Что такое строчник в мониторе

Обновлено: 14.05.2024

Для того чтобы починить ЖК монитор своими руками, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и за что отвечает каждый элемент электронной схемы. Начинающие радиомеханики в начале своей практики считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата. Но на самом деле, это ошибочное мнение и принципиальная схема нужна не всегда.

Итак, вскроем крышку первого попавшегося под руку ЖК монитора и на практике разберёмся в его устройстве.

ЖК монитор. Основные функциональные блоки.

Жидкокристаллический монитор состоит из нескольких функциональных блоков, а именно:

Жидкокристаллическая панель представляет собой завершённое устройство. Сборкой ЖК-панели, как правило, занимается конкретный производитель, который кроме самой жидкокристаллической матрицы встраивает в ЖК-панель люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT).

Рассмотрим состав ЖК-панели компьютерного монитора ACER AL1716. ЖК-панель является завершённым функциональным устройством и, как правило, при ремонте разбирать её не надо, за исключением замены вышедших из строя ламп подсветки.

Маркировка ЖК-панели: CHUNGHWA CLAA170EA

На тыльной стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф. Сама печатная плата скрыта под металлической планкой.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

ЖК-панель компьютерного монитора Acer AL1716

На печатной плате установлена многовыводная микросхема NT7168F-00010. Данная микросхема подключается к TFT матрице и участвует в формировании изображения на дисплее. От микросхемы NT7168F-00010 отходит множество выводов, которые сформированы в десять шлейфов под обозначением S1-S10. Эти шлейфы довольно тонкие и на вид как бы приклеены к печатной плате, на которой находиться микросхема NT7168F.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Печатная плата ЖК-панели и её элементы

Микропроцессор SM5964 выполняет довольно небольшое число функций. К нему подключена кнопочная панель и индикатор работы монитора. Этот процессор управляет включением/выключением монитора, запуском инвертора ламп подсветки. Для сохранения пользовательских настроек к микроконтроллеру по шине I2C подключена микросхема памяти. Обычно, это восьмивыводные микросхемы энергонезависимой памяти серии 24LCxx.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Основная плата (Main board) ЖК-монитора.

Вторым микропроцессором на плате управления является так называемый мониторный скалер (контроллер ЖКИ) TSU16AK. Задач у данной микросхемы много. Она выполняет большинство функций, связанных с преобразованием и обработкой аналогового видеосигнала и подготовке его к подаче на панель ЖКИ.

В отношении жидкокристаллического монитора нужно понимать, что это по своей сути цифровое устройство, в котором всё управление пикселями ЖК-дисплея происходит в цифровом виде. Сигнал, приходящий с видеокарты компьютера является аналоговым и для его корректного отображения на ЖК матрице необходимо произвести множество преобразований. Для этого и предназначен графический контроллер, а по-другому мониторный скалер или контроллер ЖКИ.

Мониторный скалер TSU16AK взаимодействует с управляющим микроконтроллером SM5964 по цифровой шине. Для работы ЖК-панели графический контроллер формирует сигналы синхронизации, тактовой частоты и сигналы инициализации матрицы.

Микроконтроллер TSU16AK через шлейф связан с микросхемой NT7168F-00010 на плате ЖК-панели.

При неисправностях графического контроллера у монитора, как правило появляются дефекты, связанные с правильным отображением картинки на дисплее (на экране могут появляться полосы и т.п). В некоторых случаях дефект можно устранить пропайкой выводов скалера. Особенно это актуально для мониторов, которые работают круглосуточно в жёстких условиях.

При длительной работе происходит нагрев, что плохо сказывается на качестве пайки. Это может привести к неисправностям. Дефекты, связанные с качеством пайки нередки и встречаются и у других аппаратов, например, DVD плееров. Причиной неисправности служит деградация либо некачественная пайка многовыводных планарных микросхем.

Блок питания и инвертор ламп подсветки.

Наиболее интересным в плане изучения является блок питания монитора, так как назначение элементов и схемотехника легче в понимании. Кроме того, по статистике неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Поэтому практические знания устройства, элементной базы и схемотехники блоков питания непременно будут полезны в практике ремонта радиоаппаратуры.

Блок питания ЖК монитора состоит из двух. Первый – это AC/DC адаптер или по-другому сетевой импульсный блок питания (импульсник). Второй – DC/AC инвертор. По сути это два преобразователя. AC/DC адаптер служит для преобразования переменного напряжения сети 220 В в постоянное напряжение небольшой величины. Обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт.

Инвертор DC/AC наоборот преобразует постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц. Переменное напряжение подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.

Вначале рассмотрим AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров (за исключением дешёвых зарядников для мобильного, например).

Так в блоке питания ЖК монитора Acer AL1716 применена микросхема TOP245Y. Документацию (datasheet) по данной микросхеме легко найти из открытых источников.

В документации на микросхему TOP245Y можно найти типовые примеры принципиальных схем блоков питания. Это можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы.

Вот несколько примеров принципиальных схем блоков питания на базе микросхем серии TOP242-249.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Рис 1 .Пример принципиальной схемы блока питания

В следующей схеме применены сдвоенные диоды с барьером Шоттки (MBR20100). Аналогичные диодные сборки (SRF5-04) применены в рассматриваемом нами блоке монитора Acer AL1716.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Рис 2. Принципиальная схема блока питания на базе микросхемы из серии TOP242-249

Заметим, что приведённые принципиальные схемы являются примерами. Реальные схемы импульсных блоков могут несколько отличаться.

Микросхема TOP245Y представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ – контроллер и мощный полевой транзистор, который переключается с огромной частотой от десятков до сотен килогерц. Отсюда и название — импульсный блок питания.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Блок питания ЖК монитора (AC/DC адаптер)

Схема работы импульсного блока питания сводится к следующему:

Выпрямление переменного сетевого напряжения 220В.

Эту операцию выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе напряжение чуть больше чем сетевое. На фото показан диодный мост, а рядом фильтрующий электролитический конденсатор (82 мкФ 450 В) – синий бочонок.

Преобразование напряжения и его понижение с помощью трансформатора.

Коммутация с частотой в несколько десятков – сотен килогерц постоянного напряжения (>220 B) через обмотку высокочастотного импульсного трансформатора. Эту операцию выполняет микросхема TOP245Y. Импульсный трансформатор выполняет ту же роль, что и трансформатор в обычных сетевых адаптерах, за одним исключением. Работает он на более высоких частотах, во много раз больше, чем 50 герц.

Поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди. Но необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 герц. Те, кто не знает, что такое трансформатор и зачем он применяется, сперва ознакомьтесь со статьёй про трансформатор.

В результате трансформатор получается очень компактным. Также стоит отметить, что импульсные блоки питания очень экономичны, у них высокий КПД.

Выпрямление пониженного трансформатором переменного напряжения.

Эту функцию выполняют мощные выпрямительные диоды. В данном случае применены диодные сборки с маркировкой SRF5-04.

Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом. Обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но используются для выпрямления больших напряжений (20 – 50 вольт). Это нужно учитывать при замене дефектных диодов.

У диодов Шоттки есть некоторые особенности, которые нужно знать. Во-первых, эти диоды имеют малую ёмкость перехода и способны быстро переключаться – переходить из открытого состояния в закрытое. Это свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 вольт, против 0,6 – 0,7 вольт у обычных диодов. Это свойство повышает их КПД.

Есть у диодов с барьером Шоттки и нежелательные свойства, которые затрудняют их более широкое использование в электронике. Они очень чувствительны к превышению обратного напряжения. При превышении обратного напряжения диод Шоттки необратимо выходит из строя.

Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоках питания. Это стоит учитывать в проведении диагностики и ремонте.

Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи. На схеме обозначена как R15C14 (см.рис.1).

При анализе схемотехники блока питания ЖК монитора Acer AL1716 на печатной плате также обнаружены демпфирующие цепи, состоящие из smd резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811). Они защищают диоды Шоттки (D803, D805).

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Демпфирующие цепи на плате блока питания

Также стоит отметить, что диоды Шоттки используются в низковольтных цепях с обратным напряжением, ограниченным единицами – несколькими десятками вольт. Поэтому, если требуется получение напряжения в несколько десятков вольт (20-50), то применяются диоды на основе p-n перехода. Это можно заметить, если просмотреть datasheet на микросхему TOP245, где приводятся несколько типовых схем блоков питания с разными выходными напряжениями (3,3 B; 5 В; 12 В; 19 В; 48 В).

Диоды Шоттки чувствительны к перегреву. В связи с этим их, как правило, устанавливают на алюминиевый радиатор для отвода тепла.

Отличить диод на основе p-n перехода от диода на барьере Шоттки можно по условному графическому обозначению на схеме.

Условное обозначение диода с барьером Шоттки.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Условное обозначение диода на основе p-n перехода.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

После выпрямительных диодов ставятся электролитические конденсаторы, служащие для сглаживания пульсаций напряжения. Далее с помощью полученных напряжений 12 В; 5 В; 3,3 В запитываются все блоки LCD монитора.

По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами (ЭПРА), которые нашли широкое применение в осветительной технике для питания бытовых осветительных люминесцентных ламп. Но, между ЭПРА и инвертором ЖК монитора есть существенные различия.

Инвертор ЖК монитора, как правило, построен на специализированной микросхеме, что расширяет набор функций и повышает надёжность. Так, например, инвертор ламп подсветки ЖК монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G. Микросхема контроллера смонтирована на печатной плате планарным монтажом.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Микросхема контроллера OZ9910G

Инвертор преобразует постоянное напряжение, значение которого составляет 12 вольт (зависит от схемотехники) в переменное 600-700 вольт и частотой 50 кГц.

Контроллер инвертора способен изменять яркость люминесцентных ламп. Сигналы для изменения яркости ламп поступают от контроллера ЖКИ. К микросхеме-контроллеру подключены полевые транзисторы или их сборки. В данном случае к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (На корпусе микросхемы указано только 4501S).

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Сборка полевых транзисторов AP4501SD и её цоколёвка

Также на плате блока питания установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Плата инвертора и её элементы

Информацию по ремонту ЖК мониторов можно найти в специализированных журналах по ремонту. Так, например, в журнале “Ремонт и сервис электронной техники” №1 2005 года (стр.35 – 40), подробно рассмотрено устройство и принципиальная схема LCD-монитора “Rover Scan Optima 153”.

Среди неисправностей мониторов довольно часто встречаются такие, которые легко устранить своими руками за несколько минут. Например, уже упомянутый ЖК монитор Acer AL1716 пришёл на стол ремонта по причине нарушения контакта вывода розетки для подключения сетевого шнура. В результате монитор самопроизвольно выключался.

После разборки ЖК монитора было обнаружено, что на месте плохого контакта образовывалась мощная искра, следы которой легко обнаружить на печатной плате блока питания. Мощная искра образовывалась ещё и потому, что в момент контакта заряжается электролитический конденсатор в фильтре выпрямителя. Причина неисправности — деградация пайки.

Устройство, описание принципа работы узлов монитора. Монитор, Инвертор, Ремонт техники, Видео, Длиннопост

Деградация пайки, вызвавщая неисправность монитора

Также стоит заметить, что порой причиной неисправности может служить пробой диодов выпрямительного диодного моста.

На платах старых телевизоров и мониторов,на основе кинескопа-электронно-лучевой трубки,находится трансформатор ТДКС-трансформатор диодно-каскадный строчный.

ТДКС-компонент блока строчной развертки,служит для формирования высокого напряжения для питания второго анода кинескопа,питания накала кинескопа,формирования ускоряющего и фокусирующего напряжения,питания видеоусилителей,формирует импульсы обратного хода строчной развертки для работы схемы гашения,питание тюнера.

На основе этого трансформатора можно собрать источник высокого напряжения буквально из нескольких деталей.

На корпусе есть два потенциометра-focus и screen,с их помощью регулируется ускоряющее и фокусирующее напряжение.Выводы с красной изоляцией-высоковольтные выводы(screen, focus и второй анод кинескопа).

Нумерация выводов против часовой стрелки,выводов в основном 10.Внутри ТДКС находятся высоковольтные диоды умножителя,их я доставал с помощью нагрева на костре и об этом есть статья.

Примерные напряжения на выводах:

-U второго анода-25 и более кВ,все зависит от размера кинескопа,ч/б или цветной кинескоп

-ускоряющее напряжение 300-800В

-напряжение видеоусилителя-200В,тюнера-30В и напряжение нити накала кинескопа 6.3В

В советских телевизорах и мониторах на кинескопе тоже есть строчный трансформатор,но он без умножителя,умножитель находится рядом на плате.Трансформатор этот ТВС-трансформатор высоковольтный строчный.

Трансформатор выполнен с ферритовым П-образным сердечником без зазора,с магнитной проницаемостью примерно 2000НМС1 и 3000НМС1.Такие сердечники изготовляют на основе марганец-цинковых ферритов и имеют малые значения магнитных потерь в сильных магнитных полях на частотах,на которых работает трансформатор строчной развертки-15625Гц и выше,повышенные значения магнитной индукции при высокой t и подмагничивании.

Теперь пора проверить умножитель трансформатора.Проверка не проверит полностью ТДКС,но для схем высоковольтного генератора вполне пойдет.

Строчные трансформаторы применяются для создания разверток в телевизоре. Приборы заключены в корпус, защищающий от высокого напряжения соседние детали. Раньше в цветных, черно-белых телевизорах при помощи строчного трансформатора ТВС получали ускоряющее напряжение. В схеме применялся умножитель. Строчный высоковольтный трансформатор передавал преобразованный электрический сигнал на представленный элемент. Умножитель вырабатывал напряжение фокусировки, обеспечивая работу второго катодного анода.

Строчный трансформатор

Сегодня применяется в схемах телевизора трансформатор диодно-каскадный строчной развертки (ТДКС). Что собой представляет подобная техника, как проверить ее своими руками и произвести ремонт, будет рассмотрено далее.

Особенности

Трансформаторы типа ТДКС сегодня включаются в схему телевизора для обеспечения анода (второго) кинескопа электрическим током с требуемыми параметрами. Напряжение исходящее составляет 25-30 кВ. В процессе работы оборудования формируется электрический поток. Это ускоряющее напряжение 300-800 В.

В зависимости от категории трансформаторов ТДКС, цоколевки, образуется вторичное напряжение, которое является дополнительным для обеспечения развертки кадрового типа. Приборы оборудования снимают в трансформаторах телевизоров сигнал луча кинескопа автоматически подстроенной частоты строчной развертки.

трансформатор строчной развертки

Схема подключения, цоколёвка в представленном трансформаторе характеризуют устройство. Прибор обладает первичной обмоткой. На нее подается электрический ток для дальнейшей развертки. С первичного контура подается питание для функционирования усилителей видеосигнала. Обмотка передает электричество на вторичную катушку. Отсюда производится питание соответствующих цепей.

Видео: Строчный трансформатор

Строчному трансформатору вменяется питание второго анода, ускоряющее напряжение, фокусировка. Эти процессы производятся в ТДКС. Регулировка происходит при помощи потенциометров. Трансформаторам представленной категории обеспечивается определенная цоколевка. Расположение выводов может быть в виде буквы О или U.

Поломка

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызвает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  1. Обрыв контура.
  2. Пробой герметичного корпуса.
  3. Замыкание между витков.
  4. Обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники.

Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк. Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Проверка осциллографом

Если телевизору требуется проверка в системе ТДКС, проверка выполняется при помощи осциллографа. Для ремонта телевизора потребуется отрезать питающий прибор вывод. Далее нужно найти вторичный контур. Его работу исследуют при подключении к отрезанному выводу питания ТДКС через R-10 Ом. Замена или ремонт устройства потребуется, если подключение осциллографа выявит отклонения. Возможны следующие отклонения:

  • Межвитковое замыкание демонстрирует на R=10 Ом «прямоугольник» с большими помехами. Здесь остается почти все напряжение. Если неисправности в этой области нет, отклонение будет определяться долями вольта.
  • Если нет вторичного напряжения, требуется замена контура. Произошел обрыв.
  • Когда убирают R=10 Ом и создают нагрузку 0,2-1 кОм на вторичном контуре, оценивается нагрузка на выходе. Она должна повторять входящие показатели. Если есть отклонение, ТДКС подлежит ремонту или полной замене.

Существуют и другие поломки. Выявить их можно самостоятельно.

Восстановление прибора

Самостоятельная замена и ремонт ТДКС вполне возможна. Определив неисправность, можно восстановить работу системы. Рассматривая, как подключить строчный трансформатор к телевизорам, необходимо изучить процедуру возобновления его работы. В случае полной замены трансформаторного прибора, потребуется подобрать новое оборудование с соответствующей системой выводов. Только в этом случае техника будет работать корректно.

Общая схема узла строчной развертки

Если оборудование не работает из-за пробоя, значит, в корпусе появилась трещина. Найти ее можно при осмотре. Трещину потребуется зачистить, обезжирить, а затем залить эпоксидным клеем. При этом слой смолы должен составлять не менее 2 мм. Это позволит предотвратить пробой в дальнейшем.

Ремонт ТДКС при обрыве контура проблематичен. Потребуется перемотать катушку. Это трудоемкий процесс, требующий от мастера высокой концентрации на протяжении всей процедуры. Замена намотки возможна, но для этого требуется определенный опыт.

Если оборвалась обмотка накала, линию формируют из другого места. Применяется в этом случае изолированный провод. Кабель наматывают на сердечник. Напряжение устанавливается при использовании резистора.

Другие поломки

Существует множество причин, почему не работает ТДКС. Опытные радиолюбители помогут изучить распространенные неисправности.

Если в приборе пробит транзистор, необходимо его достать и замерять коллекторное напряжение без него. При определении слишком высокого показателя, его регулируют до требуемого значения. При невозможности совершения подобной процедуры, нужно поменять в блоке питания стабилитрон. Обязательно нужно установить новый конденсатор.

строчный трансформатор тдкс

Рекомендуется проверить пайку на всех разъемах. При необходимости ее усиливают. Если такая проблема определялась на конденсаторах, их выпаивают. Осмотр может выявить почернение. Потребуется приобрести новую деталь. Если прямоугольные конденсаторы раздуты, их также следует заменить. Если видно остатки канифоли, их следует убрать при помощи спирта и щетки.

При постоянном пробивании транзистора в строчной разверстке, следует определить тип неисправности. Пробой может быть тепловым или электрическим. Именно неисправный трансформатор приводит к появлению подобной проблемы.

Интересное видео: Высокое напряжение на ТДКС

Рассмотрев особенности строчных трансформаторов, а также их возможные неисправности, можно самостоятельно произвести ремонтные работы. В этом случае приобретать новую, дорогую технику не потребуется. В некоторых случаях отремонтировать монитор без подобных действий не получится. Далеко не для каждого кинескопа сегодня в продаже представлены приборы ТДКС. Поэтому замена неисправных его частей порой является единственным приемлемым выходом.

Как работает ЖК-экран монитора и телевизора

Каждый день вы видите самые разнообразные экраны. В их числе рекламные дисплеи на улице, состоящие из светодиодов, а также читалки, в пикселях которых черный пигмент перемещается во взвеси белого пигмента. Или экран кинотеатра, который вовсе не простой кусок ткани, а холст со специальной фактурой и покрытием. Но сейчас речь пойдет не о них, а о жидкокристаллических экранах и о том, каким образом электричество превращается в конечное изображение.


Источник света

Изначально источником света для ЖК-экранов были газоразрядные лампы с холодным электродом (CCFL).


Под действием газового разряда ртуть излучает ультрафиолетовое свечение, которое, в свою очередь, возбуждает люминофор на стенках колбы и превращается в видимый свет. В отличие от обычных ламп дневного света, у таких ламп электрод без подогрева (что становится ясно из названия). Для нормальной работы им нужно высокое напряжение — до 900 вольт.

Сейчас вместо газоразрядных ламп используют светодиоды. От их типа сильно зависит конечная цена монитора. Так, в бюджетном сегменте используются обычные белые светодиоды W-Led. Основой для белых светодиодов служат синие светодиоды.


Они покрыты слоем люминофора, который преобразует часть синего спектра в другие цвета. В результате из синих светодиодов получаются белые светодиоды.


Обычный люминофор для белых светодиодов состоит из множества редкоземельных металлов: иттрий, гадолиний, церий, тербий, лантан.


В профессиональных устройствах подсветку из белых светодиодов дополняют зелеными светодиодами (GB-LED). Это дешевле люминофора, дающего нужный спектр. Использование же RGB-светодиодов даже в профессиональных устройствах — редкость, хотя это позволяет регулировать цветовую температуру и яркость без нарушения калибровки гамма-кривых монитора.

В последнее время производители обратили внимание не только на обычные люминофоры, изготавливаемые из редкоземельных металлов, но и на квантовые точки.


Квантовые точки не требуют использования редких компонентов и просты в производстве: достаточно в правильных условиях смешать два дешевых реактива. Из-за того, что идеально выдержать условия невозможно, квантовые точки имеют небольшие различия в размере, поэтому ширина спектра излучения составляет порядка 20 нм.


Такой ширины спектра недостаточно для того, чтобы перекрыть REC.2020 на 100%, но это значение находится очень близко.

Подсветка

Подсветка может быть как боковой (Edge), так и прямой (Direct). Изначально боковая подсветка появилась для ртутных ламп. Потом на нее перешли и светодиоды.

Прямая подсветка ограничена довольно маленькими зонами, за которые отвечают отдельные светодиоды. Она более требовательна к качеству светодиодов, но позволяет хоть как-то реализовать технологию HDR не в OLED-устройствах.


Некоторых производителей при реализации HDR не останавливает наличие боковой подсветки, что приводит к большой площади изменения локальной яркости подсветки.

Полноценный HDR возможен только на OLED — это типичное заблуждение. В студиях кинопроизводства используют все те же самые дисплеи TFT LСD, но с одним маленьким отличием. В таких мониторах дополнительная матрица TFT обеспечивает попиксельное затенение подсветки, за счет чего получается монитор, превосходящий OLED почти по всем показателям, включая нескромную цену.

Рассеиватель


Как можно понять из названия, задача этой части ЖК-экрана — получить равномерное освещение, выдаваемое источником света. Первый слой — отражающий, обычно представляет из себя комбинацию белого пластика и фольги. Следующим идет световод.


Тут используется эффект полного отражения света в диэлектрике, а чтобы свет хоть как-то мог выйти, на поверхность световода наносят мельчайшие линзы.


Аналогичный способ используют и в акриловых вывесках и указателях.


Третий и шестой слои — рассеивающая пленка. Она обладает настолько мелкой и хаотичной структурой поверхности, что снимок был сделан на грани возможностей обычного объектива.


Четвертый и пятый слои отражают большую часть света и обладают либо призматическим, либо полуцилиндрическим рельефом.


Здесь снова используется принцип полного отражения в диэлектрическом материале, но уже как в катафотах.


Свет поочерёдно отражается от двух поверхностей, образованных микроклиньями на плёнке, и возвращается обратно.


Использование двух световозвращающих пленок обусловлено тем, что на производстве, чтобы получить более качественный рельеф, проще вытягивать пленку, чем пытаться штамповать заготовку и получить что-то непригодное.

Прямая подсветка устроена по тому же принципу, только вместо световода установлены рассеивающие линзы на светодиодах.


TFT-панель


Можно подумать, что эффект «капель воды» дает антибликовое покрытие, но нет. Это вид со стороны подсветки. Мельчайшие неровности находятся на поверхности первого слоя TFT-панели — поляризующей пленки, которая приклеена к стеклянной подложке.

Основную работу по поляризации в дешевой поляризующей пленке выполняют атомы йода, вшитые внутрь полимера. А за счет 15-кратного вытягивания пленки молекулы полимера ориентируются в пространстве, и пленка получает свойства линейного поляризатора.



В отличие от демонстрационных моделей со шнурком в решетке, в реальности небольшая проводимость йода вдоль цепочки вызывает поглощение в видимом спектре вдоль ориентации.


После первого слоя преполяризатора идет непосредственно матрица TFT (тонкоплёночных транзисторов). Принцип работы всех панелей заключается в изменении поляризации света на тонкопленочных транзисторах. В зависимости от конфигурации электродов получаются разновидности TN(+film), IPS, VA. Современные панели настолько оптимизированы, что в конечном результате могут иметь как достоинства, так и недостатки панелей других типов.

Расположение слоя жидких кристаллов можно увидеть на приведенной выше схеме. Под действием электрического поля жидкие кристаллы меняют ориентацию и тем самым вращают плоскость поляризации проходящего через них света.

За ним следуют светофильтры. Они обеспечивают разбиение белого цвета на цвета субпикселей. В зависимости от полосы пропускания фильтра, меняется конечная цветопередача всего монитора. Поэтому не факт, что, заменив подсветку W-LED на RGB, вы получите монитор, который станет пригоден для решения полиграфических задач.

Анализатор — это та же самая поляризационная пленка, но ориентированная перпендикулярно поляризатору. Она превращает изображение в видимое. Удалив эту пленку с экрана, можно скрыть изображение от посторонних глаз.


Антибликовое покрытие — последний слой. Вариантов его реализации множество, но основных — не так уж много. В первую очередь, это использование пластика с низким коэффициентом преломления света, что, в свою очередь, уменьшает коэффициент отражения от экрана.

Гладкое покрытие дает более контрастную картинку при условии, что за спиной нет сильных источников света. Матовое покрытие рассеивает свет равномерно и независимо от угла падения, что снижает контраст изображения, но при этом не создает отвлекающих бликов на экране.


Компромиссом является полуматовое/глянцевое покрытие, степень рассеивания отраженного света которого зависит от угла падения.

В самых дорогих моделях встречаются и другие типы антибликовых покрытий: с поляризацией, интерференцией и переменным эффективным коэффициентом преломления.

Ну, и какой экран без управляющей электроники. От электроники зависит интерфейс подключения монитора, частота обновления, глубина цветопередачи и маленькие фичи – разгон матрицы, хранение калибровки в самом мониторе, управление подсветкой, наличие технологий синхронизации и не только.

Несмотря на кажущуюся простоту, жидкокристаллические экраны — это очень сложные устройства, объединяющие в себе множество достижений в области химии, физики и электроники.

«СТРОЧНИК» К МОНИТОРУ

Замена строчного трансформатора в телемониторе МС6105 с кинескопом 31ЛК — это, разумеется, не капитальный ремонт. Более того: если в мониторе старый штатный «строчник» с работой справляется, то и менять этот (весьма дорогостоящий, «капризный» и гигроскопичный) узел на новый вряд ли целесообразно.

Следует отметить, что в случае применения умножителя напряжения УН9/27 (трехкратного действия) намоточные данные для ТВС-90П4 (табл. 1) остаются неизменными, за исключением обмотки с выводами 9—10. Она содержит 1266 витков провода ПЭВШО диаметром 0,08 мм. Может, поэтому УН9/27 дешевле умножителя УН9/18 и менее дефицитен?

Расположение выводов со стороны монтажа и сравнительные схемы трансформаторов строчной развертки отечественного производства

Расположение выводов со стороны монтажа и сравнительные схемы трансформаторов строчной развертки отечественного производства

К достоинствам самодельного ТВС-90П4 можно отнести и то, что высоковольтную катушку можно разместить на второй ножке П-образного ферритового сердечника. То есть она будет сменной, что немаловажно для последующих ремонтов.

Существенные хлопоты при изготовлении самодельного ТВС-90П4 привносит разве что эпоксидная пропитка обмоток. И особенно высоковольтной. Каждый слой такой обмотки надо изолировать с предельной тщательностью.

Каркас катушки — не из термопластика, а из гетинакса или, в крайнем случае, из картона. Термополимеризация — только в духовке при температуре от 70 до 100 °С (в течение примерно часа), а остывание — вместе с выключенной духовкой.

Не стоит надеяться, что за несколько дней или даже недель отверждение пройдет и при комнатной температуре. И все потому, что отвердитель обладает проводящими свойствами; последующий пробой неизбежен, если процесс полимеризации проводить не в духовке.

Таблица 1. Намоточные данные трансформатора ТВС-90П4

Таблица 1. Намоточные данные трансформатора ТВС-90П4

Таблица 2. Особенности замены ТДКС-8 на ТВС-90П4

Таблица 2. Особенности замены ТДКС-8 на ТВС-90П4

Остальные данные по замене трансформаторов приведены на рисунке и во второй таблице. Пользуясь этими сведениями, следует помнить: несмотря на схожесть размещения выводов, далеко не все «строчники» одинаково пригодны для эквивалентной замены одного трансформатора другим. Не стоит забывать и о том, что, закрепляя строчный трансформатор на некотором расстоянии от платы, необходимо остальной монтаж развести дополнительными проводниками.

И последнее напоминание. Перед началом всех работ, связанных с высоким напряжением, следует отключить плюсовой подвод питания от микросхемы кадровой развертки К174ГЛ1А. Подключать же его можно лишь после того, как окончательно выяснится, что высокое напряжение появилось и, самое главное, — оно подведено к кинескопу. Любые несанкционированные разряды (даже на корпус!) практически мгновенно выведут указанную микросхему из строя.

Читайте также: