Введите с клавиатуры значения элементов массива увеличьте каждый элемент в 2 раза питон

Обновлено: 04.05.2024

Массив в Python содержит последовательность данных. В программировании на Python нет эксклюзивного объекта массива, потому что мы можем выполнять все операции с массивом, используя список. Сегодня мы узнаем о массиве и различных операциях, которые мы можем выполнять с массивом (списком).

Python поддерживает все операции, связанные с массивами, через свой объект списка. Начнем с инициализации одномерного массива.

Пример

Элементы массива в Python определяются в скобках [] и разделяются запятыми. Ниже приведен пример объявления одномерного массива.

Результатом приведенного выше примера программы с одномерным массивом будет:

Индексация массива начинается с 0. Значит, значение индекса 2 переменной arr равно 3.

В некоторых других языках программирования, таких как Java, когда мы определяем массив, нам также необходимо определить тип элемента, поэтому мы ограничены хранением только этого типа данных в массиве. Например, int brr [5]; может хранить только целые данные.

Но python дает нам гибкость, позволяющую иметь разные типы данных в одном массиве. Посмотрим на пример.

Это дает следующий результат:

В приведенном выше примере вы можете видеть, что массив student_marks имеет три типа данных – строку, int и float.

Многомерный массив

Двухмерный массив в Python можно объявить следующим образом.

Он выдаст следующий результат:

Точно так же мы можем определить трехмерный массив или многомерный массив в python.

Теперь, когда мы знаем, как определять и инициализировать массив в python. Мы рассмотрим различные операции, которые мы можем выполнять с массивом.

Обход массива с использованием цикла for

Мы можем использовать цикл for для обхода элементов массива. Ниже приведен простой пример цикла for для обхода массива.

На изображении ниже показан результат работы приведенного выше примера программы для работы с массивами.

Цикл for для обхода элементов массива

Обход 2D-массива

Следующий код выводит элементы построчно, а следующая часть печатает каждый элемент данного массива.

Обход 2D-массива с использованием цикла for

Добавление

Новые элементы Four и Five будут добавлены в конец массива.

Вы также можете добавить массив к другому массиву. В следующем коде показано, как это можно сделать.

Теперь наш одномерный массив arrayElement превращается в многомерный массив.

Определение размера

Мы можем использовать функцию len для определения размера массива. Давайте посмотрим на простой пример длины массива Python.

Python предоставляет особый способ создания массива из другого массива с использованием нотации срезов. Давайте посмотрим на несколько примеров срезов массива.

На изображении ниже показан пример вывода программы фрагмента массива Python.

Фрагмент массива в Python

Вставка массива

Мы можем вставить элемент в массив с помощью функции insert().

Вставка массива с помощью функции insert()

Функция pop

Мы можем вызвать функцию pop для массива, чтобы удалить элемент из массива по указанному индексу.

Зачастую в программах необходимо хранить и обрабатывать большое количество данных об объектах одного типа. В этом случае удобно использовать массивы. Массив - это набор объектов одного типа под общим именем (имя массива). Каждый объект (элемент массива) имеет свой номер (индекс), с помощью которого мы обращаемся к этому элементу массива.

Работа с массивами с заданным размером в Python

Объявление массива в Python известного размера
Массив с определенным числом элементов N в Python объявляется так, при этом всем элементам массива присваивается нулевое значение
Название массива = [0]*N
Задание значений элементов массива в python.
Задать значение элементов массива можно при объявлении массива. Это делается так
Название массива = [элемент №1, элемент №2, элемент №3,…]
Название массива[индекс элемента массива] = значение элемента
При этом массив будет иметь фиксированный размер согласно количеству элементов.
Пример. Задание значений элементов массива в Python двумя способами.
Способ №1.
a = [0, 1, 2, 3, 4]
Способ №2.
a[0] = 0
a[1] = 1
a[2] = 2
a[3] = 3
a[4] = 4
Таблица основных типов данных в Python.



При работе с массивами удобно использовать цикл for для перебора всех элементов массива.
a = [0] * размер массива
for i in range(размер массива):
a[i] = выражение

Размер массива в Питон можно узнать с помощью команды len(имя массива)
Пример программы на Python, которая вводит массив с клавиатуры, обрабатывает элементы и выводит на экран измененный массив С клавиатуры вводятся все элементы массива, значения элементов увеличиваются в два раза. Выводим все значения элементов в консоль. Чтобы элементы массива выводились в одну строку через пробел, используем параметр end =" " в операторе вывода на экран print(a[i], end = " ")
a = [0] * 4
for i in range(len(a)):
i = str(i + 1)
print("Введите элемент массива " + i, end = " ")
i = int(i)
i = i - 1
a[i] = int(input())
print("")
for i in range(len(a)):
a[i] = a[i] * 2
for i in range(len(a)):
print(a[i], end = " ")
Алгоритм поиска минимального значения массива в python
Нужно перебрать все элементы массива и каждый элемент сравнить с текущим минимумом. Если текущий элемент меньше текущего минимума, то этот элемент становится текущим минимумом.
Алгоритм поиска максимального значения массива в python.
Аналогично, для поиска максимального значения нужно перебрать и сравнить каждый элемент с текущим максимумом. Если текущий элемент больше текущего максимума, то текущий максимум приравнивается к этому элементу.
Пример. Программа запрашивает значения элементов массива и выводит минимальное и максимальное значения на экран.
a = [0] * 9
for i in range(len(a) - 1):
i = str(i + 1)
print("Введите элемент массива " + i, end = " ")
i = int(i)
a[i] = int(input())

min = a[0]
max = a[0]

for i in range(len(a)):
if (a[i ]< min):
min = a[i]
if (a[i] > max):
max = a[i]
min = str(min)
max = str(max)

print("Минимальное значение = " + min)
print("Максимальное значение = " + max)

Это такая простая проблема, что я не знаю, что я делаю неправильно. В основном я хочу перебирать элементы в пустом списке и увеличивать каждый по некоторым критериям. Это пример того, что я пытаюсь сделать:

Просто чтобы быть более ясным: я не создаю этот конкретный список. Вопрос в том, как я могу рекурсивно изменять элементы пустого списка. Как показал гниблер, инициализация списка была ответом. Приветствия.

Поэтому, когда вы делаете это, вы на самом деле используете i, чтобы вы могли просто сделать свою математику для я и просто установить ее для этого. нет необходимости пробовать и делать математику в том, что будет в списке, когда у вас уже есть i . Итак, просто ознакомьтесь со списком:

Поскольку вы говорите, что это сложнее, просто не используйте понимание списка, отредактируйте свой цикл for как таковой:

Таким образом, вы можете продолжать делать вещи, пока не получите окончательный результат, сохраните его в переменной и установите его соответствующим образом! Вы также можете сделать list1.append(x) , который я предпочитаю, потому что он будет работать с любым списком, даже если это не так, как список, сделанный с помощью range

Изменить: поскольку вы хотите иметь возможность манипулировать массивом, как и вы, я бы предложил использовать numpy! Это замечательная вещь называется vectorize, поэтому вы можете применить функцию к массиву 1D:

Я бы посоветовал использовать это только для более сложных функций, потому что вы можете использовать numpy broadcasting для простых вещей, таких как умножение на два.

Ваш список пуст, поэтому, когда вы пытаетесь прочитать элемент списка (правая сторона этой строки)

Вы также можете рассмотреть возможность использования numpy . Операция умножения перегружается для каждого элемента массива. В зависимости от размера вашего списка и операций, которые вы планируете выполнять на нем, использование numpy очень хорошо может быть наиболее эффективным.

Вместо этого я напишу

а затем манипулировать этим элементом, НО этот элемент не существует, так как вы сделали пустой список.

Часто в программах бывает надо работать с большим количество однотипных переменных. Например, пусть вам надо записать рост каждого человека в классе — это много целых чисел. Вы можете завести по одной переменной на каждого ученика, но это очень не удобно. Специально для этого придуманы массивы.

Общее представление о массиве

Массив (в питоне еще принято название "список", это то же самое) — это переменная, в которой хранится много значений. Массив можно представлять себе в виде такой последовательности ячеек, в каждой из которых записано какое-то число:

Соответственно, переменная теперь может хранить целиком такой массив. Создается такой массив, например, путем перечисления значений в квадратных скобках:

a = [7, 5, -3, 12, 2, 0]

Теперь переменная a хранит этот массив. К элементам массива можно обращаться тоже через квадратные скобки: a[2] — это элемент номер 2, т.е. в нашем случае это -3 . Аналогично, a[5] — это 0. В квадратных скобках можно использовать любые арифметические выражения и даже другие переменные: a[2*2-1] — это 12, a[i] обозначает "возьми элемент с номером, равным значению переменной i ", аналогично a[2*i+1] обозначает "возьми элемент с номером, равным 2*i+1", или даже a[a[4]] обозначает "возьми элемент с номером, равным четвертому элементу нашего массива" (в нашем примере a[4] — это 2 , поэтому a[a[4]] — это a[2] , т.е. -3 ).

Если указанный номер слишком большой (больше длины массива), то питон выдаст ошибку (т.е. в примере выше a[100] будет ошибкой, да и даже a[6] тоже). Если указан отрицательный номер, то тут действует хитрое правило. Отрицательные номера обозначают нумерацию массива с конца: a[-1] — это всегда последний элемент, a[-2] — предпоследний и т.д. В нашем примере a[-6] равно 7. Слишком большой отрицательный номер тоже дает ошибку (в нашем примере a[-7] уже ошибка).

С элементами массива можно работать как с привычными вам переменными. Можно им присваивать значения: a[3] = 10 , считывать с клавиатуры: a[3] = int(input()) , выводить на экран: print(a[3]) , использовать в выражениях: a[3+i*a[2]] = 3+abs(a[1]-a[0]*2+i) (здесь i — какая-то еще целочисленная переменная для примера), использовать в if'ах: if a[i]>a[i-2]: , или for a[2] in range(i) и т.д. Везде, где вы раньше использовали переменные, можно теперь использовать элемент массива.

Обход массива

Но обычно вам надо работать сразу со всеми элементами массива. Точнее, сразу со всеми как правило не надо, надо по очереди с каждым (говорят: "пробежаться по массиву"). Для этого вам очень полезная вещь — это цикл for . Если вы знаете, что в массиве n элементов (т.е. если у вас есть переменная n и в ней хранится число элементов в массиве), то это делается так:

например, вывести все элементы массива на экран:

или увеличить все элементы массива на единицу:

и т.п. Конечно, в цикле можно и несколько действий делать, если надо. Осознайте, что это не магия, а просто полностью соответствует тому, что вы знаете про работу цикла for.

Если же у вас нет переменной n , то вы всегда можете воспользоваться специальной функцией len , которая возвращает количество элементов в массиве:

for i in range(len(a)): .

Функцию len , конечно, можно использовать где угодно, не только в заголовке цикла. Например, просто вывести длину массива — print(len(a)) .

Операции на массиве

Еще ряд полезных операций с массивами:

  • a[i] (на всякий случай повторю, чтобы было легче найти) — элемент массива с номером i .
  • len(a) (на всякий случай повторю, чтобы было легче найти) — длина массива.
  • a.append(x) — приписывает к массиву новый элемент со значением x , в результате длина массива становится на 1 больше. Конечно, вместо x может быть любое арифметическое выражение.
  • a.pop() — симметричная операция, удаляет последний элемент из массива. Длина массива становится на 1 меньше. Если нужно запомнить значение удаленного элемента, надо просто сохранить результат вызова pop в новую переменную: res = a.pop() .
  • a * 3 — это массив, полученный приписыванием массива a самого к себе три раза. Например, [1, 2, 3] * 3 — это [1, 2, 3, 1, 2, 3, 1, 2, 3] . Конечно, на месте тройки тут может быть любое арифметическое выражение. Самое частое применение этой конструкции — если вам нужен массив длины n , заполненный, например, нулями, то вы пишете [0] * n .
  • b = a — присваивание массивов. Теперь в b записан тот же массив, что и в a . Тот же — в прямом смысле слова: теперь и a , и b соответствуют одному и тому же массиву, и изменения в b отразятся в a и наоборот. Еще раз, потому что это очень важно. Присваивание массивов (и вообще любых сложных объектов) в питоне не копирует массив, а просто обе переменные начинают ссылаться на один и тот же массив, и изменения массива через любую из них меняет один и тот же массив. При этом на самом деле тут есть многие тонкости, просто будьте готовы к неожиданностям.
  • b = a[1:4] ("срез") — делает новый массив, состоящий из элементов старого массива начиная со первого (помните про нумерацию с нуля!) и заканчивая третьим (т.е. до четвертого, но не включительно, аналогично тому, как работает range ); этот массив сохраняется в b . Для примера выше получится [5, -3, 12] . Конечно, на месте 1 и 4 может быть любое арифметическое выражение. Более того, эти индексы можно вообще не писать, при этом автоматически подразумевается начало и конец массива. Например, a[:3] — это первые три элемента массива (нулевой, первый и второй), a[1:] — все элементы кроме нулевого, a[:-1] — все элементы кроме последнего (!), а a[:] — это копия всего массива. И это именно копия, т.е. запись b = a[:] именно копирует массив, получающиеся массивы никак не связаны, и изменения в b не влияют на a (в отличие от b = a ).

Ввод-вывод массива

Как вам считывать массив? Во-первых, если все элементы массива задаются в одной строке входного файла. Тогда есть два способа. Первый — длинный, но довольно понятный:

Второй — покороче, но попахивает магией:

Может показаться страшно, но на самом деле map(int, input().split()) вы уже встречали в конструкции

когда вам надо было считать два числа из одной строки. Это считывает строку ( input() ), разбивает по пробелам ( .split() ), и превращает каждую строку в число ( map(int, . ) ). Для чтения массива все то же самое, только вы еще заворачиваете все это в list(. ) , чтобы явно сказать питону, что это массив.

Какой из этих двух способов использовать для чтения данных из одной строки — выбирать вам.

Обратите внимание, что в обоих способах вам не надо знать заранее, сколько элементов будет в массиве — получится столько, сколько чисел в строке. В задачах часто бывает что задается сначала количество элементов, а потом (обычно на следующей строке) сами элементы. Это удобно в паскале, c++ и т.п., где нет способа легко считать числа до конца строки; в питоне вам это не надо, вы легко считываете сразу все элементы массива до конца строки, поэтому заданное число элементов вы считываете, но дальше не используете:

Еще бывает, что числа для массива задаются по одному в строке. Тогда вам проще всего заранее знать, сколько будет вводиться чисел. Обычно как раз так данные и даются: сначала количество элементов, потом сами элементы. Тогда все вводится легко:

Более сложные варианты — последовательность элементов по одному в строке, заканчивающаяся нулем, или задано количество элементов и сами элементы в той же строке — придумайте сами, как сделать (можете подумать сейчас, можете потом, когда попадется в задаче). Вы уже знаете все, что для этого надо.

Как выводить массив? Если надо по одному числу в строку, то просто:

Если же надо все числа в одну строку, то есть два способа. Во-первых, можно команде print передать специальный параметр end=" " , который обозначает "заканчивать вывод пробелом (а не переводом строки)":

Есть другой, более простой способ:

Эта магия обозначает вот что: возьми все элементы массива a и передай их отдельными аргументами в одну команду print . Т.е. получается print(a[0], a[1], a[2], . ) .

Двумерные массивы

Выше везде элементами массива были числа. Но на самом деле элементами массива может быть что угодно, в том числе другие массивы. Пример:

Что здесь происходит? Создаются три обычных массива a , b и c , а потом создается массив z , элементами которого являются как раз массивы a , b и c .

Что теперь получается? Например, z[1] — это элемент №1 массива z , т.е. b . Но b — это тоже массив, поэтому я могу написать z[1][2] — это то же самое, что b[2] , т.е. -3 (не забывайте, что нумерация элементов массива идет с нуля). Аналогично, z[0][2]==30 и т.д.

То же самое можно было записать проще:

Получилось то, что называется двумерным массивом. Его можно себе еще представить в виде любой из этих двух табличек:

z содержит три элемента, и не важно, что каждый из них тоже массив), а len(z[2]) — длина внутреннего массива на позиции 2 (т.е. 2 в примере выше). Для массива x выше (того, у которого каждый подмассив имеет свою длину) получим len(x)==5 , и, например, len(x[3])==0 .

Аналогично работают все остальные операции. z.append([1,2]) приписывает к "внешнему" массиву еще один "внутренний" массив, а z[2].append(3) приписывает число 3 к тому "внутреннему" массиву, который находится на позиции 2. Далее, z.pop() удаляет последний "внутренний" из "внешнего" массива, а z[2].pop() удаляет последний элемент из "внутреннего" массива на позиции 2. Аналогично работают z[1:2] и z[1][0:1] и т.д. — все операции, которые я приводил выше.

Обход двумерного массива

Конечно, чтобы обойти двумерный массив, надо обойти каждый его "внутренний" массив. Чтобы обойти внутренний массив, нужен цикл for , и еще один for нужен, чтобы перебрать все внутренние массивы:

Создание пустого массива

Неожиданно нетривиальная операция на двумерных массивах — это создание двумерного массива определенного размера, заполненного, например, нулями. Вы помните, что одномерный массив длины n можно создавать как [0] * n . Возникает желание написать a = ([0] * m) * n , чтобы создать двумерный массив размера n x m (мы хотим, чтобы первый индекс массива менялся от 0 до n-1 , а второй индекс до m-1 , поэтому это именно ([0] * m) * n , а не ([0] * n) * m ). Но это сработает не так, как вы можете думать. Дело опять в том, что в питоне массивы по умолчанию не копируются полностью, поэтому то, что получается — это массив длина n , в котором каждый элемент соответствует одному и тому же массиву длины n . В итоге, если вы будете менять, например, a[1][2] , то так же будет меняться и a[0][2] , и a[3][2] и т.д. — т.к. все внутренние массивы на самом деле соответствуют одному и тому же массиву.

Поэтому массив размера n x m делается, например, так:

мы вручную n раз приписали к массиву a один и тот же массив.

Или еще есть магия в одну строчку:

a = [[0] * m for i in range(n)]

Я пока не буду объяснять, как это работает, просто можете запомнить. Или пользоваться предыдущим вариантом.

Обратите внимание, что тут важный момент — хотим мы, чтобы n соответствовало первому индексу или второму. В примерах выше n — размер первого индекса (т.е. размер "внешнего" массива), a m — размер второго индекса (т.е. размер каждого "внутреннего" массива). Если вы хотите, то можно делать и наоборот, но это вы сами должны решить и делать согласованно во всей программе.

Ввод-вывод двумерного массива

Обычно двумерный массив вам задается как n строк по m чисел в каждой, причем числа n и m вам задаются заранее. Такой двумерный массив вводится эдакой комбинацией двух способов ввода одномерного массива, про которые я писал выше:

Мы считываем очередную строку и получаем очередной "внутренний" массив: list(map(int, input().split())) , и приписываем его ( append ) ко внешнему массиву.

Обратите внимание, что здесь мы уже четко решили, что первый индекс нашего массива соответствует строкам входного файла, а второй индекс — столбцам, т.е. фактически мы уже выбрали левую из двух картинок выше. Но это связано не с тем, как питон работает с двумерными массивами, а с тем, как заданы входные данные во входном файле.

Вывод двумерного массива, если вам его надо вывести такой же табличкой, тоже делается комбинацией способов вывода одномерного массива, например, так:

Многомерные массивы

Аналогично двумерным, бывают и трехмерные и т.д. массивы. Просто каждый элемент "внутреннего" массива теперь сам будет массивом:

Здесь a[0] — это двумерный массив [[1, 2], [3, 4]] , и a[1] — двумерный массив [[5, 6], [7, 8]] . Например, a[1][0][1] == 6 .

Многомерные массивы в простых задачах не нужны, но на самом деле бывают полезны и не представляют из себя чего-то особо сложного. С ними все аналогично тому, что мы обсуждали про двумерные массивы.

Читайте также: