Чему равно стандартное входное сопротивление драйвера

Обновлено: 25.06.2024

Для схемы с общим эмиттером немного сложнее. Нам необходимо знать внутреннее сопротивление эмиттера rЭ. Оно вычисляется по формуле:

  • K=1.38×10-23 Дж·К−1 – постоянная Больцмана;
  • T – температура в Кельвинах, берем ≅300;
  • IЭ – ток эмиттера;
  • m – для кремния изменяется от 1 до 2.

\(r_Э = 0,026 В/I_Э = 26 мВ/I_Э\)

Таким образом, Rвх для схемы с общим эмиттером равно:

Например, входное сопротивление усилителя на транзисторе с β = 100, на схеме с общим эмиттером и смещением 1 мА равно:

\(r_Э = 26 мВ/ 1 мА = 26 \;Ом\)

\(R_ = \beta r_Э = 100 \cdot 26 = 2600 \;Ом\)

Для более точного определения Rвх для схемы с общим коллектором необходимо учитывать RЭ:

\(R_ = \beta (R_Э + r_Э)\)

Формула выше также применима и для схемы с общим эмиттером с резистором эмиттера.

Высокий входной импеданс схемы с общим коллектором согласовывается с источниками с высоким выходным сопротивлением. Одним из таких источников с высоким импедансом является керамический микрофон. Схема с общей базой иногда используется в RF (радиочастотных) схемах для согласования с источником с низким импедансом, например, с коаксиальным кабелем 50 Ом. С источниками со средним импедансом хорошо согласуется схема с общим эмиттером. Примером может служить динамический микрофон.

Выходные сопротивления трех основных типов схем приведены на рисунке ниже. Средний выходной импеданс схемы с общим эмиттером сделал ее самой популярной в использовании. Низкое выходное сопротивление схемы с общим коллектором хорошо подходит для согласования, например, для бестрансформаторного соединения с 4-омным динамиком.

Характеристики схем усилителей на биполярных транзисторах

Характеристики схем усилителей на биполярных транзисторах

Сопротивление входное

Под входным сопротивлением прибора (устройства) понимают сопротивление RВХ его входной цепи при пропускании через эту цепь тока Iвх.

При простой модели входного сопротивления по постоянному току RВХ представляют как величину активного сопротивления. В более сложной модели при работе на переменном токе RВХ представляют как величину импеданса на определённой частоте сигнала. Эти вопросы относятся к построению эквивалентной схемы входной цепи прибора (устройства).

Если специально не оговаривается, то величина входного сопротивления приводится для рабочего диапазона сигнала для данного входа при нормальной температуре окружающей среды. При превышении рабочего диапазона сигнала входное сопротивление может отличаться от входного сопротивления в рабочем диапазоне сигнала и даже можнет стать нелинейным из-за наличия во входной цепи защитных элементов ограничения напряжения. В выключенном (обесточенном) состоянии прибора входное сопротивление может резко отличаться от входного сопротивления в рабочем режиме.

Для приборов с входным коммутатором каналов входное сопротивление всегда нормируется для одноканального режима, при котором коммутационный процесс отсутствует. Это связано с тем, что коммутационный процесс вносит в цепь измерения динамический заряд коммутатора в момент переключения и тем самым усложняет саму модель входа такого прибора, в результате чего оценивать его по критерию "входное сопротивление" становится некорректно.

У приборов с входом напряжения входное сопротивление относительно высокое, поскольку данный вход параллельно подключают к цепи измерения.

У приборов с входом тока входное сопротивление относительно низкое, поскольку требуется последовательно включать такой прибор в цепь измерения.

Для усилителей заряда 1-го типа, преобразующих составляющую напряжения заряда, вход заряда имеет очень высокое входное сопротивление в режиме измерения.

Для усилителей заряда 2-го типа, преобразующих переменный заряд путём пропускания тока цепи заряда через вход (например, как у LE-41), вход имеет низкое входное сопротивление.

Для дифференциального входа применяется понятие входного сопротивления как для дифференциальной цепи X, Y (при условии соблюдения синфазного диапазона сигнала относительно AGND), так и для цепи синфазного сигнала при соединённых вместе входах X и Y (относительно AGND).

Измерить входное сопротивление можно методом вольтметраамперметра, контролируя напряжение и ток в цепи входа и вычисляя сопротивление по закону Ома для участка цепи. Но более точное измерение входного сопротивление прибора получается по двум измерениям для разных напряжений U1 и U2 и соответствующим измеренным токам I1 и I2; в этом случае входное сопротивление вычисляется по формуле:

Напоследок – лирическое отступление о философском смысле, связанном с понятием входного сопротивления прибора. Теоретически невозможно создать идеальный прибор, не влияющий на цепь измерения, поскольку невозможно измерить физическую величину, не отобрав из цепи измерения энергию. Это означает, что невозможно создать идеальные вольтметр и амперметр с бесконечно большим и, соответственно, бесконечно малым входным импедансом. Или, другими словами, достижимая точность измерения всегда конечна. Эти фундаментальные истины подтверждены известным в квантовой механике принципом неопределённости.

Понятие входного (внутреннего) сопротивления пассивной или активной электрической цепи являтся базовым понятием Теории линейных электрических цепей в курсе ТОЭ.

Перейти к другим терминам Cтатья создана:16.07.2014
О разделе "Терминология" Последняя редакция:03.03.2020

Термин используется для описания электрических свойств входов преобразователей и систем сбора данных.


Часовой пояс: UTC + 3 часа

Расскажите, пожалуйста, как измерить и как рассчитать входные и выходные сопротивления усилительных каскадов и готовых усилителей (звука). К примеру, мне нужно сделать предварительный усилитель для гитары, естественно нужно согласовать сопротивление звукоснимателей и входное сопротивление усилителя. Так как же это делается?

Где то там Вам мозги немного «запудрили»
С большой точностью согласовывать выходное и тем более входное сопротивление в УНЧ особого смысла нет. Если входное отличается в два, а то и в три раза, то это особой роли не с играет.
Тем более входное и выходное сопротивление имеет не чисто активный характер, т.е. имеет разные значения в зависимости от частоты, то имеет смысл говорить только об этих параметрах на какой то конкретной частоте или определять их на низких средних и высоких частотах.
Ниже приведен метод определения этих параметров без учета реактивностей, т.е. например без учета паразитных емкостей и индуктивностей. Будем считать, что они пренебрежимо малы. Т.е. смотрим принцип.

Само собой измеряется переменное напряжение.

Как выше писал, все это применимо только на низких частотах, т.к. в ВЧ схемах нужно учитывать и паразитные реактивности. Учесть их трудно, хотя оценить можно.

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

Спасибо большое, как мерить понятно, не понятно, почему так.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Из теории о четырехполюсниках.
Только я здорово упростил все. Что бы сам принцип был понятен.
В общем то таким методом можно оценить параметры усилителя.

Приглашаем всех желающих 25/11/2021 г. принять участие в вебинаре, посвященном антеннам Molex. Готовые к использованию антенны Molex являются компактными, высокопроизводительными и доступны в различных форм-факторах для всех стандартных антенных протоколов и частот. На вебинаре будет проведен обзор готовых решений и перспектив развития продуктовой линейки. Разработчики смогут получить рекомендации по выбору антенны, работе с документацией и поддержкой, заказу образцов.

Эх, вечно такие вот ответы. Формулку бы, а то лопатить кучу страниц и книг в поисках нужного, изучение принципов когда нужен лиш расчет, потеря времени.

Приглашаем 30 ноября всех желающих посетить вебинар о литиевых источниках тока Fanso (EVE). Вы узнаете об особенностях использования литиевых источников питания и о том, как на них влияют режим работы и условия эксплуатации. Мы расскажем, какие параметры важно учитывать при выборе литиевого ХИТ, рассмотрим «подводные камни», с которыми можно столкнуться при неправильном выборе, разберем, как правильно проводить тесты, чтобы убедиться в надежности конечного решения. Вы сможете задать вопросы представителям производителя, которые будут участвовать в вебинаре

Все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и т.д. Например, (рис. 1) состоит из двух блоков.


Рис. 1 - Схема источника питания

На рисунке 1 в левом блоке мы получаем постоянное напряжение, а в правом блоке его стабилизируем (рис. 2).


Рис. 2 - Блочная схема источника питания

Блочная схема - это условное деление. В этом примере мы могли бы даже взять трансформатор, как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод "от простого к сложному" полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем - готовое устройство, например, телевизор.

Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.

На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.

Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением.

Если прислушаться фразам, то входное сопротивление - это сопротивление какого-то входа, а выходное - сопротивление какого-либо выхода. Ну да, все почти так и есть. И где же нам найти в схеме эти входные и выходные сопротивления? А вот "прячутся" они в самих блоках радиоэлектронных устройств.

В блочной схеме вход блока располагается слева, выход - справа.


Как и полагается, этот блок используется в каком-нибудь радиоэлектронном устройстве и выполняет какую-либо функцию. Значит, на его вход будет подаваться какое-то входное напряжение Uвх от другого блока или от источника питания, а на его выходе появится напряжение Uвых (или не появится, если блок является конечным).


Но раз уж мы подаем напряжение на вход (входное напряжение Uвх), следовательно, у нас этот блок будет потреблять какую-то силу тока Iвх.


Рис. 5 - Сила тока на входе

От чего зависит Iвх ? Вообще, от чего зависит сила тока в цепи? Вспоминаем закон Ома для участка цепи:

Значит, сила тока у нас зависит от напряжения и от сопротивления. Предположим, что напряжение у нас не меняется, следовательно, сила тока в цепи будет зависеть от. СОПРОТИВЛЕНИЯ. Но где нам его найти? А прячется оно в самом каскаде и называется входным сопротивлением.


То есть, разобрав такой блок, внутри него мы можем найти этот резистор? Конечно же нет. Он является своего рода сопротивлением радиоэлементов, соединенных по схеме этого блока.

Измерение входного сопротивления

Как мы знаем, на каждый блок подается какой-либо сигнал от предыдущего блока или это может быть даже питание от сети или батареи. Что нам остается сделать?

  1. Замерить напряжение Uвх , подаваемое на блок.
  2. Замерить силу тока Iвх , которую потребляет блок.
  3. По закону Ома найти входное сопротивление Rвх .


Если у вас входное сопротивление получается очень большое, чтобы замерить его как можно точнее, используют вот такую схему.


Рис. 7 - Измерение входного сопротивления

Мы с вами знаем, что если входное сопротивление у нас большое, то входная сила тока в цепи у нас будет очень маленькая (из закона Ома).

Падение напряжения на резисторе R обозначим, как


Из всего этого получаем.


Когда мы проводим эти измерения, имейте ввиду, что напряжение на выходе генератора не должно меняться!

Итак, давайте посчитаем, какой же резистор нам необходимо подобрать, чтобы как можно точнее замерять это входное сопротивление. Допустим, что у нас входное сопротивление Rвх=1 МОм, а резистор взяли R = 1 КОм. Пусть генератор выдает постоянное напряжение U=10 В. В результате, у нас получается цепь с двумя сопротивлениями. Правило делителя напряжения гласит: сумма падений напряжений на всех сопротивлениях в цепи равняется ЭДС генератора.


Рис. 8 - Делитель напряжения

Рассчитываем силу тока в цепи в амперах:

Получается, что падение напряжения на сопротивлении R в вольтах будет:

Грубо говоря 0,01 В. Вряд ли вы сможете точно замерить такое маленькое напряжение на своем мультиметре.

Какой отсюда вывод? Для более точного измерения высокого входного сопротивления надо брать добавочное сопротивление также очень большого номинала. В этом случае работает правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, и наоборот, на меньшем сопротивлении падает меньшее напряжение.

Давайте теперь на практике попробуем замерить входное сопротивление какого-либо устройства. Итак, выставляем на блоке питания рабочее напряжение этого транзистор-метра, то есть 9 В, и во включенном состоянии замеряем потребляемую силу тока. По схеме все это будет выглядеть вот так:


А на деле вот так:


Итак, у нас получилось 22,5 миллиАмпер.

Теперь, зная значение потребляемого тока, можно найти по этой формуле входное сопротивление:

Выходное сопротивление

Яркий пример выходного сопротивления - это закон Ома для полной цепи, в котором есть так называемое "внутреннее сопротивление".

Что мы имели? У нас был автомобильный аккумулятор, с помощью которого мы поджигали галогеновую лампочку. Перед тем, как цеплять лампочку, мы замеряли напряжение на клеммах аккумулятора:


И как только подсоединяли лампочку, у нас напряжение на аккумуляторе становилось меньше.


Разница напряжения, то есть 0,3 В (12,09 -11,79) у нас падало на так называемом внутреннем сопротивлении r . Оно же и есть ВЫХОДНОЕ СОПРОТИВЛЕНИЕ. Его также называют еще сопротивлением источника или эквивалентным сопротивлением.

У всех аккумуляторов есть это внутреннее сопротивление r, и "цепляется" оно последовательно с источником ЭДС ( Е ).


Рис. 13 - Внутреннее сопротивление аккумулятора

Выходным сопротивлением обладают все источники питания. Это может быть блок питания, генератор частоты, либо вообще какой-нибудь усилитель.

В теореме Тевенина говорилось, что любую цепь, которая имеет две клеммы и содержит в себе много различных источников ЭДС и резисторов разного номинала можно привести к источнику ЭДС с каким-то значением напряжения ( Eэкв ) и с каким-то внутренним сопротивлением ( Rэкв ).


Eэкв - эквивалентный источник ЭДС

Rэкв - эквивалентное сопротивление

То есть получается, если какой-либо источник напряжения питает нагрузку, значит, в источнике напряжения есть ЭДС и эквивалентное сопротивление, оно же выходное сопротивление.


В режиме холостого хода (то есть, когда к выходным клеммам не подцеплена нагрузка) с помощью мультиметра мы можем замерить ЭДС ( E ). С замером ЭДС вроде бы понятно, но вот как замерить Rвых ?

В принципе, можно устроить короткое замыкание. То есть замкнуть выходные клеммы толстым медным проводом, по которому у нас будет течь ток короткого замыкания Iкз .


Рис. 15 - Ток короткого замыкания

В результате у нас получается замкнутая цепь с одним резистором. Из закона Ома получаем, что

Но есть небольшая загвоздка. Теоретически - формула верна. Но на практике я бы не рекомендовал использовать этот способ. В этом случае сила тока достигает бешенного значения, да вообще, вся схема ведет себя неадекватно.

Есть другой, более безопасный способ. Не буду повторяться, просто скопирую со статьи закон Ома для полной цепи, где мы находили внутреннее сопротивление аккумулятора. В той статье, мы к акуму цепляли галогеновую лампочку, которая была нагрузкой R. В результате по цепи шел электрический ток. На лампочке и на внутреннем сопротивлении у нас падало напряжение, сумма которых равнялась ЭДС.


Итак, для начала замеряем напряжение на аккумуляторе без лампочки (рис. 17).


Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае E = 12,09 В.

Как только мы цепанули нагрузку, то у нас сразу же упало напряжение на внутреннем резисторе и на нагрузке, в данном случае на лампочке:


Сейчас на нагрузке (на галогенке) у нас упало напряжение

следовательно, на внутреннем резисторе падение напряжения составило

Сила тока в цепи равняется I =4,35 Ампер. ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи вычисляем, чему у нас будет равняться внутреннее сопротивление r:

r = (12,09 - 11,79)/4,35 = 0,069 [Ом]

Выводы

С выходным сопротивлением все намного интереснее. Когда мы подключаем низкоомную нагрузку, то чем больше внутреннее сопротивление, тем больше напряжение падает на внутреннем сопротивлении. То есть в нагрузку будет отдаваться меньшее напряжение, так как разница осядет на внутреннем резисторе. Поэтому, качественные источники питания, типа блока питания либо генератора частоты, пытаются делать как можно с меньшим выходным сопротивлением, чтобы напряжение на выходе "не проседало" при подключении низкоомной нагрузки. Даже если сильно просядет, то мы можем вручную подкорректировать с помощью регулировки выходного напряжения, которые есть в каждом нормальном источнике питания. В некоторых источниках это делается уже автоматически.

Читайте также: