В каком году изобрели 3д принтер

Обновлено: 15.05.2024

Прошедшая в начале января выставка CES повергла нас в шок. Основой шоу, которое в начале каждого года проводится в Лас-Вегасе, служили несколько десятков стендов компаний, выпускающих 3D-принтеры. Много времени было уделено корпоративному сегменту. Однако большинство игроков на 3D-рынке представили и «обычные» пользовательские модели, о которых мы обязательно расскажем далее.

Неужели эра 3D-печати настала?

Что такое 3D-печать?

Что же такое 3D-печать? В металлургии и машиностроении, как известно, деталь получают путем вычитания материала. То есть рабочий берет заготовку, устанавливает ее на станок и при помощи режущего инструмента (резцов, фрез, долбяков, шлифовальных кругов и так далее) удаляет лишнее. Основой 3D-печати служит аддитивность, то есть сложение материала и создание определенной конструкции. Шаг за шагом, согласно трехмерному чертежу, 3D-принтер наносит слой пластика. То есть процесс происходит «с нуля». К 3D-печати относят и порошковое спекание полимерных элементов, а также металлических пудр.

Пример фигурки, напечатанной на 3D-принтере

Понятие «3D-печать» может завести неподготовленного пользователя в тупик, так как многие сразу же начинают проводить параллели с обычной бумажной печатью. Да, 3D-принтер создает предмет. Но для этого сначала необходимо разработать в одной из САПР-программ трехмерный чертеж. Затем его необходимо оптимизировать в приложении, с которым работает конкретный принтер. Следом нужно откалибровать само устройство. И только потом начать печатать. То есть процесс создания полноценного предмета состоит из нескольких нетривиальных этапов, просто нажать на кнопочку «печать» не получится.

А раз так, то очевидно, что 3D-принтер дома вряд ли пригодится какой-нибудь домохозяйке. Да и дети, очевидно, вряд ли будут развлекаться с такой дорогой «игрушкой». Круг людей, которым может пригодиться 3D-принтер, достаточно узок. В первую очередь, это инженеры, архитекторы, дизайнеры и ювелиры. Очень часто случается так, что проектируемую вещь необходимо подержать в руках. В быту 3D-принтер может пригодиться в качестве ремонтного станка. Например, когда потребуется сделать какую-нибудь деталь, которую просто так не купишь в магазине: отломавшуюся ручку мебельного гарнитура или еще что-то. Вопрос заключается в том, будете ли вы с этим «заморачиваться»?

3D-печать — это модный тренд! Появление общедоступных 3D-принтеров называют третьей промышленной революцией! И не зря. Последнюю сотню лет промышленность держится на эффекте масштаба. Правило машиностроения незыблемо: чем больше вещей сделать в партии, тем дешевле будет стоить один экземпляр. Однако конечную стоимость продукта определяют не только производство, но и логистика с транспортировкой. С повсеместным применением 3D-принтеров от этой длинной цепочки можно будет отказаться. Будет достаточно раздобыть чертеж (например, купить его) и напечатать у себя дома или в каком-нибудь центре 3D-печати. Можно наладить и небольшое штучное производство.

Эволюция 3D-печати. Начало эпохи DIY

Принято считать, что эпоха «домашней» 3D-печати началась в 2010 году, когда была выпущена модификация 3D-принтера Prusa Mendel, разработанная чешским инженером Иосифом Прусса. Однако сама технология берет свое начало еще в 80-х годах прошлого века. Это так называемая стереолитография SLA (Stereo Lithography), разработанная Чарльзом Халлом в 1984 году и запатентованная двумя годами позже. В 1986 году был собран и первый 3D-принтер, а также основана компания 3D Systems.

Prusa Mendel 2010

Примечательно, что понятия «3D-печать» среди энтузиастов и технологов не существовало вплоть до 1995 года. А пока в том же 1986 году была разработана технология селективного лазерного спекания полимеров — SLS (Selective Laser Sintering).

Два года спустя Скоттом Крампом была изобретена технология послойного наплавления FDM (Fused Deposition Modeling). Именно она является самой распространенной, потому что имеет относительно небольшую стоимость как материалов, так и амортизации оборудования. На сегодняшний день именно FDM-принтеры наиболее часто применяются в домашних условиях. Считается, что первое подобное устройство было выпущено в 1991 году.

На протяжении десятилетия в индустрии 3D-печати происходило относительное спокойствие. В 2000 году была разработана технология PolyJet.

В 2005 году было создано сообщество энтузиастов RepRap. В основе проекта лежат две идеи:

  • любой принтер RepRap может напечатать другой принтер RepRap;
  • все разработки устройств 3D-печати находятся в открытом доступе.

«RepRap — изобретение, которое сметет глобальный капитализм, начнет вторую промышленную революцию и спасет окружающую среду…» — было написано на первой полосе The Guardian. Не будем вникать в подробности, почему именно речь идет о второй промышленной революции. Здесь все зависит от того, от какого фундамента отталкиваться при синтезировании тех или иных определений.

За восемь лет было разработано четыре поколения 3D-принтеров RepRap. Однако даже сейчас задача воспроизводить одно RepRap-устройство другим не выполнена. Одно дело — печатать пластиковые детали; другое — создавать микроэлектронику и металлические элементы конструкции экструдера.

В 2010 году ученым удалось напечатать искусственный 3D-сосуд. Сейчас же идет разработка по созданию полноценных человеческих органов. В качестве «материала» используются стволовые клетки.

В то же время инженеры сумели разработать простенькие пищевые 3D-принтеры, которые могут печатать, например, конфеты или пиццу.

Уже известно, что, начиная с этого года, крупнейшие IT-компании начнут свою полномасштабную экспансию на рынке 3D-печати. Так, в Epson заявили о намерении производить в больших масштабах промышленные 3D-принтеры. А вот HP желает возглавить отрасль FDM-печати.

Основные технологии 3D-печати

На сегодняшний день существует множество технологий объемной печати, но все они так или иначе делятся на несколько методов.

В 3D-принтинге (для лучшего понимания) чертеж принято называть моделью, а полученный предмет — макетом.

Методы печати

Интересно, что методы 3D-печати чем-то напоминают методы обычной (читай — 2D) печати на бумаге.

  • Спекание SLS (Selective Laser Sintering). Материал в виде порошка наносится тонким слоем, а затем спекается при помощи лазера. Так, слой за слоем, создается макет.
  • Экструзия, или нанесение термопластов (FDM — Fused Deposition Modeling). Сопло принтера (экструдер) расплавляет материал до жидкого состояния и наносит его тонким слоем. Охлаждаясь, пластик вновь кристаллизуется.
  • Фотополимеризация. Сопло принтера наносит тонкий слой жидкого фотополимера, который под действием ультрафиолетового облучения затвердевает.
  • Стереолитография SLA (Stereo Lithography). Участок жидкого фотополимера засвечивается лазером и затвердевает. Затем образованный затвердевший слой снова помещают в жидкий полимер и засвечивают лазером. Так появляется второй слой.

В зависимости от метода 3D-печати устройство может быть как монохромным, так и цветным. FDM-принтеры, работающие по принципу экструзии, печатают макеты только одним цветом. Хотя есть модели с несколькими печатающими головками, в каждую из которых можно загрузить нить разного цвета.

3D-принтеры, работающие с порошками, могут печатать в цвете. На данный момент друг с другом конкурируют два промышленных типа устройств: ZPrinter (модели 650 и 850), позволяющие за счет пяти печатающих головок создавать 390000-цветный макет из материала на основе гипса, и Mcor Iris, поддерживающий один миллион цветов, у которого в качестве рабочего вещества используется бумага. С одной стороны, это хороший показатель. С другой стороны, современный TFT-экран может передавать до 16 млн цветов.

Пример напечатанного на 3D-принтере цветного логотипа сайта

Принтеры, работающие по SLS- и SLA-технологии, могут печатать только белым или полупрозрачным. Хотя никто не запрещает потом самостоятельно покрасить макеты.

Пример моделей, напечатанных на цветном 3D-принтере

Еще примеры цветной 3D-печати

Сейчас существуют технологии, позволяющие печатать многоцветным пластиком. И компания 3D Systems, и Stratasys уже представили готовые решения. Однако назвать их надежными и безотказными пока рано, что и показала прошедшая в Лондоне выставка 3D Printshow.

Обычных пользователей больше всего интересует экструзивный метод. Поэтому предлагаем поговорить о нем более подробно. Начнем с материалов, которые используются в FDM-принтерах.

Используемые материалы

На сегодняшний день широко используются два типа материалов.

  • АБС (акрилонитрилбутадиенстирол). Непрозрачный пластик, на производство одного килограмма которого требуется примерно 2 кг нефти. Эластичный и ударостойкий. Плавится при температуре 113 градусов Цельсия и застывает в диапазоне температур 90-103 градуса Цельсия. Из него, кстати, делают кубики LEGO.
  • ПЛА (полилактид). Биоразлагаемый материал — полиэфир. Получают из кукурузы и сахарного тростника. Кристаллизуется уже при 60 градусах Цельсия. Характерен тем, что обеспечивает более высокое качество и точность печати, однако имеет более хрупкую структуру.

Подача АБС-пластика в печатающую головку принтера

Периодически можно встретить и третий материал — ПВС (поливиниловый спирт). Это растворимый в воде полимер. На данный момент используется не так часто, к тому же стоит дороже и АБС, и ПЛА.

Технология FDM

Итак, вот мы и добрались до технологии FDM — технологии, на базе которой работают все «домашние» 3D-принтеры. Основа работы — это подача материала в виде тонкого прутика в печатающую головку (экструдер). Под действием высоких температур вещество начинает плавиться и распыляться через сопло диаметром всего несколько микрометров. За счет электродвигателей будущий предмет «размазывается» по станине. Сначала делается опора, чтобы макет не сдвинулся. Затем создаются слои, слои, слои.

Принцип работы FDM-принтера

Китайская народная мудрость гласит, что человек может бесконечно на три вещи: как горит огонь, как течет вода и как работает другой человек. Мы бы добавили сюда еще и процесс 3D-печати.

Пример модели, напечатанной на FDM-принтере

Надо понимать, что у любой технологии существуют свои ограничения. Первое — это размеры. Каждый принтер имеет определенную область, в которой он может работать. Однако стоит учесть, что макет можно печатать по частям и потом соединить его при помощи бесшовного склеивания.

Второе ограничение — это конструкция макета. К сожалению, 3D-принтерам (в том числе и промышленным) не все подвластно. Если говорить о FDM-печати, то на таком принтере, например, нельзя напечатать макет, в который будет помещен еще один макет. Такие предметы «принтятся» только при помощи порошкового спекания.

Про цвет мы уже писали. FDM-принтеры могут печатать только в одном цвете или нескольких, если устройство оснащено дополнительным экструдером. К счастью, катушки с АБС-пластиком продаются, как говорится, на любой вкус. Повторимся, макет можно всегда покрасить.

Третье ограничение — это опыт проектировщика. Как ни крути, но необходимо работать с САПР. Одно дело — печатать простенькие 3D-модельки. И совсем другое — создавать по-настоящему сложные предметы. К тому же каждый 3D-принтер необходимо настраивать и калибровать. На настройку сверхдорогого промышленного оборудования может уйти до полугода.

Интересный факт №1

Не все, что создается при помощи 3D-печати, может пойти на пользу человечеству. Мы уже писали про первый пистолет, созданный при помощи принтера. Проблема заключается в том, что человек, раздобыв чертеж, может самостоятельно распечатать «ствол» и использовать его по назначению. Как показывает практика, прочности пистолета хватает, чтобы выполнить один выстрел. И этого достаточно, чтобы совершить преступление.

Принтеры для печати объемных моделей появились на промышленных предприятиях, в образовательных организациях, стали доступны для домашнего использования, перестав быть эксклюзивным оборудованием. Когда и кем был придуман 3D-принтер, какие технологии объемной печати существуют и где применяются, что ожидает сферу 3D-оборудования в будущем?

Первый 3D-принтер: история создания

В развитии 3D-технологий принимали участие инженеры-изобретатели разных стран. Первопроходцем в мире объемной печати считают Чака Халла — американского разработчика. «Установку для стереолитографии» он начал создавать в 1984 году, а спустя пару лет получил на нее патент. Это позволило перевести проект на коммерческие рельсы: в 1988 году началось серийное производство 3D-принтеров.

фото изобретателя

Интересно! Халл стал первым, потому что успел запатентовать свое изобретение. Но еще до него японец Хидео Кодама придумал технологию фотополимерного отверждения моделей и пытался в мае 1980 года получить патент, позднее — в 1984-м — французы Оливье де Витте, Ален ле Мехо и Жан-Клод Андре подавали заявку на свое изобретение аппарата стереолитографии. Но по тем или иным причинам ни первый, ни вторые не смогли запатентовать собственные разработки.

Технология печати заключается в следующем: жидкое светочувствительное вещество — фотополимер — выкладывается тонким слоем и тут же отверждается под воздействием УФ-лучей, превращаясь в пластмассу и обретая заданную форму.

В том же 1988 году, когда на рынок поступили 3D-принтеры Халла, другой американец, Стивен Скотт Крамп, предложил новый способ объемной печати — моделирование методом наплавления. И третья методика, представлявшая собой лазерное спекание фотополимера, но не раствора, а порошка, была представлена Карлом Декардом, инженером из Техасского университета.

Все три аппарата для печати 3D-объектов стали прототипами современных принтеров, предназначенных для создания объемных моделей. Первые агрегаты не отличались высоким качеством и точностью печатных изделий, но это был только первый шаг в прорывной технологии 3D-печати.

Справка. Термин «3D-печать» появился только в 1995 году, а название «3D-принтер» изобретенным агрегатам присвоено в 1996 году.

Эволюция в 3D-печати

Алгоритмы создания объемного объекта постепенно совершенствовались. Появились новые материалы и способы их обработки, повышалась точность печати и улучшалось качество готовых изделий. Каждый из методов изготовления 3D-моделей обладает своими преимуществами и недостатками. Для разных сфер производства подходит своя технология, и даже самая ранняя из всех остается актуальной спустя десятки лет после ее первого анонсирования.

фото принтера

Изготовление объектов методом ламинирования LOM (от англ. laminated object manufacturing) в 1985 году предложил Михаило Фейген. Объемная фигура формируется из тонких слоев пластика, бумаги, ткани, композитных материалов. Нарезку пленок по контуру ведут лазером, затем разогревают материал и соединяют послойно под давлением.

Важно! Стоимость материалов для LOM-печати невысока, это дает возможность максимально снизить себестоимость изделий. Но цена принтеров на порядок больше, чем, например, FDM-аппаратов, поэтому такая техника не востребована для персонального использования.

Аббревиатура SLS расшифровывается как selective laser sintering — селективное лазерное спекание. Процесс заключается в следующем:

  • порошок или гранулы рассыпаются тонким равномерным слоем;
  • лазерный луч спекает филамент в областях, заданных цифровой моделью;
  • насыпается и выравнивается следующий слой, и цикл повторяется до получения полного объекта.

Важно ! В одной камере принтера одновременно допускается печатать несколько моделей.

В качестве филамента выступают порошковые полимеры, керамические гранулы, нейлон и металлический порошок.

SGC (solid ground curing) — методика послойного уплотнения, внедренная инженерами компании Cubital (Израиль). Процедура печати заключается в проецировании шаблона на слой фотополимера. Засвеченный ультрафиолетовыми лучами участок затвердевает, полости заполняются воском, и начиняется формирование следующего слоя. Действия многократно повторяются, и возникает объемная деталь. По окончании процесса воск выплавляется.

Важно! Стоимость оборудования очень высока, а в качестве филамента применимы дорогостоящие токсичные полимеры.

Технология получила второе название — масочная стереолитография.

Fused deposition modeling дословно можно перевести как «послойное сплавление». В большинстве современных 3D-принтеров применяется именно эта технология печати термопластичными материалами. Филамент подается в экструдер, расплавляется и выдавливается тонкой нитью на платформу, где слой за слоем вырастает объемная модель.

  • по технологии FDM печатают детали любой сложности;
  • ассортимент термопластов дает возможность выбрать для печати материал нужного цвета и с необходимыми свойствами;
  • сформированные объекты допускается обрабатывать — шлифовать, красить, доводить на станках с ЧПУ и вручную.

Демократичная стоимость принтеров и филамента обусловила их применение для домашнего использования.

RepRap

Проект Replicating Rapid Prototyper — сокращенно RepRap — запущен в 2006 году. Его цель — создать принтер, способный воспроизвести самого себя. Первый экземпляр самореплицирующегося аппарата был представлен в 2008 году. Он печатал около половины собственных конструктивных узлов и механизмов.

Схемы, чертежи и пояснительная документация доступны для скачивания в сети Интернет. Благодаря принтерам RepRap и свободному доступу к инструкциям любой желающий может наладить мелкосерийное производство по созданию 3D-моделей с минимальными вложениями на приобретение оборудования. Все затраты заключаются в приобретении пластика.

Первый пищевой принтер

фото пищевого принтера

Идею печатать еду воплотили в жизнь ученые Технологического института штата Массачусетс. Амит Зоран и Марчелло Коэльо из Fluid Interfaces Group в 2010 году выпустили 3D-принтер, воссоздающий продукты питания. Аппарат назвали Cornucopia (с англ. «рог изобилия»). Печатающее устройство самостоятельно создает смеси, охлаждает до заданной температуры и создает готовый продукт, представляющей собой блюдо с необходимым вкусом, запахом и текстурой и обладающее требуемой пищевой ценностью.

3D-принтер в медицине

фото биопринтера

Что может напечатать биопринтер:

  • кровеносные сосуды;
  • кожу;
  • кусочки тканей;
  • хрящи;
  • целые органы — почки, мочевой пузырь, сердце.

Это интересно . Биопринтер используют для ускорения заживления ран. Прибор после сканирования повреждения печатает заполняющие рану ткани прямо на теле пациента.

Перспективы 3D-печати

Печать объемных объектов — технология будущего. Являясь настоящей многофункциональной и при этом компактной фабрикой, 3D-принтер будет использоваться во многих сферах: строительстве, медицине, автомобильной отрасли, электронике, пищевой промышленности, фармацевтике.

  1. Строительство. Напечатанный дом больше не считается чудом. В Китае, Дубае и странах Европы уже есть архитектурные объекты, напечатанные огромными строительными 3D-принтерами , использующими в качестве филамента строительный раствор.
  2. Медицина. Главное направление внедрения печатных устройств — получение органов для пересадки. Формирование кровеносных сосудов, кожных покровов с успехом практикуется в среде научных медучреждений.
  3. Автомобилестроение. Для производства деталей уже сейчас применяется технология 3D-печати. Существуют прототипы, полностью созданные на принтере.
  4. Пищевая промышленность. Кроме создания кулинарных шедевров, устройства печати будут задействованы для производства блюд с заданными свойствами — диетических, с точно рассчитанной пищевой ценностью. Еду для космических путешественников тоже предлагается печатать.

Это лишь незначительное количество областей применения технологии 3D-печати. Благодаря возможности снизить себестоимость изделий за счет уменьшения производственных затрат оснащаться печатающими устройствами будет все больше предприятий, а в быту они прочно займут место рядом с традиционными струйными и лазерными аппаратами.

В 2011 году принтер, который заправили биогелем, напечатал человеческую почку прямо во время конференции TED. Два года назад Adidas анонсировала новую модель кроссовок, которые печатают на 3D-принтере за 20 минут. А недавно компания Илона Маска SpaceX успешно провела испытания двигателей космического корабля, которые тоже напечатали на 3D-принтере.

В современном мире 3D-печать — это не удивительная технология будущего, а хорошо изученная реальность. Ее применяют в архитектуре, строительстве, медицине, дизайне, производстве одежды и обуви и других сферах. По запросу «3D-принтер» поисковики выдают сотни чертежей и прототипов разной сложности — от мыльницы и настольной лампы до автомобильного двигателя и даже жилого дома.

Любой может купить принтер и напечатать чехол для смартфона, но дальше 3д печати по чертежу идут не все. В этой статье расскажем, когда появилась 3D-печать, как можно применять технологию и какие у нее перспективы.

Как появился трехмерный принтер

Не будем слишком утомлять вас датами и кратко перескажем историю 3D-печати.

Предвестник трехмерной печати. В начале 80-х доктор Хидео Кодама разработал систему быстрого прототипирования с помощью фотополимера — жидкого вещества на основе акрила. Технология печати была похожа на современную: принтер печатал объект по модели, послойно.

Первый 3D-принтинг. Изготовление физических предметов с помощью цифровых данных продемонстрировал Чарльз Халл. В 1984 году, когда компьютеры еще не сильно отличались от калькуляторов, а до выхода Windows-95 было десять лет, он изобрел стереолитографию - предшественницу 3D-печати. Работала технология так: под воздействием ультрафиолетового лазера материал застывал и превращался в пластиковое изделие. Форму печатали по цифровым объектам, и это стало бумом среди разработчиков — теперь можно было создавать прототипы с меньшими издержками.


Первый 3D-принтер. Источник: habr

Первый производитель 3D-принтеров. Через два года Чарльз Халл запатентовал технологию и открыл компанию по производству принтеров 3D Systems. Она выпустила первый аппарат для промышленной 3D-печати и до сих пор лидирует на рынке. Правда, тогда принтер называли иначе — аппаратом для стереолитографии.

Популярность 3D-печати и новые технологии. В конце 80-х 3D Systems запустила серийное производство стереолитографических принтеров. Но к тому времени появились и другие технологии печати: лазерное спекание и моделирование методом наплавления. В первом случае лазером обрабатывался порошок, а не жидкость. А по методу наплавления работает большинство современных 3D-принтеров. Термин «3D-печать» вошел в обиход, появились первые домашние принтеры.

Революция в 3D-печати. В начале нулевых рынок раскололся на два направления: дорогие сложные системы и те, что доступны каждому для печати дома. Технологию начали применять в специфических областях: впервые на 3D-принтере напечатали мочевой пузырь, который успешно имплантировали.


Печать тестового образца почки. Источник: BBC

В 2005 году появился первый цветной 3D-принтер с высоким качеством печати, который создавал комплекты деталей для себя и «коллег».

Как устроен 3D-принтер

В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина.

Вот из каких деталей состоит 3D-принтер, не считая корпуса:

  • экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей;
  • рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
  • линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
  • фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
  • рама — соединяет все элементы принтера.


Схема 3D-принтера. Источник: Lostprinters

Все это управляется компьютером.

Как создают изделия

За создание трехмерного изделия отвечает аддитивный процесс 3д-печати — это когда при изготовлении предмета слои материала накладываются друг на друга, снизу вверх, пока не получится копия формы в чертеже. Так печатают изделия из пластика. А фотополимерная печать работает по технологии стереолитографии (SLA): под воздействием лазерного излучателя фотополимеры затвердевают. Кроме пластика и фотополимерных смол, современные 3D-принтеры работают с металлоглиной и металлическим порошком.

Печать состоит из непрерывных циклов, которые повторяются один за другим — на один слой материала наносится следующий, и печатающая головка двигается, пока на рабочей поверхности не окажется готовый предмет. Отходы печати принтер сам удаляет с рабочего стола.

Как работает 3D-чертеж

Принтер печатает изделие по 3D-чертежу: его создают на компьютере в специальной программе, затем сохраняют в формате STL. Этот файл выводят в программу резки для принтера — она помогает задать модели физические свойства изделия, например плотность. Далее программа преобразует модель в инструкцию для экструдера и выгружает ее на принтер, который начинает печатать изделие.

3D-чертеж легко сделать в домашних условиях — почитайте инструкцию на habr.

Как запрограммировать 3D-принтер

Краткая инструкция по настройке принтера:

  1. Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
  2. Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать.
  3. Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
  4. Наблюдать за печатью.

Можно ли применять напечатанные изделия

Зависит от качества материала, принтера и конечного изделия. Часто домашние принтеры неточно передают форму и цвет предмета. Изделия из пластика нужно дополнительно обработать: иногда они печатаются с заусенцами и дефектами и почти всегда с ребристой поверхностью.


Изделие после и до обработки. Источник: 3D-Today

Для обработки поверхности есть несколько способов — не все подходят для домашнего применения:

  • механическая обработка — шлифовка вручную, срезание заусенцев;
  • химическая — погружение в ацетон, пескоструйная обработка, нанесение спецраствора кисточкой.

Что можно напечатать на 3D-принтере

В интернете полно подборок с инструкциями для печати 3D-изделий. 3D-Today публикует фотографии работ владельцев принтеров, от мелких запчастей до скульптур. На «Хабре» уже три года назад постили список «50 крутых вещей для печати на 3D-принтере». Make3D написали о более масштабных проектах — печати автомобилей, оружия, солнечных батарей и протезов.

Есть ряд перспективных областей, в которых уже применяют 3D-печать.

Изготовление моделей по собственным эскизам. Константин Иванов, создатель сервиса 3DPrintus, в интервью «Афише» рассказал, что 3D-печать приведет к расцвету customizable things: любой сможет собрать и распечатать нужное изделие онлайн. Например, сделать модель робота и заказать его печать на промышленном принтере, создать и распечатать свой дизайн обручальных колец или обуви. Примеры таких проектов — Thinker Thing и Jweel.


Быстрое прототипирование. Самая популярная область, в которой используют трехмерную печать. На 3D-принтерах делают тестовые модели протезов, прототипы лечебных корсетов, барельефов, олимпийского снаряжения.

Прототипы детских протезов, 3D-печать. Источник: 3D-Pulse

Сложная геометрия. 3D-принтер легко справляется с изготовлением моделей любой формы. Несколько примеров:

— в австралийском университете исследовали возможности 3D-принтера и напечатали табурет в форме отпечатка пальца;

— шеф-повар из Дании победил в конкурсе высокой кухни: он напечатал на 3D-принтере миниатюрные блюда сложной формы из морепродуктов и свекольного пюре;


Одно из победивших блюд шеф-повара. Источник: 3D-Pulse

— в немецком институте разработали систему для ускоренной 3D-печати — за 18 минут принтер изготавливает сложное геометрическое изделие высотой в 30 см. Обычно у принтеров уходит час на печать карманных фигурок.

Технологии 3D-печати

Кратко об основных методах 3D-принтинга.

Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины.

Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.

Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения.

Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении.

Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.

Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания). Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей. После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.


На атлете — кроссовки New Balance, которые изготовили с помощью лазерного спекания. Источник: 3D-Today

Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.

Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие.

Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика. FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений. Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли.

Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems.

Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой. Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки. Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.

Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома.


Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани.

Где применяют 3D-печать

В основном в профессиональных сферах.

Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.

Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере.

Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.

Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов. Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере. Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет.

Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.

Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит.

Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.

Изготовить прототип помогла компания UrbaStyle, которая печатает бетонные формы на строительных 3D-принтерах

Образование. С помощью 3D-печати производят наглядные пособия для детских садов, школ и вузов. В некоторых московских школах с 2016 года есть трехмерные принтеры: на уроках химии дети разглядывают 3D-модели молекул и проводят реакции в напечатанных пробирках, на физике изучают электрическую цепь на 3D-прототипе токопроводящего стенда, а еще сами печатают себе ручки на уроках ИЗО.

Узнать больше о 3D-технологиях в школах можно на сайте «Ассоциации 3D-образования».

А еще 3D-печать помогает в быту, производстве одежды, украшений, картографии, изготовлении игрушек и дизайне упаковок.

Что такое 3D-принтеры? (История, применение, как выбирать)

3D-принтеры, или аддитивные принтеры — это устройства, которые используют метод послойной печати для создания физического объекта из цифровой модели. Эти объекты могут быть практически любой формы и геометрии. По сути 3D-принтеры — это периферийные устройства, которые являются одним из видов промышленных роботов. Однако в наше время их используют не только в производстве, но и в домашних условиях. О том, как выбрать себе 3D-принтер и для чего его использовать, мы и поговорим сегодня.

История

Что такое 3D-принтеры? (История, применение, как выбирать)

Впервые о технологии 3D-печати задумались, конечно же, не в прошлом году и даже не десятилетии, хотя принято считать, что это одно из главных достижений именно XXI века. На самом же деле история 3D-принтеров берёт своё начало в 1948 году, когда американский инженер Чарльз Халл разработал технологию послойного выращивания физических трёхмерных объектов из фотополимеризующейся композиции. Она получила название Stereolithography (стереолитография). Только к 1986 году Халлу удалось получить патент на своё изобретение. Он основал компанию 3D Systems и в 1987 году мир увидел первый в истории 3D-принтер, работающий на технологии STL. Правда, тогда аппарат назывался «установка для стереолитографии».

В 80-х годах также начали развиваться и другие технологии трёхмерной печати. В 1985 Михаило Фейген предложил формировать объёмные модели послойно из листового материала (плёнка, полиэстер, пластик, бумага), скрепляя между собой слои при помощи разогретого валика — технология LOM. В 1986 году Карл Декарт придумал послойно спекать порошковый материал (порошковые полимеры, металлы, литейный воск, нейлон) лазерным лучом — метод селективного лазерного спекания SLS. В 1987 году израильская компания Cubital разработала технологию послойного уплотнения SGS. Однако она требует использования дорогих, токсичных и достаточно редких полимеров. И, наконец, в 1988 году Скотт Крамп описал метод послойной заливки экструдируемым расплавом (FDM). Принтеры, использующие данную технологию, печатают расплавленной нитью вещества (пластика, металла и т.д.).

Что такое 3D-принтеры? (История, применение, как выбирать)

В конечном счете, наиболее широкое применение получили стереолитография (SLA — современная вариация STL) и метод FDM. До 1995 года трёхмерная печать использовалась только в промышленности, пока студенты Массачусетского технологического института Джим Бредт и Тим Андерсон не внедрили технологию послойного синтеза материала в корпус обычного настольного принтера. Это стало стартом для новой компании Z Corporation, которая долго была лидером в сфере бытовой печати объемных фигур. Затем в начале 2000-х 3D Systems также выпустила свой первый «домашний» 3D-принтер. После этого данные устройства стали активно проникать в повседневную жизнь.

Сферы использования

Что такое 3D-принтеры? (История, применение, как выбирать)

Несмотря на то, что 3D-принтеры начали массово использоваться лишь недавно, они стремительно ворвались практически во все сферы человеческой жизни. Как вы уже поняли, эти устройства разрабатывались для промышленных целей и до сих пор активно используются в различных производствах. Их применяют для быстрого изготовления прототипов моделей, чтобы тестировать их перед запуском основной продукции, и для создания готовых деталей в мелкосерийном производстве. С помощью трёхмерной печати делают формы для литейного производства. На 3D-принтерах печатают сложные, массивные, прочные и недорогие конструкции. Но после того, как технология вышла за рамки промышленной, ей нашли применение где только смогли. В прошлом году мы с вами говорили о том, что 3D-принтеры фактически захватывают мир.

В 2010 году учёные из Массачусетского Технологического Института впервые напечатали съедобную продукцию. 3D-принтер Cornucopia, что означает «рог изобилия», смог напечатать объемную модель из продуктов питания. Позже был представлен принтер Edible Growth, который печатает экологически чистые закуски. В 2011 году с помощью трёхмерной печати учёные впервые смогли воссоздать внутренний орган человека из стволовых клеток. За последующие 4 года на 3D-принтерах научились печатать внешние органы (нос, уши) из хрящевой ткани, фрагменты скелета, черепа. А в нынешнем году Американское управление по санитарному надзору за качеством пищевых продуктов и медикаментов (Food and Drug Administration) одобрило к печати лекарство для контроля судорожных приступов при эпилепсии. В 2013 году организация Defense Distributed напечатала полностью функциональный пистолет. Сейчас во многих странах уже даже существуют законы, запрещающие изготовление и использование оружия, которое создано на 3D-принтерах.

Что такое 3D-принтеры? (История, применение, как выбирать)

Кроме того, с помощью гигантских 3D-принтеров, грязи и натуральных волокон (шерсти, например) предлагают решить проблему с жильём в самых отдалённых и бедных уголках планеты. Рабочий прототип такого устройства был представлен итальянской компанией WASP в прошлом году. Также существуют принтеры, способные печатать из песка. Художник Маркус Кайзер собственноручно собрал аппарат, использующий энергию Солнца для создания стеклянных объектов. Ещё один принтер под названием D-Shape, использующий для печати песок и неорганический компаунд, разработал итальянский робототехник Энрико Дини. Прочность полученного материала эксперты сравнивают с железобетоном. Кстати, художники или скульпторы могут использовать специальные 3D-ручки для создания своих шедевров. Тем временем, учёные предлагают использовать 3D-принтеры в космической программе. Одно такое устройство уже успешно доставлено на МКС для печати различных деталей, инструментов и прочих вещей, которые могут понадобиться астронавтам. В будущем предполагается использовать технологии трёхмерной печати для строительства лунных баз и освоения Марса.

Что такое 3D-принтеры? (История, применение, как выбирать)

Так что, как видим, 3D-принтеры используются во многих отраслях — и довольно успешно. Конечно же, данным устройствам нашлось применение и в быту для создания различных мелочей, сувениров, деталей и т.д. Однако сейчас большинство 3D-принтеров являются дорогим удовольствием. Поэтому если вы хотите купить себе один такой в дом, необходимо чётко понимать, как и для чего он будет использоваться.

Как выбрать 3D-принтер

Что такое 3D-принтеры? (История, применение, как выбирать)

Для начала стоит отметить, что сейчас цены на настольные 3D-принтеры варьируются в очень широких пределах: от 30 тысяч до нескольких миллионов рублей. Но на самом деле данный показатель далеко не главный в нашем выборе. Конечно, более дешёвые принтеры изнашиваются немного быстрее и обладают чуть большим процентом брака. Но сначала нужно определиться с тем, что вы будете печатать. Если вам нужен 3D-принтер для серьёзной работы и изготовления каких-либо моделей высокого качества, или вы хотите печатать ювелирную продукцию, то нужно искать устройства, работающие по технологии SLA. Если же вы будете просто развлекаться и печатать простые фигурки, игрушки и т.д., то вам достаточно более дешёвого FDM-принтера.

Что такое 3D-принтеры? (История, применение, как выбирать)

Далее стоит обратить внимание на материалы, которыми может печатать 3D-принтер. Если вам важна прочность готового продукта (устойчивость к ударам, трению, агрессивным средам), то нужно выбирать ABS пластик. Если нет – то подойдёт экологически чистый PLA пластик. Материал Laywood делается из переработанного дерева и связующего полимера, и подойдёт для изделий «под дерево». PVA пластик растворяется в горячей воде и может использоваться для печати вымываемых вставок, например. Очень прочным и одновременно лёгким материалом, который используется в медицине и литейном производстве, является Nylon. Для производства прозрачных изделий, чашек, тарелок подойдёт материал T-Glase. Архитекторы для создания правдоподобных моделей могут использовать материал Laybrick, который в зависимости от температуры может быть гладким, шероховатым и т.д. Фотополимеры для SLA-печати также имеют разные свойства. Бывают смолы, которые при затвердевании становятся гладкими, прочными, влагостойкими и довольно долговечными. Бывают специальные эластичные полимеры, которые по свойствам напоминают резину. Конечный продукт из такого материала будет обладать хорошей упругостью и ударопрочностью.

Также важными вопросами являются размер области печати и количество экструдеров. В первом случае выбор стоим между скоростью/удобством и качеством. То есть 3D-принтеры с большой областью могут печатать крупные объекты, но на принтерах с малой областью заметно выше качество. Поэтому можно печатать большие модели по частям, а потом склеивать их самостоятельно. Во втором случае вы выбираете между опять-таки качеством (один экструдер) и возможностью разноцветной печати или использованием 2-х материалов одновременно (более одного экструдера). У одноэкструдерных аппаратов меньший процент брака, но у мультиэкструдерных принтеров при выходе из строя одной машинки можно продолжать использовать рабочие.

Что такое 3D-принтеры? (История, применение, как выбирать)

И если вы боитесь, что вам нечего будет печатать, потому что вы не умеете создавать 3D-модели, то это зря. Сейчас в интернете полно сайтов с горами бесплатных макетов, уже готовых к печати. А если прочитать какие-нибудь базовые уроки, то такие модели можно даже самостоятельно редактировать. Поэтому, если вы точно знаете, что именно собираетесь печатать на своём 3D-принтере, то можно уже сейчас смело заходить в любой онлайн-магазин (а таких много и в Рунете) и покупать наиболее подходящее вам устройство.

На этом мы, пожалуй, закончим данную статью, которая является продолжением нового цикла, начатого в топике о модульных смартфонах. Если вы хотите прочитать о каких-нибудь интересных устройствах или технологиях, постепенно врывающихся в нашу жизнь – пишите в комментариях, и возможно, следующая статья будет по вашей теме.

Читайте также: