Расчет контура заземления пример в ворде

Обновлено: 07.07.2024

Без грамотно рассчитанного контура заземления (ЗК) надеяться на эффективность работы защитной конструкции было бы большой ошибкой. Только убедившись в том, что для токов стекания подготовлена цепочка с минимальным сопротивлением можно быть уверенным в безопасности людей, работающих на линии. Поэтому так важно сразу же разобраться со всеми тонкостями и особенностями расчета контуров заземления.

Цель расчета защитного заземления

Обустраиваемое на стороне потребителя заземляющее устройство предназначено для защиты не только персонала, обслуживающего электроустановки, но и рядовых пользователей.

Важно! Опасный потенциал может попасть на металлические части оборудования во время работы с ним совершенно случайно (из-за повреждения изоляции проводов, например).

Полноценный расчет заземления гарантирует образование надежного контакта защитного устройства с землей, приводящего к растеканию тока и снижению уровня опасного напряжения.

Таким образом, назначение расчета заземляющих устройств – создание условий, исключающих риск поражения живых организмов высоким потенциалом путем его снижения в точке замыкания. В отсутствие хорошо просчитанного и функционального заземлителя любое прикосновение к корпусу поврежденного оборудования равнозначно прямому контакту с фазной жилой.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

контурзаземления в виде треугольника

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.

линейная схема контура заземления

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.

модульно-штыревое заземление

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).

Обратите внимание: Для надежной защиты от коррозии все резьбовые элементы стержней покрываются графитной пастой, входящей в комплект фирменной поставки.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

Дополнительное замечание: Перед проведением расчета также потребуется знать величину сопротивления грунта Ом на участке проведения монтажных работ.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска).

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

Полезное замечание: Минимальную длину штырей вычисляют с учетом технических требований (необходимостью получения требуемого сопротивления стеканию в землю).

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

одиночный вертикальный заземлитель

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Расчет заземления

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

сопротивление вертикальных заземлителей

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

удельное сопротивление

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:

где Rн – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Пример расчета заземления

В качестве «классического» примера расчета заземления рассмотрим вариант ЗУ с учетом заданных исходных данных, то есть проведем вычисления для одиночного металлического штыря. Сразу оговоримся, что такие простейшие конструкции применяются при организации повторного заземления высоковольтных опор. В рассматриваемой ситуации согласно положениям ПУЭ (смотрите п.1.7.103.) сопротивление растеканию тока не может быть более 15, 30 и 60 Ом для напряжений 660, 380 и 220 Вольт соответственно.

Расчет одиночного заземляющего элемента для опоры ВЛ 380 Вольт

Согласно оговоренной ранее методике сначала по таблице выбирается тип вертикального штыря со следующими характеристиками:

  • Материал – сталь.
  • Форма – округлый стержень диаметром 16 мм.
  • Длина L — 2,5 метра.

Обратите внимание: В качестве грунта в соответствие с таблицей выбирается полутвердая глина с удельным сопротивлением ρ, равным 60 Ом на•метр.

Глубина траншеи берется равной полметра. Затем из той же таблицы находится поправочный коэффициент, вводимый для средней климатической зоны. Его значение при фактической длине стержней до 2,5 метров с учетом промерзания грунта в данной местности составляет ψ=1,45. Показатель нормированного сопротивления для этого типа ЗУ равен 30 Омам. Следующий показатель – удельное сопротивление грунта находится по формуле:

ρ (по факту) = ψ•ρ = 1.45х60 = 87 Ом•метр

Полученные расчетные данные выглядят так:

  1. заглубление одиночного штыря в грунт составляет h = 0,5l + t = 0,5х2,5 + 0,5 = 1,75 метра;
  2. его сопротивление для нашего примера (смотрите формулы выше) составляет не более 30 Ом, что соответствует требования ПУЭ для данного напряжения.

Когда одного заземляющего штыря для опоры ВЛ недостаточно – допускается добавлять еще один или даже несколько прутьев. В этом случае потребуется другая методика, используемая для линейного контура или треугольной конструкции.

Расчет переносного заземления

Перед расчетом переносного заземления (ПЗ) следует учесть, что для этого типа защитных приборов требования к сопротивлению стеканию тока еще более высокие, чем у стационарных ЗУ (фото ниже).

Обратите внимание: Самое главное в этой ситуации – правильно рассчитать сечение заземляющих проводов переносного устройства, определяющих эффективность его действия.

переносное заземление

При решении этой проблемы, прежде всего, следует научиться различать сети и установки с различными действующими напряжениями. Провода ПЗ (согласно требованиям действующих стандартов) должны выдерживать продолжительный нагрев при замыкании в питающих линиях трехфазного и однофазного напряжения. Для электроустановок с этим показателем до 1000 Вольт выбирается шина сечением не менее 16 кв. мм.

В сетях, где напряжение превышает 1000 Вольт, предельная величина сечения проводов ПЗ не должна быть менее 25 мм2. Точный расчет этого значения производится обычно по следующей формуле:

S = ( Iуст √tф ) / 272

где Iуст – это ток короткого замыкания;

tф – время его действия в секундах;

272– коэффициент, указывающий на тип металла проводника и отличающийся для разных токов КЗ (для меди, в частности он равен 250, а в расчетах взят с небольшим запасом).

В случаях, когда действующее напряжение не превышает 6-10 кВ – требуемое для надежной защиты сечение провода колеблется в пределах от 120 до 185 мм2. Поскольку комплект переносных заземлений с такими шинами будет очень тяжелым и неудобным в работе – согласно ПУЭ допускается использовать несколько ПЗ с меньшим сечением. При подготовке рабочего места такие заземления включаются в защищаемую цепь параллельно.

В последнем случае в формулу подставляются максимальные значения по времени воздействия тока короткого замыкания, а в трехфазных цепях искомая величина определяется для каждой их фаз. Во втором случае особое внимание уделяется аккуратности обустройства ПЗ, чтобы избежать недопустимого в условиях наложения защитного заземления межфазного замыкания.

Дополнительная информация: При обустройстве переносной конструкции не допускается применять кабель в изоляции, не позволяющей визуально контролировать состояние рабочих жил.

Помимо этого комплект такого заземления обязательно оснащается достаточно «мощными» зажимами, посредством которых элементы переносной конструкции надежно закрепляются на токопроводящих частях. Для их фиксации на заземляющих проводах должны применяться крепления, позволяющие обходиться без переходных элементов. Такая предусмотрительность позволит увеличить площадь контакта и повысить надежность имеющегося соединения. В этом случае конструкция способна выдержать значительные по величине токи и сохранить свою работоспособность в течение длительного времени.

При наложении такого заземления в трехфазных силовых цепях с напряжениями выше 1000 Вольт для получения более надежного контакта допускается использовать сварку. В исключительных случаях согласно ПУЭ разрешено болтовое сочленение, но только при условии предварительной пайки контактной зоны. В заключение отметим, что в рассмотренной ситуации для образования надежного соединения потребуется комплексный подход (ограничиваться только одной пайкой, например, не допускается).


Наиболее востребованным расчёт заземления с сопротивлением не более 4 Ом., которое должно обеспечить надёжное сопротивление заземляющего устройства в любое время года, при линейных напряжениях 380 В., к которому присоединены нейтрали генератора или трансформатора, или выводы источника трёхфазного 380 В, или 220 В однофазного тока.

Исходные данные для расчёта:

где, ρэкв = Ψ·ρ = 1.5 · 60 = 90 Ом·м; T = 0,5 · L + t = 0,5 · 2,5 + 0,7 = 1,95 м.


RО = 90 / (2π · 2,5) · (ln (2 · 2,5 / 0,050) + 0,5 · ln (4 · 1,95 + 2,5) / (4 · 1,95 — 2,5)) = 5,73 · (ln 100 + 0,5 · ln 1,943) = 28,29 Ом·м., примем Ro = Rв = 28,29 Ом·м.

2. Находим предварительное количество стержней вертикального заземления в ряд без учета сопротивления горизонтального заземления:


n = 28,29 /4 = 7,07 шт., находим по таблице 3 ближайшее значение, где n ≈ 7 шт., далее по таблице 3.2 выберем число электродов n = 6 шт., к их длине a = 1хL коэффициент спроса ηВ = 0,65, уточняем число электродов:


n = 28,29 / (4 · 0,65) = 10,88 шт; примем ближайшее значение по таблице 3, где кол. вертикальных электродов n = 10 шт., коэффициент спроса ηВ = 0,59.

3. Длину горизонтального заземлителя найдем исходя из количества заземлителей расположенных в ряд, где а = 1 · L = 1 · 2,5 = 2,5 м; L Г = а · (n — 1) — в ряд, L Г = 2,5 · (10 — 1) = 22,5 м; находим сопротивление растекания тока для горизонтального заземлителя, где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5:


R Г = 0,366 · (60 · 3,5 / 22,5 · 0,62) · lg (2 · 22,5 2 /0,060 · 0,7) = 5,51 · lg 24107,14 = 24,15 Ом·м, где коэффициент спроса по таблице 3 ηГ = 0,62, примем сопротивление горизонтального заземлителя R Г = 24,15 Ом·м.

4. Определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Для экономии места под заземлитель в данном случае воспользуемся расчётом использования параллельно уложенных полосовых заземлителей в ряд с исходными данными выше, где R 0 = 28,29 Ом·м.:

Примем предварительное количество стержней вертикального одного заземления в ряд без учета сопротивления горизонтального заземления:

n = 10 /2 = 5 шт., где коэффициент спроса ηВ = 0,7, длину горизонтального заземлителя найдем исходя из количества заземлителей расположенных в один ряд, где а = 1 · L = 1 · 2,5 = 2,5 м; L Г = а · (n — 1) — в ряд, L Г = 2,5· (5 — 1) = 10 м.

Находим сопротивление растекания тока для одного горизонтального заземлителя, где коэффициент спроса η Г = 0,74:


R Г = 0,366 · (60 · 3,5 / 10 · 0,74) · lg (2 · 10 2 /0,060 · 0,7) = 5,51 · lg 476,19 = 27,81 Ом·м.

Rоб = (27,81 · 28,29) / (28,29 · 0,74) + (27,81 · 0,7 ·5) = 6,65 Ом·м, где Rоб = 6,65 Ом·м., далее опредилим сопротивление одного горизонтального заземлителя проложенного параллельно в 2 ряда, по таблице 9 ниже выбираем коэффициент влияния между полосами длиной 15 м. и расстоянием между ними 5 м.:

таблица 9 1 ) данные приближенные


В этом примере выбран грунт для расчёта двухслойный.

  1. Находим эквивалентное удельное сопротивление в неоднородном грунте (двухслойный) вертикального заземлителя:

2. Р асчёт одиночного вертикального заземлителя с найденным в двухслойном грунте удельным сопротивлением ρэкв = 100,63 Ом.:


RО = 100.63 / (2π · 2,5) · (ln (2 · 2,5 / 0,05) + 0,5 · ln (4 · 1,95 + 2,5) / (4 · 1,95 — 2,5)) = 6,41 · (ln 100 + 0,5 · ln 1,943) = 31,648 Ом·м., где T = 0,5 · L + t = 0,5 · 2,5 + 0,7 = 1,95 м. Примем RО = RВ = 31,65 Ом·м.,

3. Находим предварительное количество стержней вертикального заземления по контуру без учета сопротивления горизонтального заземления:


n = 31,65 /4 = 7,9 шт., находим по таблице 3 ближайшее значение, где n ≈ 8 шт., далее по таблице 3.2 выберем число электродов n = 10 шт., к их длине a = 1хL коэффициент спроса ηВ = 0,56, уточняем число электродов:


n = 31,65/(4 · 0,56) = 14,13 шт; примем ближайшее значение в сторону увеличения по таблице 3, где кол. вертикальных электродов n = 20 шт., коэффициент спроса ηВ = 0,47.

4. Находим эквивалентное удельное сопротивление горизонтального заземлителя:

Длину горизонтального заземлителя найдем исходя из количества заземлителей расположенных по контуру, где а = 1 · L = 1 · 2,5 = 2,5 м; где L Г = а · n, L Г = 2,5 · 20 = 50 м; находим сопротивление растекания тока для горизонтального заземлителя, где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5:


RГ = 0,366 · (500 · 3,5 / 50 · 0,27) · lg (2 · 50 2 /0,040 · 0,7) = 47,44 · lg 178571,42 = 249,45 Ом·м, где коэффициент спроса по таблице 3 ηГ = 0,27, примем сопротивление горизонтального заземлителя R Г = 249,45 Ом·м.

5. Находим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

Rоб = (249,45 · 31,65) / (31,65 · 0,27) + (249,45 · 0,47 ·20) = 3,354 Ом·м, где Rоб = 3,35 Ом·м, что соответствует норме сопротивление не более Rн = 4 Ом.,

Посмотреть ⇒ Рисунки к примерам расчёта заземления

Примечание: данный раздел пока находится в разработке, могут быть опечатки.

Вернутся:

на страницу ⇒ Расчёт заземляющих устройств

на страницу ⇒ Примеры расчёта заземления


Расшифруем некоторые термины о чём сказано выше, если через заземлитель пропустить ток, то на самом заземлителе и в точках земли, расположенных в непосредственной близости от него, возникнут потенциалы (относительно бесконечно удаленной точки), распределение которых показано на рис. 1. Из рисунка видно, что с удалением от места расположения заземлителя потенциал уменьшается, так как поперечное сечение земли, через которое протекает ток, увеличивается. В удаленных точках потенциалы близки к нулю. Таким образом, в качестве точек нулевого потенциала могут служить точки, достаточно удаленные от заземлителя, потенциалы которых практически равны нулю. Обычно достаточно расстояние несколько десятков метров. Крутизна кривой распределения потенциалов зависит от проводимости грунта: чем больше проводимость грунта, тем более пологую форму имеет кривая, тем дальше расположены точки нулевого потенциала.


Сопротивление, которое оказывает току грунт, называется сопротивлением растеканию . В практике сопротивление растеканию относят не к грунту, а к заземлителю и применяют сокращенный условный термин « сопротивление заземлителя ». Сопротивление заземлителя (Rзм) определяется отношением напряжения (Uзм) на заземлителе относительно точки нулевого потенциала к току (Iзм), протекающему через заземлитель, поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Выбор схемы для расчёта заземления:

В ряд или контур (одиночное заземление рассмотрим позже, см. Примеры расчёта заземляющего устройства) производится для того чтобы определить сопротивление сооружаемого заземления при эксплуатации, его размеры, форму и расчётную часть. Ряд или контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители заглубляются в почву на определенную глубину. Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.


Формулы для расчета заземления:

Основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта. Целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет. 1. Расстояния между заземляющими стержнями берется из соотношения их длины (см. рис. 2), то есть: 2. Сопротивление растекания тока одного вертикального заземлителя (стержня):




Рис. 4 (прим. где h 1 = T)

3. В неоднородном грунте (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:


4. Количество необходимых заземлителей определяется по формулам:

4.1 методом приближения (как пользоваться данным методом расскажем в примерах позже):

4.2 с помощью таблиц (без учета сопротивления горизонтального заземления):



Таблица 8

4.3 расчёт предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находится по формуле:



где с найденным коэффициентом спроса η, методом интерполяции снова уточняем количество электродов n.

Полученное при расчете число заземлителей округляется до ближайшего большего в таблице 3.

5. Находим сопротивление растекания тока для горизонтального заземлителя:

6. Далее определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей и коэффициентов: Примечание автора: в примерах могут использоваться и другие формулы, непротиворечив взятому обозначению в этой статье.

Продолжение: ⇒ примеры расчета







. частота тока Норм. вел. ПДУ, при t, с 0,01 - 0,08 свыше 1 Переменный f = 50 Гц UД IД 650 В — 36 В 6 мА Переменный f = 400 Гц UД IД 650 В — 36 В 6 мА Постоянный UД IД 650 В 40 В 15 мА Электрокотельное отделения, где установлены основное оборудование 6 кВ, относиться к классу особо опасных помещений по степени возможности поражения .



. линии электропередачи (ЛЭП) подстанции. Расчет токов короткого замыкания производится для двух точек, на шинах ВН, НН трансформатора ТДТН (рисунок 4.1) Расчёт параметров схемы замещения системы электроснабжения Рисунок 4.1 Схема замещения для расчёта токов КЗ. Расчёт ведём в именованных единицах точечным методом. Расчёт эквивалентных сопротивлений. Сопротивление системы: (4.1) .






. /6-10 (табл.13 мет. пособия). Схема соединения обмоток трансформаторов Y/Yo (табл. П.17). Расчёт электрических нагрузок сельскохозяйственных предприятий Выбор количества, мощности и мест расположения подстанций 10/0,4 кВ населённого пункта. Рис. 4. Схема местности сельского населённого пункта Расчётные нагрузки на вводе помещений Таблица 8 Помещение День Вечер Рд,кВт Qд,кВАр .






. , трансформаторы которой выбираются с учетом взаимного резервирования; · Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР). Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части. 2.2 Схема электроснабжения НПС Рис. 2.1. Схема электроснабжения НПС На рис. 2.1. в .

Читайте также: