Основы представления графических данных виды и характеристика компьютерной графики форматы графических данных

Обновлено: 07.07.2024

Краткая аннотация: Методы сжатия графических данных. Сохранение изображений в стандартных форматах, а также собственных форматах графических программ. Преобразование файлов из одного формата в другой.

Цель: знать методы сжатия графических файлов, уметь различать форматы графических файлов и понимать целесообразность их использования при работе с различными графическими программами.

Изображение характеризуется максимальным числом цветов, которые могут быть в нем использованы, то есть иметь различную глубину цвета. Существуют типы изображений с различной глубиной цвета — черно-белые штриховые, в оттенках серого, с индексированным цветом, полноцветные. Некоторые типы изображений имеют одинаковую глубину цвета, но различаются по цветовой модели. Тип изображения определяется при создании документа.

Полутоновые изображения.

Эти изображения содержат пиксели одного цвета, но разной яркости. Каждый пиксель может принимать 256 различных значений яркости от 0 (черный) до 255 (белый). Этого вполне достаточно, чтобы правильно отобразить изображение, например, черно-белую фотографию.

Любое изображение можно превратить в полутоновое. Если исходный материал, например, цветная фотография, то она станет монохромной.

Полутоновое изображение

Изображения с индексированными цветами

Индексированные цвета называются так по той причине, что в этом режиме каждому пикселю изображения присваивается индекс, указывающий на определенный цвет из специальной таблицы, называемой цветовой палитрой. В индексированных палитрах не бывает более 256 цветов, однако может быть гораздо меньше. Чем меньше цветов в палитре, тем меньше памяти требуется для хранения цвета каждого пикселя и, следовательно, тем меньше размер файла изображения.

Изображение с индексированными цветами


Рис. 1.8. Изображение с индексированными цветами

Полноцветные изображения

Полноцветные изображения не имеют никаких ограничений по количеству цветов и могут быть представлены более чем 16 млн оттенков.

Полноцветное изображение

Форматы графических файлов

Формат — структура файла, определяющая способ его хранения и отображения на экране или при печати. Формат файла обычно указывается в его имени, как часть, отделённая точкой (обычно эту часть называют расширением имени файла).

Расширение — это несколько букв или цифр, находящихся после точки в имени файла.

Например, окончание имени (расширение) ".txt" обычно используют для обозначения файлов, содержащих только текстовую информацию, а ".doc" — содержащих текстовую информацию, структурированную в соответствии со стандартами программы Microsoft Word. Файлы, содержимое которых соответствует одному формату, называют файлами одного типа.

Форматы графических файлов определяют способ хранения информации в файле (растровый, векторный), а также форму хранения информации (используемый алгоритм сжатия).

Сжатие применяется для растровых графических файлов, т.к. они имеют достаточно большой объем.

В таблице 1 приведена краткая характеристика часто используемых графических форматов файла.

Компьютерная графика – это совокупность методов и приемов для преобразования при помощи ЭВМ данных в графическое представление или графического представления в данные.

Конечным продуктом компьютерной графики является изображение (графическая информация). Изображение можно разделить на:

Рисунок – графическая форма изображения, в основе которой лежит линия.

Чертеж – это контурное изображение проекции некоторых реально существующих или воображаемых объектов.

Картина – тоновое черно-белое или цветное изображение.

Разрешение изображения – свойство самого изображения. Оно измеряется в точках на дюйм (dpi) и задается при создании изображения в графическом редакторе или с помощью сканера. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения – его физическим размером.

Физический размер изображения . Может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом.

ВИДЫ КОМПЬЮТЕРНОЙ ГРАФИКИ

Различают три вида компьютерной графики. Это растровая графика , векторная графика и фрактальная графика . Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровая графика

Растровый метод – изображение представляется в виде прямоугольной матрицы, каждая ячейка которой представлена цветной точкой.

Растровые изображения состоят из прямоугольных точек – растр. Растровые изображения обеспечивают максимальную реалистичность, поскольку в цифровую форму переводится каждый мельчайший фрагмент оригинала. В цифровом изображении каждая точка растра (пиксель) предоставлена единственным параметром – цветом. Такие изображения сохраняются в файлах гораздо большего объема, чем векторные, поскольку в них запоминается информация о каждом пикселе изображения, т.е. качество растровых изображений зависит от их размера.

Растровую графику применяют при разработке электронных (мультимедийных) и полиграфических изданий.

Достоинства растровой графики:

программная независимость (форматы файлов, предназначенные для сохранения точечных изображений, являются стандартными, поэтому не имеют решающего значения, в каком графическом редакторе создано то или иное изображение);

Недостатки растровой графики:

значительный объем файлов (определяется произведением площади изображения на разрешение и на глубину цвета (если они приведены к единой размерности);

принципиальные сложности трансформирования пиксельных изображений;

эффект пикселизации – связан с невозможностью увеличения изображения для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение приводит к тому, что точки становятся крупнее. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается, а увеличение точек растра визуально искажает иллюстрацию и делает ее грубой;

Векторная графика

Векторный метод – это метод представления изображения в виде совокупности отрезков и дуг и т. д. В данном случае вектор – это набор данных, характеризующих какой–либо объект.

Векторные изображения состоят из контуров. Контуры состоят из одного или нескольких смежных сегментов ограниченных узлами.

Сегменты могут иметь прямолинейную или криволинейную форму.

Замкнутые контуры могут иметь залив. Заливка может быть сплошная, градиентная, узорная, текстурная.

Любые контуры могут иметь обводку. Контур – понятие математическое и толщины он не имеет. Чтобы контур сделать видимым ему придают обводку – линию заданной толщины и цвета проведенную строго по контуру.

Векторные изображения строятся вручную, однако они могут быть также получены из растровых изображений с помощью трассировки.

Программные средства для работы с векторной графикой предназначены в первую очередь для создания иллюстраций и в меньшей степени для их обработки.

Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики много проще.

Достоинства векторной графики

полная свобода трансформации (изменение масштаба без потери качества и практически без увеличения размеров исходного файла);

небольшой размер файла по сравнению с растровым изображением;

прекрасное качество печати;

отсутствие проблем с экспортом векторного изображения в растровое;

объектно-ориентированный характер векторной графики (возможность редактирования каждого элемента изображения в отдельности);

Недостатки векторной графики

практически невозможно экспортировать из растрового формата в векторный (можно, конечно, трассировать изображение, хотя получить хорошую векторную картинку нелегко);

невозможно применение обширной библиотеки эффектов, используемых при работе с растровыми изображениями.

Сравнительная характеристика растровой и векторной графики

Критерий сравнения

Растровая графика

Векторная графика

Способ представления изображения

Растровое изображение строится из множества пикселей

Векторное изображение описывается в виде последовательности команд

Представление объектов реального мира

Растровые рисунки эффективно используются для представления реальных образов

Векторная графика не позволяет получать изображения фотографического качества

Качество редактирования изображения

При масштабировании и вращении растровых картинок возникают искажения

Векторные изображения могут быть легко преобразованы без потери качества

Особенности печати изображения

Растровые рисунки могут быть легко напечатаны на принтерах

Векторные рисунки иногда не печатаются или выглядят на бумаге не так, как хотелось бы

Фрактальная графика

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальная графика , как и векторная – вычисляемая, но отличается от неё тем, что никакие объекты в памяти компьютера не хранятся. Изображение строится по уравнению (или по системе уравнений), поэтому ничего, кроме формулы, хранить не надо. Изменив коэффициенты в уравнении, можно получить совершенно другую картину. Способность фрактальной графики моделировать образы живой природы вычислительным путем часто используют для автоматической генерации необычных иллюстраций.

Фрактал – это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно)

Основное свойство фракталов — самоподобие. Любой микроскопический фрагмент фрактала в том или ином отношении воспроизводит его глобальную структуру. В простейшем случае часть фрактала представляет собой просто уменьшенный целый фрактал.

КЛАССЫ ПРОГРАММ ДЛЯ РАБОТЫ С РАСТРОВОЙ ГРАФИКОЙ

Средства создания изображений :

● графический редактор Paint , входящий в состав ОС Windows ;

Эти программы ориентированы непосредственно на процесс рисования. В них акцент сделан на использование удобных инструментов рисования и на создание новых художественных инструментов и материалов.

Средства обработки изображений :

Эти растровые графические редакторы предназначены не для создания изображений "с нуля", а для обработки готовых рисунков с целью улучшения их качества и реализации творческих идей. Исходный материал для обработки на компьютере может быть получен разными путями: сканирование иллюстрации, загрузка изображения, созданного в другом редакторе, ввод изображения от цифровой фото- или видеокамеры, использование фрагментов изображений из библиотек клипартов, экспортирование векторных изображений.

Средства каталогизации изображений :

Программы-каталогизаторы позволяют просматривать графические файлы множества различных форматов, создавать на жестком диске удобные альбомы, перемещать и переименовывать файлы, документировать и комментировать иллюстрации.

Средства создания и обработки векторных изображений

В тех случаях, когда основным требованием к изображению является высокая точность формы, применяют специальные графические редакторы, предназначенные для работы с векторной графикой. Такая задача возникает при разработке логотипов компаний, при художественном оформлении текста (например, журнальных заголовков или рекламных объявлений), а также во всех случаях, когда иллюстрация является чертежом, схемой или диаграммой, а не рисунком. Наиболее распространены следующие программы:

Особую группу программных средств, основанных на принципах векторной графики, составляют системы трехмерной графики: 3 D Studio Max , Adobe Dimension , LightWave 3 D , Maya , Corel Bryce , Blender .

Средства создания фрактальных изображений

Основным производителем программ фрактальной графики является компания Meta Creations . Наиболее известны программы, позволяющие создавать фрактальные объекты или использовать их в художественных композициях (для фона, заливок и текстур каких-либо объектов):

● Fractal Design Painter (Corel Painter);

● Fractal Design Expression;

● Fractal Design Detailer;

НАИБОЛЕЕ РАСПРОСТРАНЕННЫЕ ФОРМАТЫ ГРАФИЧЕСКИХ ФАЙЛОВ

Формат хранения – это способ кодировки графического изображения.

Форматы хранения растровых изображений:

BMP (Windows Device Independent Bitmap). Наиболее распространенный формат файлов для растровых изображений в системе Windows . В файле этого формата сначала записывается палитра, если она есть, а затем растр в виде битового (а точнее, байтового) массива. В битовом массиве последовательно записываются байты строк растра. Число байтов в строке должно быть кратно четырем, поэтому если количество пикселов по горизонтали не соответствует такому условию, то справа в каждую строку дописывается некоторое число битов (выравнивание строк на границу двойного слова).

Формат служит для обмена растровыми изображениями между приложениями ОС Windows . Формат поддерживает большинство цветовых моделей, вплоть до 24-битного пространства RGB . Полиграфический стандарт CMYK не поддерживается. Сфера применения - электронные публикации.

Файлы в данном формате занимают значительный объем, для них характерно низкое качество изображений, выводимых на печать.

GIF ( CompuServeGraphics Interchange Format ). Формат поддерживает функции прозрачности цветов и некоторые виды анимации. Запись изображения происходит через строку, т.е. полукадрами, аналогично телевизионной системе развертки. Благодаря этому на экране сначала появляется картинка в низком разрешении, позволяющая представить общий образ, а затем загружаются остальные строки. Этот формат поддерживает 256 цветов. Один из цветов может получить свойство прозрачности благодаря наличию дополнительного двухбитового альфа-канала. Допускается включение в файл нескольких растровых изображений, воспроизводимых с заданной периодичностью, что обеспечивает демонстрацию на экране простейшей анимации.

Все данные в файле сжимаются методом Lempel - Ziv - Welch ( LZW ) без потери качества, что дает наилучшие результаты на участках с однородной заливкой.

Абсолютно новой функцией стала запись в файл информации о гамма-коррекции, т.е. поддержания одинакового уровня яркости изображения независимо от особенностей представления цвета в различных операционных системах и приложениях.

Применен усовершенствованный метод сжатия без потери информации Deflate . Новый метод сжатия позволил сократить объем файлов.

JPEG (Joint Photographic Expert Group). По существу является методом сжатия изображений с потерей части информации. Преобразование данных при записи происходит в несколько этапов. Независимо от исходной цветовой модели изображения все пикселы переводятся в цветовое пространство CIE LAB . Затем отбрасывается не менее половины информации о цвете, спектр сужается до палитры, ориентированной на особенности человеческого зрения. Далее изображение разбивается на блоки размером 8х8 пикселов. В каждом блоке сначала кодируется информация о "среднем" цвете пикселов, а затем описывается разница между "средним" цветом блока и цветом конкретного пиксела.

Применение компрессии JPEG позволяет до 500 раз уменьшить объем файла по сравнению с обычным bitmap . Вместе с тем искажение цветовой модели и деградация деталей не позволяют использовать этот формат для хранения изображений высокого качества.

PCD ( PhotoCD - Image Pac ). Разработан фирмой Kodak для хранения цифровых растровых изображений высокого качества. Файл имеет внутреннюю структуру, обеспечивающую хранение изображения с фиксированными величинами разрешений, и поэтому размеры любых файлов лишь незначительно отличаются друг от друга и находятся в диапазоне 4-5 Мбайт. Обеспечивает высокое качество полутоновых изображений.

PCX (PC Paintbrush File Format). Растровый формат. Впервые появился в программе PC Paintbrush для MS - DOS . После лицензирования программы Paintbrush для Windows стал использоваться рядом приложений Windows .

TIFF (Tagged Image File Format). Считается лучшим форматом для записи полутоновых изображений.

Формат распознается практически всеми графическими программами и позволяет хранить изображения высочайшего качества. Последние версии формата поддерживают несколько способов сжатия изображений: LZW (без потери информации), ZIP (без потери информации), JPEG (с потерей части информации). Универсальным считают метод сжатия LZW .

Лекция по теме Представление и вывод графических данных

Формат графического файла - способ представления и расположения графических данных на внешнем носителе.

Форматы компьютерной графики можно разделить на три типа: растровые, векторные и трехмерные (используются для 3D-графики). Наибольшее распространение получили растровые форматы, именно с их использованием сохраняются различные фотографии, а также другие графические изображения, которые можно увидеть, например, на web-сайтах.

Схема классификации форматов графических файлов приведена на рисунке 1.

Организационная диаграмма

Рисунок 1 - Классификация графических форматов

II. Сфера применения форматов, особенности, преимущества и недостатки

Сфера применения форматов растровой графики, особенности, преимущества и недостатки.

Форматы графических файлов:

1. BMP (Bit Map Image) – универсальный формат растровых графических файлов, используется в операционной системе Windows.

2. GIF (CompuServe Graphics Interchange Format) — независящий от аппаратного обеспечения формат GIF был разработан в 1987 году (GIF 87a) фирмой CompuServe для передачи растровых изображений по сетям. В 1989-м формат был модифицирован (GIF89a), были добавлены поддержка прозрачности и анимации.

3. JPEG (Joint Photographic Experts Group) . Строго говоря, JPEG – это не формат, а алгоритм сжатия, основанный на разнице между пикселями. Кодирование данных проходит несколько этапов.

4. PNG (Portable Network Graphics) – формат разработан для Сети с целью заменить формат GIF. Использует сжатие без потерь. Сжатые индексированные файлы PNG, как правило, меньше аналогичных GIF’ов.

5. TIFF (Tagged Image File Format) . Аппаратно независимый формат TIFF, является одним из самых распространенных и надежных, его поддерживают практически все программы на ПК и Macintosh так или иначе связанные с графикой.

6. PCX. Открывать или импортировать файлы PCX могут почти все графические приложения для персональных компьютеров. Цветовые возможности: 1, 2, 4, 8 или 24- битовый цвет, никаких оттенков серого.

Применятся для ретуширования, реставрирования фотографий, фотомонтаж, сканирование изображений.

Достоинства: Простота алгоритма оцифровки. Возможность оцифровывать изображения любой сложности (картины, фотографии и т.д.). Большое количество графических редакторов.

Недостатки: Чувствительность к масштабироанию: при увеличении – эффект пикселизации, при уменьшении – могут исчезнуть детали. Большой объем конечного файла, поэтому необходимы алгоритмы сжатия графических файлов.

Сфера применения векторной графики, особенности, преимущества и недостатки.

Изображение представляет собой набор геометрических примитивов (точек, прямых линий, окружностей, прямоугольников и т.д.)

Способ формирования изображения Компьютер хранит элементы изображения (линии, кривые, фигуры) в виде математических формул. При открытии файла программа прорисовывает элементы изображения по их математическим формулам (уравнениям).

В памяти ПК сохраняется 1. Математические формулы для геометрических примитивов. 2. Цвет, толщина и тип линий, с помощью которых прорисованы примитивы. 3. Способ заливки замкнутых контуров. 4. Порядок отображения объектов.

Достоинство: Векторное изображение масштабируется без потери качества: масштабирование изображения происходит при помощи математических операций: параметры примитивов просто умножаются на коэффициент масштабирования.

Достоинства векторной графики: минимальный объем файла, полная свобода трансформаций; аппаратная независимость; oбъектно-ориентированный характер векторной графики.

Недостатки векторной графики: отсутствие аппаратной реализуемости; программная зависимость; жесткость векторной графики.

Применение векторной графики: создание вывесок, этикеток, логотипов, эмблем и пр. символьных изображений, построения чертежей, диаграмм, графиков, схем, создание изображений с четкими контурами.

Форматы графических файлов:

1. CDR (CorelDRAW Document) - формат файлов, созданных при помощи графического редактора CorelDraw. Многие программы на ПК могут импортировать файлы CDR.

2. SWF - анимированные и способные выполнять сложные программы векторные изображения.

3. WMF. Формат Windows. Служит для передачи векторов через буфер обмена. Понимается практически всеми программами Windows, так или иначе связанными с векторной графикой. WMF искажает цвет, не может сохранять ряд параметров, которые могут быть присвоены объектам в различных векторных редакторах.

4. AI (Adobe Illustrator Document). Может содержать в одном файле только одну страницу, имеет маленькое рабочее поле. AI отличается наибольшей стабильностью. AI поддерживают почти все программы так или иначе связанные с векторной графикой. Этот формат является наилучшим посредником при передаче векторов из одной программы в другую.

5. FH8 (FreeHand Document , последняя цифра в расширении указывает на версию программы). Формат понимает только сама программа FreeHand. Поддерживает многостраничность.

Сфера применения трехмерной графики, особенности, преимущества и недостатки.

3D-графика предназначена для имитации фотографирования или видеосъемки трехмерных образов объектов, которые должны быть предварительно подготовлены в памяти компьютера.

Области применения трехмерной графики

1. Компьютерное проектирование . К области автоматизированного проектирования относятся применения SD-графики в целях синтеза внешнего вида сложных отливок, деталей, изготовляемых методами штамповки, токарных и фрезерных операций, визуального облика проектируемых автомобилей, катеров, самолетов и т. п.

2. Компьютерные игры. Это одна из наиболее широких областей применения 3D-графики. По мере совершенствования программных средств моделирования трехмерной графики, роста производительности и увеличения ресурсов памяти компьютеров виртуальные трехмерные миры, в которых действуют персонажи компьютерных игр, становятся все более сложными и похожими на реальную действительность.

3. Комбинированная съемка . Трехмерная графика помогает там, где выполнение реальной фотосъемки невозможно, затруднительно или требует значительных материальных затрат, а также позволяет синтезировать изображения событий, которые не встречаются в обыденной жизни.

4. Компьютерная мультипликация . Областями использования 3D-графики для создания компьютерной мультипликации являются телевизионная реклама, киносъемка с включением анимационных эффектов, подготовка видеороликов на научно-популярные или фантастические сюжеты, создание видеотренажеров для обучения пилотов или автоводителей и т. п.

Достоинства трехмерной графики

- Широкая сфера применения

- Свобода трансформации объектов

Недостатки трехмерной графики

- повышенные требования к аппаратной части компьютера, в частности к объему оперативной памяти, наличию свободного места на жестком диске и быстродействию процессора;

- необходимость большой подготовительной работы по созданию моделей всех объектов сцены, которые могут попасть в поле зрения камеры, и по присвоению им материалов;

- необходимость контролировать взаимные положения объектов в составе сцены, особенно при выполнении анимации;

- необходимость принятия дополнительных мер, обычно применяемых на этапе вторичной обработки синтезированных изображений, чтобы «испортить» картинку, придав ей более правдоподобный вид. В связи с этим в состав программ трехмерной графики входит целый ряд фильтров, позволяющих имитировать такие эффекты как конечная глубина резкости изображений или смазывание, вызванное движением объектов в момент съемки.

Сфера применения фрактальной графики, особенности, преимущества и недостатки.

Фрактальная графика является на сегодняшний день одним из самых быстро развивающихся перспективных видов компьютерной графики.

Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому. Одним из основных свойств фракталов является самоподобие. Объект называют самоподобным, когда увеличенные части объекта походят на сам объект и друг на друга. Перефразируя это определение, можно сказать, что в простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале.

Создатель фракталов — это художник, скульптор, фотограф, изобретатель и ученый в одном лице. Вы сами задаете форму рисунка математической формулой, исследуете сходимость процесса, варьируя его параметры, выбираете вид изображения и палитру цветов, то есть творите рисунок «с нуля». В этом одно из отличий фрактальных графических редакторов (и в частности — Painter) от прочих графических программ.

Применение фрактальной графики можно назвать фактически повсеместным. Более того, эта область постоянно расширяется. На данный момент можно отметить следующие области: Компьютерная графика. Реалистично изображаются рельефы и природные объекты. Это применяется в создании компьютерных игр. Анализ фондовых рынков. Фракталы здесь используются для того, чтобы отметить повторения, которые впоследствии сыграют трейдерам на руку. Естественные науки. В физике с помощью фрактальной графики моделируются нелинейные процессы. В биологии она описывает строение кровеносной системы. Сжатие изображений, чтобы уменьшить объем информации. Создание децентрализованной сети. Посредством фракталов удается обеспечить прямое подключение, а не через центральное регулирование. Поэтому сеть становится более устойчивой. На данный момент практикуется применение фракталов в производстве различного оборудования. Например, уже запущен конвейер по созданию антенн, отлично принимающих сигналы.

Достоинства фрактальной графики заключаются в нескольких факторах: Небольшой размер при масштабном рисунке. Нет конца масштабированию, сложность картинки можно увеличивать бесконечно. Нет другого такого же инструмента, который позволит создавать сложные фигуры. Реалистичность. Простота в создании работ.

III. Алгоритмы сжатия графических файлов: особенности, принцип сжатия, преимущества и недостатки

Как правило, все методы сжатия графических изображений разделяют на две категории: архивацию и компрессию.

Под архивацией понимают сжатие информации с возможностью ее дальнейшего восстановления.

Компрессия же означает потерю некоторого количества информации об изображении, что естественно приводит к ухудшению качества, но уменьшает объем сохраненных данных.

Архивировать можно как растровую, так и векторную графику. Принцип архивации состоит в том, что программа анализирует наличие в сжимаемых данных одинаковых последовательностей и исключает их, записывая вместо повторяющегося фрагмента ссылку на предыдущий и аналогичный ему для того, чтобы была возможность восстановления. Хорошим примером графического объекта с большим количеством одинаковых последовательностей может стать фотография или рисунок с голубым небом в изображении или со сплошной однотонной заливкой. При таком подходе можно восстанавливать нужную информацию без потерь.

Компрессия же не гарантирует полного восстановления исходных данных, поэтому ее основная задача - не «убить» что-нибудь очень ценное в погоне за уменьшением объема. Обычно информация, подвергнутая компрессии, занимает значительно меньше объема, чем сохраненная методами архивации. Регулирование степени сжатия дает право на выбор: размер выходного файла или сохранение его качества.

Алгоритмы сжатия данных, которые не вносят изменений в исходные файлы и гарантируют полное восстановление данных.

1. RLE . При этом методе кодирования изображение вытягивается в цепочку байт по строкам растра. Сжатие происходит за счёт того, что в исходном изображении встречаются цепочки одинаковых байт, они заменяются на пары: счетчик повторений и значение, что позволяет уменьшить изображение. RLE — используется в форматах PCX — в качестве основного метода и в форматах BMP, TGA, TIFF в качестве одного из доступных.

2. LZW (Lempel, Ziv, Welch). Сжатие по этому алгоритму осуществляется за счет одинаковых цепочек байт. В изображении ищутся повторяющиеся цепочки, делаются ссылки на ранее встречавшиеся. Метод LZW используется, например, при создании файлов формата GIF.

3. Deflate — это алгоритм сжатия без потерь, который использует комбинацию алгоритма LZ77 и алгоритма Хаффмана. LZ-Huffman — использует в формате PNG.

Наиболее популярным примером формата изображения, где используется сжатие с потерями является JPEG.

Принцип работы основан на особенностях восприятия человеческим глазом различных цветов и достаточно сложен с вычислительной точки зрения, так как занимает много процессорного времени. Кодирует файлы в несколько этапов. Во-первых, изображение условно разбивается на несколько цветовых каналов для дальнейшего анализа. Затем картинка разбивается на группы по 64 пиксела в каждой группе (она же - квадратный участок изображения размером 8х8 пикселей) для последующей обработки. Затем цвет пикселей специальным образом кодируется, исключаются дублирующая и избыточная информация, причем при описании цвета больше внимания уделяется скорее яркостной, чем цветовой составляющей, так как человеческий глаз воспринимает изменения яркости лучше, чем изменения конкретного цветового тона. Полученные данные сжимаются по RLE или LZW-алгоритму для достижения еще большей компрессии. В результате на выходе получаем файл иногда в десятки раз меньший, чем его неконвертированный аналог.

IV . Основные типы печатающих устройств

Печатающие устройства – это все виды оборудования, разработанные для нанесения текста и графических изображений (как чёрно-белых, так и цветных) на бумаге любого размера и толщины, а также рулонах, этикетках, плакатах и т.д.

К печатающим устройствам относятся:

- все виды принтеров

- факсимильные аппараты (на основе лазерной и струйной печати)

- копировальные аппараты (или ксероксы, копиры)

- многофункциональные устройства (МФУ)

Принтеры по технологии печати разделяют на матричные, струйные, лазерные, светодиодные, сублимационные и твердочернильные, а по цвету печати – монохромные и полноцветные.

У каждого типа принтеров есть свои недостатки и преимущества. Они разделяются по цене самих аппаратов, по тому, какие для них требуют расходные материалы, по качеству и скорости печати, сложности обслуживания и ремонта принтеров.

Плоттеры (графопостроители) предназначены для автоматического вычерчивания сложных рисунков, схем, карт и т.д. на бумаге формата А0.

В последнее время все большую популярность набирают так называемые МФУ – устройства, совмещающие в себе сканер, копир и принтер. Они применяются как в домашних условиях и тогда имеют размеры, не отличающиеся от размеров обычного принтера, так и в офисах.

Контрольные вопросы:

1. Перечислите основные графические форматы, используемые в Интернет.

2. Назовите достоинства и недостатки этих форматов.

3. Где лучше использовать каждый из форматов и почему?

4. Какой из форматов, GIF или JPEG, обеспечивает наименьшие потери качества изображения?

5. Какими бывают изображения?

6. Что такое пространственное разрешение?

7. От чего зависит качество изображения?

8. С помощью чего хранятся растровые изображения?

9. Что такое графический редактор?

10. Какие растровые графические редакторы вы знаете?

11. Какие векторные графические редакторы вы знаете?

12. Какие форматы графических изображений вы знаете?

13. В чем состоит принцип растровой графики?

14. Почему растровая графика эффективно представляет изображения фотографического качества?

15. Почему для хранения растровых изображений требуется большой объем памяти? Почему растровое изображение искажается при масштабировании?

16. Почему векторные изображения могут быть легко масштабированы без потери качества?

17. Почему векторная графика не позволяет получать изображения фотографического качества?

Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

В растровой графике изображение представляется в виде набора окрашенных точек. Совокупность таких точек, образующих строки и столбцы, называют растр .

Применение растровой графики: обработка цифровых фотографий, сканированных изображений, создание коллажей, эмблем, логотипов. Растровые изображения чаще не создаются с помощью компьютера, а только обрабатываются. В Интернете используются только растровые изображения.

Pixel-example.jpg

  • Растровые изображения занимают большое количество памяти.
  • Резкое ухудшение качества при редактировании изображения.

Векторная графика описывает изображения с использованием прямых и изогнутых линий, называемых векторами, а также параметров, описывающих цвета и расположение.

В отличие от растровой графики в векторной графике изображение строится с помощью математических описаний объектов, окружностей и линий.

Ключевым моментом векторной графики является то, что она использует комбинацию компьютерных команд и математических формул для объекта. Это позволяет компьютерным устройствам вычислять и помещать в нужном месте реальные точки при рисовании этих объектов. Такая особенность векторной графики дает ей ряд преимуществ перед растровой графикой, но в тоже время является причиной ее недостатков.

1024px-Bitmap_VS_SVG_ru.svg.jpg

  • Векторная графика не позволяет получать изображения фотографического качества.
  • Векторные изображения описываются тысячами команд. В процессе печати эти команды передаются устройству вывода (принтеру). Иногда из–за проблем связи между двумя процессорами принтер не может распечатать отдельные детали рисунков.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании.

Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах.

Читайте также: