать.

Проблема, которая возникла с RTC в самом начале, заключалась в том, что компьютер работает не 24 часа в сутки. Он включается пользователем в начале рабочего дня и выключается в его конце. Пока компьютер был включен, он «помнил» время, как только его выключали, он время «забывал».

Каждый раз устанавливать время заново было бы очень неудобно. Неудобно было бы и каждый раз возобновлять и другие системные настройки (тип винчестера, источник загрузки и другие). Поэтому придумали встроить в общий корпус микросхему RTC, которая помнила не только время, но и все настройки BIOS Setup, и источник питания – батарею гальванических элементов.

Ячейки памяти RTC представляли собой, по сути, оперативную память (RAM). Такую память также отнесли к энергонезависимой, так как она не зависела от источника внешнего напряжения. Она была энергонезависимой до тех пор, пока встроенная батарея не «садилась». Такая память была сделана на основе КМОП структур, поэтому потребляла в статическом режиме (режиме хранения) очень небольшой ток, порядка единиц микроампер.

Поэтому встроенной батареи хватало на несколько лет. После чего весь модуль подлежал замене. Существовали конструкции материнских плат с разъемом под такой модуль. И можно было легко выполнить его замену. Но затем технический прогресс продолжил свой неумолимый бег. Число микросхем на материнской плате уменьшалось, а степень их интеграции увеличивалась.

Микросхема чипсета

В конце концов пришли к чипсету (набору микросхем), состоящему из 1-2 корпусов, который включал в себя почти все подсистемы материнской платы.

Встраивать в тот же корпус (куда напихано уже много всего) еще и источник напряжения посчитали нецелесообразным.

Такой корпус имеет много выводов. Установка его в разъем усложнила бы конструкцию, увеличила бы ее стоимость и снизила бы надежность.

Поэтому источник питания (3 V литиевый элемент) стали устанавливать отдельно. Это упростило и удешевило плату, так как теперь надо менять только элемент, а не все сразу. Следует отметить, что вначале в качестве источника резервного питания использовались никель-кадмиевые аккумуляторы.

После длительной эксплуатации они могли потечь. И вытекший электролит мог повредить проводники материнской платы. Современные литиевые элементы не текут даже при очень глубоком разряде.

Технология изменилась, но название структуры, хранящей настройки BIOS Setup, осталось прежним – NVRAM. Но теперь, в строгом смысле, она не является энергонезависимой. Ведь ее «энергонезависимость» обеспечивается внешним источником напряжения.

Напомним, что первым признаком того, что элемент 2032 исчерпал свой ресурс, является сброс времени и даты при включении компьютера. Напряжение свежего элемента составляет величину около 3,3 В. По мере истощения его ЭДС падает. И, как только оно снизится (ориентировочно) менее 2,8 В, структура, хранящая настройки, «забудет» их. Заряду литиевые элементы не подлежат.

Что обозначают цифры в маркировке литиевого элемента?

Литиевый элемент 2032

В заключение отметим, что первые две цифры маркировки элемента (20) определяют его диаметр в миллиметрах.

Вторые две – его емкость (способность отдать определенное количество энергии).

Чем больше цифра, тем больше емкость и тем толще элемент. Типовое значение емкости элемента 2032 – 225 мА/ч (миллиампер-часов), элемента 2025 – 160 мА/ч.

Следует отметить, что это максимальные значения. Реальные цифры зависят от сопротивления нагрузки и окружающей температуры. Чем больше сопротивление нагрузки и выше температура (разумеется, до известных пределов), тем больше эквивалентная емкость. Т.е. тем дольше элемент будет питать энергией нагрузку. При пониженной окружающей температуре элемент «садится» быстрее.


Литиевые элементы – очень хорошие источники энергии.

У них высокие показатели удельной энергии, т.е. большое соотношение «энергия/вес» и очень небольшой саморазряд (менее одного процента в год). У свинцовых кислотных аккумуляторов, например, эти показатели гораздо хуже.

Читайте также: