Как выбрать драйвер mosfet

Обновлено: 07.07.2024

Силовые MOSFET и IGBT транзисторы, отличия и особенности их применения

Технологии в области силовой электроники все время совершенствуются: реле становятся твердотельными, биполярные транзисторы и тиристоры заменяются все обширнее на полевые транзисторы, новые материалы разрабатываются и применяются в конденсаторах и т. д. — всюду определенно заметна активная технологическая эволюция, которая не прекращается ни на год. С чем же это связано?

Это связано, очевидно, с тем, что в какой-то момент производители оказываются не в состоянии удовлетворить запросы потребителей на возможности и качество силового электронного оборудования: у реле искрят и обгорают контакты, биполярные транзисторы для управления требуют слишком много мощности, силовые блоки занимают неприемлемо много места и т. п. Производители конкурируют между собой — кто первым предложит лучшую альтернативу…?

Так и появились полевые MOSFET транзисторы, благодаря которым управление потоком носителей заряда стало возможным не посредством изменения тока базы, как у биполярных предков, а посредством электрического поля затвора, по сути — просто приложенным к затвору напряжением.

Полевой MOSFET транзистор

В итоге уже к началу 2000-х доля силовых устройств на MOSFET и IGBT составляла около 30%, в то время как биполярных транзисторов в силовой электронике осталось менее 20%. За последние лет 15 произошел еще более существенный рывок, и биполярные транзисторы в классическом понимании почти полностью уступили место MOSFET и IGBT в сегменте управляемых силовых полупроводниковых ключей.

MOSFET и IGBT транзисторы

Проектируя, к примеру, силовой высокочастотный преобразователь, разработчик уже выбирает между MOSFET и IGBT – оба из которых управляются напряжением, прикладываемым к затвору, а вовсе не током, как биполярные транзисторы, и цепи управления получаются в результате более простыми. Давайте, однако рассмотрим особенности этих самых транзисторов, управляемых напряжением затвора.

MOSFET или IGBT

У IGBT (БТИЗ-биполярный транзистор с изолированным затвором) в открытом состоянии рабочий ток проходит через p-n-переход, а у MOSFET – через канал сток-исток, обладающий резистивным характером. Вот и возможности для рассеяния мощности у этих приборов различаются, потери получаются разными: у MOSFET-полевика рассеиваемая мощность будет пропорциональна квадрату тока через канал и сопротивлению канала, в то время как у БТИЗ рассеиваемая мощность окажется пропорциональна напряжению насыщения коллектор-эмиттер и току через канал в первой степени.

MOSFET или IGBT

Если нам нужно снизить потери на ключе, то потребуется выбрать MOSFET с меньшим сопротивлением канала, однако не стоит забывать, что с ростом температуры полупроводника это сопротивление вырастет и потери на нагрев все же возрастут. А вот у IGBT с ростом температуры напряжение насыщения p-n-перехода наоборот снижается, значит и потери на нагрев уменьшаются.

Но не все так элементарно, как может показаться на взгляд неискушенного в силовой электронике человека. Механизмы определения потерь у IGBT и MOSFET в корне различаются.

Как вы поняли, у MOSFET-транзистора сопротивление канала в проводящем состоянии обуславливает определенные потери мощности на нем, которые по статистике почти в 4 раза превосходят мощность, затрачиваемую на управление затвором.

У IGBT дело обстоит с точностью до наоборот: потери на переходе меньше, а вот затраты энергии на управление — больше. Речь о частотах порядка 60 кГц, и чем выше частота — тем больше потери на управление затвором, особенно применительно к IGBT.

Транзистор IGBT

Дело все в том, что в MOSFET неосновные носители заряда не рекомбинируют, как это происходит в IGBT, в составе которого есть полевой MOSFET-транзистор, определяющий скорость открывания, но где база недоступна напрямую, и ускорить процесс при помощи внешних схем нельзя. В итоге динамические характеристики у IGBT ограничены, ограничена и предельная рабочая частота.

Повышая коэффициент передачи и снижая напряжение насыщения — допустим, понизим статические потери, но зато повысим потери при переключении. По этой причине производители IGBT-транзисторов указывают в документации на свои приборы оптимальную частоту и максимальную скорость переключения.

Есть недостаток и у MOSFET. Его внутренний диод отличается конечным временем обратного восстановления, которое так или иначе превышает время восстановления, характерное для внутренних антипараллельных диодов IGBT. В итоге имеем потери включения и токовые перегрузки у MOSFET в полумостовых схемах.

Теперь непосредственно про рассеиваемое тепло. Площадь полупроводниковой IGBT-структуры больше чем у MOSFET, поэтому и рассеиваемая мощность у IGBT больше, вместе с тем температура перехода в процессе работы ключа растет интенсивнее, поэтому важно правильно подобрать радиатор к ключу, грамотно рассчитав поток тепла, приняв в расчет тепловые сопротивления всех границ сборки.

У MOSFET на высоких мощностях также растут потери на нагрев, сильно превосходя потери на управление затвором IGBT. При мощностях выше 300-500Вт и на частотах в районе 20-30 кГц преимущество будет за IGBT-транзисторами.

Биполярный транзистор с изолированным затвором

Вообще, для каждой задачи выбирают свой тип ключа, и есть определенные типовые воззрения на этот аспект. MOSFETы подойдут для работы на частотах выше 20 кГц при напряжениях питания до 300 В — зарядные устройства, импульсные блоки питания, компактные инверторы небольшой мощности и т. д. - подавляющее большинство из них собирают сегодня на MOSFET.

IGBT хорошо работают на частотах до 20 кГц при напряжениях питания 1000 и более вольт — частотные преобразователи, ИБП и т. п. - вот низкочастотный сегмент силовой техники для IGBT-транзисторов.

В промежуточной нише — от 300 до 1000 вольт, на частотах порядка 10 кГц, - подбор полупроводникового ключа подходящей технологии осуществляют сугубо индивидуально, взвешивая все за и против, включая цену, габариты, КПД и другие факторы.

Между тем нельзя однозначно сказать, что в одной типовой ситуации подойдет именно IGBT, а в другой — только MOSFET. Необходимо комплексно подходить к разработке каждого конкретного устройства. Исходя из мощности прибора, режима его работы, предполагаемого теплового режима, приемлемых габаритов, особенностей управления схемой и т.д.

И главное — выбрав ключи нужного типа, разработчику важно точно определить их параметры, ибо в технической документации (в даташите) отнюдь не всегда все точно соответствует реальности. Чем более точно будут известны параметры — тем эффективнее и надежнее получится изделие, независимо от того, идет ли речь об IGBT или о MOSFET.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Драйвер полевого транзистора из дискретных компонентов

Одно дело, когда для скоростного управления мощным полевым транзистором с тяжелым затвором есть готовый драйвер в виде специализированной микросхемы наподобие UCC37322, и совсем другое, когда такого драйвера нет, а схему управления силовым ключом необходимо реализовать здесь и сейчас.

В таких случаях нередко приходится прибегать к помощи дискретных электронных компонентов, которые есть в наличии, и уже из них собирать драйвер затвора. Дело, казалось бы, не хитрое, однако для получения адекватных временных параметров переключения полевого транзистора, все должно быть сделано качественно и работать правильно.

Весьма стоящая, лаконичная и качественная идея с целью решения аналогичной задачи была предложена еще в 2009 году Сергеем BSVi в его блоге «Страничка эмбеддера» (смотрите - Драйвер полевых транзисторов из хлама).


Схема была успешно протестирована автором в полумосте на частотах до 300 кГц. В частности, на частоте 200 кГц, при нагрузочной емкости в 10 нФ, удалось получить фронты длительностью не более 100 нс. Давайте же рассмотрим теоретическую сторону данного решения, и попробуем подробно разобраться, как эта схема работает.

Основные токи заряда и разряда затвора при отпирании и запирании главного ключа текут через биполярные транзисторы выходного каскада драйвера. Данные транзисторы должны выдержать пиковый ток управления затвором, а их максимальное напряжение коллектор-эмиттер (по datasheet) обязано быть больше чем напряжение питания драйвера. Обычно для управления затвором полевика достаточно 12 вольт. Что касается пикового тока, то предположим, что он не превысит 3А.

Если для управления ключом необходим ток более высокий, то и транзисторы выходного каскада должны быть более мощными (разумеется, с подходящей граничной частотой передачи тока).

Для нашего примера в качестве транзисторов выходного каскада подойдет комплиментарная пара - BD139 (NPN) и BD140 (PNP). У них предельное напряжение коллектор-эмиттер составляет 80 вольт, пиковый ток коллектора 3А, граничная частота передачи тока 250 МГц (важно!), а минимальный статический коэффициент передачи тока 40.

Для повышения коэффициента усиления по току в схему выходного каскада добавлена дополнительная комплиментарная пара слаботочных транзисторов КТ315 и КТ361 с максимальным обратным напряжением 20 вольт, минимальным статическим коэффициентом передачи тока 50, и граничной частотой 250 МГц — такой же высокой, как у выходных транзисторов BD139 и BD140.

В итоге на выходе получаем две пары транзисторов, включенных по схеме Дарлингтона с общим минимальным коэффициентом передачи по току 50*40 = 2000 и с граничной частотой равной 250 МГц, то есть теоретически в пределе скорость переключения может достигать единиц наносекунд. Но поскольку здесь речь идет об относительно продолжительных процессах заряда и разряда емкости затвора, то это время будет на порядок выше.

Управляющий сигнал необходимо подавать на объединенные базы транзисторов КТ315 и КТ361. Токи открывания баз NPN (верхних) и PNP (нижних) транзисторов должны быть разделены.

Для этого в схему можно было бы установить разделительные резисторы, но гораздо более эффективным для данной конкретной схемы оказалось решение с установкой вспомогательного блока на КТ315, резисторе и диоде 1n4148.

Функция этого блока — быстро активировать базы верхних транзисторов слаботочного каскада при подаче высшего напряжения на базу данного блока, и так же быстро через диод подтянуть базы к минусу, когда на базе блока появится сигнал низшего уровня.

Чтобы иметь возможность управлять данный драйвером от слаботочного источника сигнала с выходным током порядка 10 мА, в схему установлены слаботочный полевой транзистор КП501 и высокоскоростная оптопара 6n137.

При подаче управляющего тока через цепь 2-3 оптопары, выходной биполярный транзистор внутри нее переходит в проводящее состояние, причем на выводе 6 находится открытый коллектор, к которому и присоединен резистор, подтягивающий затвор слаботочного полевого транзистора КП501 к плюсовой шине питания оптопары.

Таким образом, когда на вход оптопары подается сигнал высокого уровня, на затворе полевика КП501 будет сигнал низкого уровня, и он закроется, тем самым обеспечив возможность для протекания тока через базу верхнего по схеме КТ315 — драйвер станет заряжать затвор главного полевика.

Если же на входе оптопары сигнал низкого уровня или сигнал отсутствует, то на выходе из оптопары будет сигнал высокого уровня, затвор КП501 зарядится, его стоковая цепь замкнется, а база верхнего по схеме КТ315 подтянется к нулю.

Выходной каскад драйвера начнет разряжать затвор управляемого им ключа. Важно учесть, что в данном примере напряжение питания оптопары ограничено 5 вольтами, а главный каскад драйвера питается напряжением 12 вольт.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Управление затвором полевого транзистора — важный аспект в разработке любого современного электронного устройства. Например, когда в импульсном преобразователе используется только нижний силовой ключ, и решение принято в пользу использования индивидуального драйвера в виде специализированной микросхемы, необходимо решить задачу подбора подходящего драйвера, чтобы он смог удовлетворить следующим условиям.


Во-первых, драйвер должен будет обеспечить надежное открывание и закрывание выбранного ключа. Во-вторых, необходимо соблюсти требования относительно адекватной длительности переднего и заднего фронтов при коммутации. В-третьих, драйвер сам не должен перегружаться работая в схеме.

На данном этапе целесообразно начать с анализа данных из документации на полевой транзистор, и уже исходя из них определить, какими должны быть характеристики драйвера. После этого останется выбрать конкретную микросхему драйвера из предлагаемых на рынке.


Амплитуда управляющего напряжения — 12 вольт

В datasheet на полевой транзистор есть параметр Vgs(th) — это минимальное напряжение между затвором и истоком, при котором транзистор уже начнет потихонечку открываться. Обычно его величина находится в пределах 4 вольт.

Далее, когда напряжение на затворе поднимется примерно до 6 вольт, себя обязательно проявит такое явление как «плато Миллера», заключающееся в том, что в процессе открывания транзистора, из-за индуцированного воздействия падающего напряжения на стоке, емкость затвор-исток временно как бы увеличится, и хотя затвор продолжит получать заряд от драйвера, напряжение на нем относительно истока в течение какого-то времени дальше не повысится.

Однако после преодоления плато Миллера напряжение на затворе продолжит линейно нарастать, и ток стока линейно достигнет своего максимума как раз к тому моменту, когда напряжение на затворе составит примерно 7-8 вольт.


Поскольку процесс заряда любой емкости протекает по экспоненте, то есть в конце он всегда замедляется, то для более скорого заряда затвора, чтобы не затягивать процесс открывания транзистора, выходное напряжение драйвера Uупр принимают равным 12 вольт. Тогда 7-8 вольт — это будет как раз 63% от амплитуды, до которых напряжение будет расти почти линейно в течение времени равного 3*R*Ciss, где Ciss – текущая емкость затвора, а R – сопротивление на участке затвор-исток.


Полный заряд затвора Qg

Когда напряжение драйвера выбрано, в расчет принимают полный заряд затвора Qg. Это место компромисса между пиковым током драйвера Iмакс и временем открывания транзистора Tвкл. Сначала узнают полный заряд затвора Qg, который драйвер должен будет передавать затвору в начале каждого рабочего цикла ключа, а в завершении каждого цикла — снимать с затвора.

Полный заряд затвора найдем по графику из datasheet, где в зависимости от напряжения, которое изначально предполагается на стоке, Qg при 12 вольтах Uупр будет разным.

За какое время должен полностью заряжаться затвор — это на самом деле зависит или от того, какой длительности необходимо получить фронт открытия силового транзистора, или от того, какой имеется в распоряжении драйвер. Выбираемый драйвер должен будет иметь подходящие параметры Rise Time и Fall Time.

Но поскольку мы решили, что будем выбирать драйвер исходя в первую очередь из потребностей разрабатываемой схемы, то начинать расчет будем именно со времени, за которое транзистор должен будет полностью открыться (или закрыться). Разделим заряд затвора Qg на величину требуемого времени открытия (или закрытия) ключа Tвкл(выкл) - получим средний ток, выходящий из драйвера, проходящий через затвор:

Пиковый ток драйвера Iмакс

Так как в целом процесс заряда затвора протекает практически равномерно, то можно считать, что выходной ток драйвера снизится почти до нуля к моменту полного заряда затвора (до напряжения Uупр). Следовательно примем пиковый ток драйвера Iмакс равным удвоенному значению среднего тока: Iмакс=Iср*2, тогда драйвер точно не перегорит от перегрузки по выходному току. В итоге выбираем драйвер исходя из Iмакс и Uупр.


Если же драйвер уже имеется в нашем распоряжении, а Iмакс получился больше, чем пиковый ток драйвера. Просто разделим амплитуду управляющего напряжения Uупр на значение максимального тока Iмакс.драйвера.

По закону Ома получим значение минимального сопротивления, которое необходимо иметь в цепи затвора, чтобы ограничить ток заряда затвора величиной заявленного в datasheet пикового тока для имеющегося драйвера:

В datasheet бывает указано значение Rg – сопротивление участка затвор-исток. Его важно учесть, и если этой величины окажется достаточно, то тогда и внешнего резистора не нужно. Если же нужно еще более ограничить ток — придется добавить еще и внешний резистор. Когда добавлен внешний резистор, это скажется на времени открывания ключа.

Увеличенный параметр R*Ciss не должен привести к превышению желательной длительности переднего фронта, поэтому данный параметр необходимо вычислить.

Что касается процесса запирания ключа, то здесь расчеты ведутся аналогично. Если же необходимо чтобы длительности переднего и заднего фронтов управляющих импульсов отличались между собой, то можно поставить раздельные RD-цепочки на заряд и на разряд затвора, чтобы получить различные постоянные времени для начала и для завершения каждого рабочего цикла. Опять же важно помнить что выбираемый драйвер должен будет иметь подходящие параметры минимальных Rise Time и Fall Time, которые обязаны оказаться меньше требуемых.

Ранее ЭлектроВести писали, что в Австралии разработали металл-воздушный транзистор без полупроводников.

В большинстве случаев используется следующая классификация высоковольтных драйверов:

  • Независимые драйверы верхнего и драйверы нижнего плеча полумоста, интегрированные в одной микросхеме (High and Low Side Driver);
  • Драйверы верхнего и драйверы нижнего плеча, включенные по схеме полумоста (Half-Bridge Driver);
  • Драйверы верхнего плеча (High Side Driver);
  • Драйверы нижнего плеча (Low Side Driver).

На рис. 1 показаны соответствующие этим типам драйверов схемы управления.

Упрощенные схемы управления MOSFET- и IGBT-транзисторами

Рис. 1. Упрощенные схемы управления MOSFET- и IGBT-транзисторами

В первом случае (рис. 1а) управление двумя независимыми нагрузками осуществляется от единых управляющих сигналов. Нагрузки, соответственно, включаются между истоком нижнего транзистора и шиной высоковольтного питания (драйвер нижнего плеча), а также между стоком верхнего транзистора и землей (драйвер верхнего плеча). Так называемые средние точки (сток верхнего транзистора и исток нижнего транзистора) не соединены между собой.

Во втором случае (рис. 1б) средние точки соединены. Причем нагрузка может быть включена как на верхнее, так и на нижнее плечо, но подключена к средней точке аналогично полумостовой схеме (т.н. полная мостовая схема). Строго говоря, в схеме 1а ничто не мешает соединить средние точки. Но в этом случае при определенной комбинации входных сигналов возможно одновременное открытие сразу двух транзисторов и, соответственно, протекание чрезмерно большого тока от высоковольтной шины на землю, что приведет к выходу из строя одного или сразу обоих транзисторов. Исключение подобной ситуации в данной схеме является заботой разработчика. В полумостовых драйверах (схема 1б) подобная ситуация исключается на уровне внутренней логики управления микросхемы.

Семейство высоковольтных драйверов
L368x

В таблице 1 приводятся состав и параметры микросхем семейства L368x. Микросхемы данного семейства включают в себя как независимые драйверы верхнего и нижнего плеча (H&L), так и драйверы полумостовой схемы (HB).

Таблица 1. Параметры драйверов семейства L638x

Наименование Voffcet, В Io+, мА Io-, мА Ton, нс Toff, нс Tdt, нс Тип Управление
L6384E 600 400 650 200 250 Prog. HB IN/-SD
L6385E 600 400 650 110 105 H&L HIN/LIN
L6386E 600 400 650 110 150 H&L HIN/LIN/-SD
L6387E 600 400 650 110 105 H&L HIN/LIN
L6388E 600 200 350 750 250 320 HB HIN/LIN

Поясним некоторые параметры:

Управление. Микросхемы независимых драйверов верхнего и нижнего плеча управляются по входам HIN и LIN. Причем высокий уровень логического сигнала включает, соответственно, верхнее или нижнее плечо драйвера. В микросхеме L6386E помимо этого используется дополнительный вход SD, отключающий оба плеча независимо от состояния на входах HIN и LIN.

В микросхеме L6384E применяются сигналы SD и IN. Сигнал SD отключает оба плеча независимо от состояния на входе IN. Сигнал IN = 1 эквивалентен комбинации сигналов и, наоборот, IN = 0 эквивалентен комбинации сигналов . Таким образом, одновременное включение транзисторов верхнего и нижнего плеча невозможно в принципе.

В микросхеме L6388E управление осуществляется по входам HIN и LIN, поэтому принципиально возможно подать на входы комбинацию , однако внутренняя логическая схема преобразует ее в комбинацию , исключив, таким образом, одновременное включение обоих транзисторов.

Что касается параметров, начнем с микросхем типа H&L.

Значение VOFFSET, равное 600 Вольт, является в каком-то смысле стандартом для микросхем данного класса.

Значение выходного тока IO+ (IO-), равное 400/650 мА, является показателем средним, ориентированным на типовые транзисторы общего назначения. Если сравнивать с микросхемами семейства IRS (поколение G5 HVIC), то компания International Rectifier предлагает, главным образом, микросхемы с параметром 290/600 мА. Однако в линейке International Rectifier есть также модели с параметрами 2500/2500 мА (IRS2113) и несколько меньшим быстродействием или микросхемы с выходными токами до 4000/4000 мА (IRS2186). Правда, в этом случае время переключения по сравнению с L6385E увеличивается до значения 170/170 нс.

Время переключения. Значения TON (TOFF), равные 110/105 нс (для L6385E), превышают аналогичные значения микросхем семейства IRS (пусть и не очень значительно). Лучших показателей (60/60 нс) компания International Rectifier добилась в модели IRS2011, но за счет снижения напряжения VOFFSET до 200 В.

Сравнивая параметры драйвера полумостовой схемы L6384E с изделиями International Rectifier, можно сделать вывод, что он уступает (и по выходным токам, и по быстродействию) только модели IRS21834, в которой реализована входная логика HIN/-LIN. Если критичной является входная логика IN/-SD, то драйвер L6384E превосходит по своим параметрам изделия International Rectifier.

Более подробно рассмотрим микросхему драйвера L6385E, структура и схема включения которой приведена на рис. 2.

Структура и схема включения L6385E

Рис. 2. Структура и схема включения L6385E

Микросхема содержит два независимых драйвера верхнего (выход HVG) и нижнего плеча (выход LVG). Реализация драйвера нижнего плеча достаточно тривиальна, поскольку потенциал на выводе GND постоянен и, следовательно, задача состоит в преобразовании входного низковольтного логического сигнала LIN до уровня напряжения на выходе LVG, необходимого для открытия транзистора нижнего плеча. В верхнем плече потенциал на выводе OUT изменяется в зависимости от состояния нижнего транзистора. Существуют различные схемотехнические решения, применяемые для построения каскада верхнего плеча. В данном случае применяется относительно простая и недорогая бутстрепная схема управления (схема с «плавающим» источником питания). В такой схеме длительность управляющего импульса ограничена величиной бутстрепной емкости. Кроме того, необходимо обеспечить условия для ее постоянного заряда с помощью высоковольтного быстродействующего каскада сдвига уровня. Этот каскад обеспечивает преобразование логических сигналов до уровней, необходимых для устойчивой работы схемы управления транзистора верхнего плеча.

Для современных высоковольтных драйверов характерна тенденция интегрировать бутстрепный диод в корпус интегральной схемы. Благодаря этому отпадает необходимость в применении внешнего диода, который является достаточно громоздким по сравнению с самой микросхемой драйвера. Встроенный бутстрепный диод (точнее, бутстрепная схема) применен не только в драйвере L6385E, но и во всех остальных микросхемах этого семейства.

Микросхема L6386E является вариантом L6385E с дополнительными функциями. Ее структура и схема включения приведены на рис. 3.

Структура и схема включения L6386E

Рис. 3. Структура и схема включения L6386E

Основные отличия L6386E от L6385E. Во-первых, добавлен дополнительный вход SD, низкий уровень сигнала на котором выключает оба транзистора независимо от состояния входов HIN и LIN. Часто используется как сигнал аварийного отключения, не связанный со схемой формирования входных управляющих сигналов. Во-вторых, добавлен каскад контроля тока, протекающего через транзистор нижнего каскада. Сравнивая с предыдущей схемой, видим, что сток транзистора нижнего плеча подключен к земле не непосредственно, а через токовый резистор (токовый датчик). Если падение напряжения на нем превышает пороговое значение VREF, то на выходе DIAG формируется низкий уровень. Отметим, что данное состояние не влияет на работу схемы, а является только индикатором.

Несколько слов о применении микросхем семейства L638x. Ограниченный объем статьи не позволяет рассмотреть примеры применения, однако в документе «L638xE Application Guide» компании STMicroelectronics [1] приведены примеры схемы управления трехфазным двигателем, схемы балласта люминесцентной лампы с диммированием, DC/DC-преобразователей с различной архитектурой и ряд других. Также приведены схемы демонстрационных плат для всех микросхем данного семейства (в том числе и топология печатных плат).

Подводя итог анализа семейства L638x, отметим: не обладая уникальными характеристиками по каким-то отдельным параметрам, драйверы данного семейства относятся к одним из лучших в отрасли как по совокупности параметров, так и по примененным техническим решениям.

Семейство высоковольтных драйверов
полумостовой схемы L639x

На первый взгляд, микросхемы этого семейства можно считать развитием микросхемы L6384E. Однако анализируя функциональные возможности драйверов семейства L639x, признать L6384E в качестве прототипа весьма сложно (разве что за отсутствием других драйверов полумоста в линейке STMicroelectronics). В таблице 2 приводятся состав и параметры микросхем семейства L639x.

Таблица 2. Параметры драйверов семейства L639x

Структура и схема включения L6390

Рис. 4. Структура и схема включения L6390

Все микросхемы содержат логику защиты от одновременного открытия транзисторов верхнего и нижнего плеча и, соответственно, формирования паузы при изменении состояния выхода. Время паузы TDT для всех микросхем семейства программируемое и определяется номиналом резистора, подключенного к выводу DT.

Циклограмма управления логики PHASE/BRAKE/SD

Рис. 5. Циклограмма управления логики PHASE/BRAKE/SD

На рис. 6 показана структура и схема включения микросхемы L6393.

Структура и схема включения L6393

Рис. 6. Структура и схема включения L6393

О параметрах. Значения выходных токов IO+ (IO-), равные 270/430 мА, уступают микросхемам компании International Rectifier (у которых, как отмечалось выше, типичными являются 290/600 мА). Тем не менее, динамические параметры TON/TOFF (125/125 нс) превосходят (и часто существенно) все микросхемы семейства IRS.

Выводы по семейству L639x. При достаточно высоких количественных характеристиках, что само по себе позволяет отнести семейство L639x к группе лидеров отрасли, дополнительные функции придают качественный скачок, поскольку позволяют реализовать в одной микросхеме те функции, которые ранее реализовывались с использованием ряда дополнительных компонентов.

Заключение

Безусловно, номенклатуру высоковольтных драйверов компании STMicroelectronics нельзя признать очень широкой (хотя бы в сравнении с аналогичными изделиями компании International Rectifier). Тем не менее, количественные и качественные характеристики рассмотренных семейств не уступают лучшим изделиям IR.

Говоря о драйверах MOSFET- и IGBT-транзисторов, нельзя не упомянуть и сами транзисторы; компания STMicroelectronics выпускает достаточно широкую линейку полевых (например MDMESH V и SuperMesh3) и биполярных транзисторов с изолированным затвором. Поскольку эти электронные компоненты совсем недавно освещались в данном журнале [2, 3, 4], то они оставлены за рамками данной статьи.

Литература

1. L638xE Application Guide// документ компании ST Microelectronics an5641.pdf.

MDMEDH V в корпусе PowerFlat


Читайте также: