Cpu vcore loadline calibration gigabyte не меняется

Обновлено: 07.07.2024

Load-Line Calibration или LLC - это настройка BIOS, установленная на большинстве материнских плат производителями, и добавляет дополнительное напряжение к вашему процессору под нагрузкой, чтобы обеспечить большую стабильность при разгоне и компенсировать колебания высокого и низкого напряжения, чтобы поддерживать линию напряжения на CPU больше стабильной.

Ничто не разрушает деталь ПК быстрее, чем нестабильность. Когда ваша система работает на холостом ходу, она отлично выдерживает напряжение, установленное в BIOS. Однако при тяжелой нагрузке мощность вашего процессора падает. Напряжение будет быстро расти. Это происходит в мгновение ока, и всегда, когда ваш процессор переходит из состояния бездействия в состояние нагрузки.

После того, как начальная деформация процессора будет применена, скажем, когда вы играете в игру, напряжение на вашем процессоре может фактически подняться выше значения, которое вы фактически установили Vcore в свой BIOS. Вы можете решить для Vdroop, установив Vcore выше, чем нужно. Это, конечно же, приносит больше тепла, энергопотребления и более быстрого снижения производительности.

Калибровка линии нагрузки оборачивается вокруг этой проблемы, обеспечивая дополнительное напряжение при увеличении нагрузки и только при необходимости, сохраняя при этом максимальное значение Vcore, которое вы установили. Это гарантирует, что вы только компенсируете потерянное напряжение и не вызовите перегрузку, по крайней мере, не непреднамеренно.

Какие настройки я использую?

К сожалению, нет никакой стандартной реализации для производителей материнских плат. Некоторые упрощают работу только с одним режимом работы, в то время как другие предоставляют полдюжины опций или более. Наиболее распространенный, предлагает диапазон процентов на выбор. Это позволяет вам выбрать, насколько агрессивно вы хотите компенсировать потерю напряжения. 0 процентов применяет наименьшее количество напряжения, в то время как 100% имеет тенденцию слегка подталкивать напряжение под нагрузкой и сильно на холостом ходу; в то время как это может быть полезно для экстремальных оверклокеров, вы захотите начать где-то посередине для использования 24/7.

Если вы начинаете с 50 процентов, вам нужно будет контролировать напряжение холостого хода и настраивать вверх или вниз его на 25 процентов. Также важно контролировать напряжение нагрузки и запускать приложение для тестирования напряжения, такое как XTU от Intel. В конце концов, конечной целью является достижение стабильного разгона.

Самый безопасный способ? Начните с наименьших значений.

При разгоне есть множество трюков для настройки; настройка калибровки нагрузки является одной из тех настроек, которые могут помочь поддерживать успешный разгон. Это также долгий путь в обеспечении долгосрочной стабильности, поэтому вы можете продолжать свою работу или играть и оставаться в стороне от BIOS.

В процессе выполнения разгона по мере увеличения нагрузки часто встречается такое явление, как падение напряжения, подаваемого на процессор. Слишком низкое напряжение делает систему нестабильной. Иногда появляются даже «синие экраны смерти». Эту проблему частично можно решить, установив напряжение для процессора с запасом для того, чтобы во время нагрузки оно не падало ниже определённого значения.

Однако, у этого метода есть существенные минусы: повышенное тепловыделение и ускоренная деградация процессора из-за высоких температур и напряжения. Для борьбы с падениями напряжения была разработана технология, названная LLC (Load-Line Calibration). О ней и пойдёт речь в этой статье.

Что такое CPU Load-Line Calibration в BIOS?

Технология LLC доступна в программных интерфейсах большинства материнских плат. В данный момент уже многие крупные производители материнских плат — ASUS, GIGABYTE, ASRock, MSI и др. — реализовали в своей продукции эту технологию.

LLC используется для борьбы с падениями напряжения. Работает следующим образом: как только напряжение, подаваемое на процессор, начинает снижаться при нагрузке, LLC динамически поднимает базовое напряжение, тем самым компенсируя его падение. Чем ниже опускается фактическое напряжение, тем выше LLC поднимает базовое.

На графике ниже показана разница величин напряжения при условии задействования LLC уровня 1 (0%) и уровня 5 (100%). По вертикали — напряжение, по горизонтали — нагрузка на процессор.


Как видно из графика, при отключённой LLC напряжение неуклонно падает. Для уровня 5 видим обратную картину: напряжение завышено, что тоже не очень хорошо. Немного поразмыслив, понимаем, что нужно поискать оптимальное значение. Об этом будет сказано в разделе о настройке параметра.

Такой подход позволяет выровнять уровень напряжения, подаваемого на процессор, и сделать работу компьютера стабильной. Далее переходим к установке параметра CPU Load-Line Calibration в биосе.

Настройка параметра CPU Load-Line Calibration

До искомого параметра CPU Load-Line Calibration в настройках BIOS можно добраться, следуя по по пути (для материнских плат ASRock): OC Tweaker → Voltage Configuration → CPU Load-Line Calibration. Выбор этого пункта приводит к загрузке контекстного меню, в котором, в свою очередь, можно выбрать одно из 6-ти значений: Level 1-5 и Auto.


На скриншотах ниже для наглядности показана зависимость напряжения (по вертикали) от выбранного уровня LLC и уровня нагрузки на процессор (по горизонтали). Для проведения тестирования использовались режимы Level 1 и Level 3. В данном конкретном случае проводилось тестирование процессора AMD Ryzen 5 2600X с помощью бенчмарка Cinebench R20. Для проведения мониторинга показаний и вывода графиков использовалась утилита HWiNFO64. Для режима Level 1 имеем следующую картину:


Кривая уровня напряжения имеет провалы. Это именно те моменты, когда процессор был загружен на 100%. Далее посмотрим на результаты для оптимального режима Level 3:


Нагрузка та же, но провалы на кривой уровня напряжения исчезли, оно стабильно держится на заданном уровне.

Ответ на вопрос о том, какой именно уровень CPU Load-Line Calibration установить, зависит от того, как сильно падает напряжение, подаваемое на процессор при нагрузке. Начинать стоит с самых малых значений, увеличивая уровень использования режима LLC постепенно до тех пор, пока падение напряжения остаётся. Вы поймёте, что подобрали нужный уровень, как только напряжение, подаваемое на процессор под нагрузкой, стабилизируется на установленном вами значении. Большинству пользователей подойдут режимы Level 3 (50%) и Level 4 (75%).

Самое высокое значение — Level 5 (100%) — может быть полезно только для выполнения экстремального разгона процессора. Выбор этой опции приведёт к значительному повышению температур и напряжения, подаваемого на процессор в простое, что повлечёт за собой быструю деградацию кристалла процессора.

Выводы

Теперь вы знаете какой уровень Load-Line Calibration ставить, в зависимости от ваших целей и задач. Load-Line Calibration — очень полезная технология, позволяющая стабилизировать работу компьютера с разогнанным процессором. Включив её и подобрав оптимальное для вас значение, вы больше не столкнётесь с проблемой возможной нестабильной и неровной работы процессора. Однако и переусердствовать было бы нежелательно: завышенное напряжение, подаваемое на процессор, не всегда сказывается положительно — оно влечёт за собой повышенные энергопотребление и тепловыделение. В неумелых руках технология LLC Ryzen может только усугубить проблемы и даже привести к порче оборудования.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Что такое режим калибровки линии нагрузки LLC и к чему может привести его неправильная настройка

Многие пользователи используют в материнских платах функцию калибровки линии нагрузки Load-Line Calibration (LLC), которая уменьшает просадку напряжения питания на процессоре. Особенно востребована функция при разгоне высокопроизводительных ЦП. Но неправильная установка режима калибровки способна вывести процессор из строя. Давайте разберемся, как работает LLC и дадим рекомендации по его правильной настройке.

Почему при стабилизированном напряжении VRM происходит просадка питающего напряжения

Для начала вспомним, для чего необходим VRM (модуль регулятора напряжения) центрального процессора и как он работает. VRM преобразует напряжение от блока питания (12 В) в низковольтное стабилизированное напряжение питания процессора (от 1,1 до 1,4 В). Сила тока при этом может достигать 150 А и более, в зависимости от модели ЦП.


Физически VRM состоит из импульсных стабилизаторов, часто называемых фазами питания, которые включают в себя индуктивно-емкостные LC-фильтры. С помощью коммутаторов на них подаются короткие импульсы. Благодаря интегрирующим свойствам фильтров, поступающие импульсы сглаживаются. То есть, форма питающего напряжения становится приемлемой для питания центрального процессора, хоть и имеет остаточную пульсацию. Эти импульсы формируются фазами питания не одновременно, а поочередно, при этом количество импульсов в одном цикле работы VRM будет соответствовать количеству фаз питания. Таким образом, чем больше фаз, тем больше импульсов в одном цикле, и тем выше качество сглаживания напряжения и больше максимальная развиваемая мощность.

Более подробно ознакомиться с работой модуля регулятора напряжения можно в специализированном материале. А о количестве фаз читайте здесь.

VRM является следящей системой автоматического регулирования. Это значит, что выходной регулируемый параметр (в нашем случае — напряжение с выхода VRM) через цепь обратной связи подается на вход этой системы. Затем происходит оценка отклонения от заданного значения и формирование управляющего воздействия для его корректировки.

Схема двухфазного модуля регулятора напряжения (VRM) с цепью обратной связи

При увеличении процессором тока потребления, напряжение на выходе VRM начинает уменьшаться и по цепи обратной связи поступает на схему сравнения. Последняя дает ШИМ-контроллеру команду на увеличение длительности импульсов. Это приводит к возрастанию передаваемой мощности через фазы питания и увеличению выходного напряжения до исходного уровня.

Почему же происходит просадка питающего напряжения при увеличении нагрузки? Дело в том, что VRM контролирует и стабилизирует напряжение только в той точке, от которой ответвляется цепь обратной связи. Фактическое значение на выводах центрального процессора VRM «не видит» — соответственно, на изменение этого напряжения он никак не реагирует.

К примеру, ток потребления процессора при мощности в 200 Вт и напряжении питания 1,2 В составляет 166 А (1,2 × 166 = 200). Участок цепи питания от выхода VRM до выводов ЦП состоит из фольгированных токопроводящих дорожек длиной несколько сантиметров и точечных контактов сокета, которые не способны обеспечить такое сопротивление, при котором не происходило бы падение напряжения при прохождении тока максимальной нагрузки.

Цепь питания процессора на материнской плате

Даже при сопротивлении этого участка цепи в 1 мОм (миллиом) и токе 166 А, на нем произойдет падение напряжения величиной в 0,16 В (166 × 0,001 = 0,16), которое вычитается от стабилизированного значения на выходе VRM (см. рисунок ниже). Чем больше ток потребления, тем больше падение напряжения питания на самом процессоре. Этот эффект и называется просадкой.

Схема цепи питания процессора

Как работает функция Load-Line Calibration (LLC)

Для современного ЦП большие просадки напряжения могут оказаться критичными, его работа будет нестабильной. Самый простой вариант решения проблемы — частично компенсировать разницу путем поднятия значения напряжения в простое, но это приводит к увеличению температуры и ускоренной деградации чипа. А значит, преждевременному выходу из строя.

Именно поэтому производителями материнских плат была внедрена функция Load-Line Calibration. Она добавляет фиксированное значение к проседающему напряжению питания процессора в периоды нагрузки. Наиболее актуальной функция LLC становится при разгоне процессора, так как в этом случае ток потребления значительно увеличивается — просадка приобретает критическое значение.

Почему при неправильной установке LLC возможно повреждение процессора

LLC обладает одной неприятной особенностью. При изменении нагрузки на процессор, компенсация не происходит мгновенно — включение и отключение длится некоторый короткий промежуток времени, называемый переходным процессом. Давайте посмотрим, как это влияет на практике.

Исследование проводилось специалистами ElmorLabs с использованием следующей конфигурации комплектующих и измерительного оборудования:

  • материнская плата ASUS ROG Maximus XI;
  • процессор Intel Core i9-9900K @ 4,7 ГГц при 1,2 В;
  • осциллограф Siglent SDS1104X-E.

Осциллограмма напряжения питания процессора при минимальном (первом) уровне компенсации

Осциллограмма напряжения питания процессора при максимальном (восьмом) уровне компенсации

Из второй осциллограммы видно, что функция LLC выходит на полноценный режим работы не в момент увеличения нагрузки, а только по истечении времени переходного процесса, что приводит к кратковременной недокомпенсации. На графике это выглядит как провал питающего напряжения (до 1,12 В), который не представляет опасности для работоспособности процессора.

Гораздо страшнее смотрится переходный процесс при завершении работы LLC. По окончании нагрузки на процессор напряжение питания восстанавливается до первоначального значения. Но функция компенсации еще не успела закончить свою работу и продолжает увеличивать это значение. Происходит перекомпенсация напряжения, которая выглядит как скачок до 1,27 В. Превышение установленного напряжения составило целых 0,8 В! Подобный перепад амплитуды способен вывести ЦП из строя.

Угрожающий характер эта ситуация принимает при разгоне процессора. В этом случае изначально устанавливается повышенное напряжение питания, а к нему добавляется еще и перекомпенсированное значение. Далеко не каждый чип способен пережить подобную «шоковую терапию».

Из-за неправильно установленного режима в разгоне может произойти и такое

Вольтметром данный скачок выявить нельзя: он измеряет среднеквадратичное (усредненное) значение напряжения. По той же причине не получится это сделать с помощью различных программ.

Как правильно настроить LLC

По результатам исследования можно сделать вывод о том, что устанавливать максимальный режим компенсации не рекомендуется, а при разгоне процессоров так и вовсе категорически не стоит этого делать. При выборе оптимального режима нужно искать компромисс между приемлемой компенсацией просадки и безопасной эксплуатацией процессора. Попробуем выбрать допустимый уровень LLC для вышеприведенной тестовой конфигурации. Для этого сравним осциллограммы всех уровней — с первого по восьмой.

В данном конкретном случае рекомендуется выбирать режим с шестым, а при разгоне процессора — с пятым уровнем компенсации. Скачки напряжения еще не имеют большой величины и превышают исходное напряжение питания на 0,5 В и 0,4 В соответственно (против 0,8 В у восьмого уровня LLC). При этом режимы имеют приемлемую компенсацию просадки напряжения — 75 % и 50 %.

На других материнских платах, и даже на этой плате, но с другим процессором, работа LLC может существенно поменяться. Кроме того, настройки режима калибровки линии нагрузки у разных производителей отличаются. Например, ASRock использует всего пять уровней, тогда как у ASUS и MSI их восемь. А компания Gigabyte вместо цифровых обозначений применяет более емкие словесные: «turbo», «extreme» и «ultra extreme».

Но общая рекомендация остается прежней — старайтесь не устанавливать максимальный уровень Load-Line Calibration. Держитесь промежуточных значений, особенно при разгоне процессора.

В этой статье вы познакомитесь с параметром Load-Line Calibration или просто LLC.

Почему этот параметр так важен при разгоне процессора и его дальнейшей работе в режиме 24/7?

Содержание

gaming_oc

Глава 1: Для чего нужна функция LLC? Борьба с просадкой напряжения

До того как появилась функция LLC, при разгоне нам всегда приходилось иметь дело с очень неприятным явлением известным как просадка напряжения или Vdroop. Vdroop- это падение напряжения на процессоре при увеличении нагрузки. Система не состоянии поддерживать стабильное напряжение vCore так необходимое для работы в режиме разгона. При увеличении нагрузки, напряжение на процессоре начинает падать, что часто приводит к появлению сбоев в работе и BSOD (синих экранов). В тот самый момент, когда вы думайте, что нашли идеальные настройки для работы вашей системы в режиме постоянного разгона, просадка напряжения на процессоре может привести к неприятным сюрпризам.

1.3v_no_LLC

Давайте рассмотрим такой пример: вы установили напряжение vCore на процессоре равным 1.3В, чтобы достичь стабильного поведения системы на частоте 4500МГц. Система прекрасно себя ведет в простое и при незначительной нагрузке. Однако, тестирование системы под серьезной нагрузкой, например в таких приложениях как Prime95, приводит к просадке напряжения до 1.27В (а в некоторых случаях и еще меньше), что приводит к появлению нестабильности в работе системы. Поднятие напряжения до более высоких значений в простое, приводит к значительному повышению температуры процессора и, соответственно, к его более быстрой деградации. При увеличение частоты процессора, за счет изменения множителя, пропорционально увеличивается и напряжения на нем, однако, происходящее при этом незначительное падение напряжения создает определенные препятствия для успешного разгона.

Как победить падение напряжения
Для борьбы с этой проблемой была специально придумана функция LLC. LLC означает Load-Line Calibration. Функция увеличивает напряжение vCore, чтобы компенсировать его просадку при высокой нагрузке. Это позволяет нивелировать разницу напряжения на процессоре в простое и под нагрузкой. LLC является незаменимой опцией, когда речь идет об использовании разогнанной системы в режиме 24/7. Но перед тем как вы включите параметр LLC в настройках BIOS вашей системы, дочитайте эту статью до конца.

Глава 2: Различные уровни LLC

Поскольку дизайн цепей питания каждой материнской платы индивидуален, невозможно создать одну настройку, которая компенсировала бы просадку напряжения vCore. Как вы понимаете, технического решения, прекрасно работающего на платах с невысоким энергопотреблением, будет недостаточно для высокопроизводительных плат геймерского и high-end класса, с большим количеством фаз питания и компонентами высокого качества. С другой стороны, функция LLC на материнских платах high-end класса может привести к нежелательному результату на более слабых моделях плат, а именно к чрезмерно высокому напряжению. Также поскольку каждая материнская плата и процессор могут реагировать по разному на включение LLC, сложно разработать одну универсальную настройку LLC одинаково хорошо подходящую для любых конфигураций системы. Вот почему при открытии опции LLC в BIOS вы увидите большое количество параметров (0%, 25%, 50%, 75%, 100%). Для того, чтобы продемонстрировать как легко можно устранить просадку напряжения Vdroop на процессоре, мы возьмем плату MSI Z170A GAMING M7 и процессор Intel i7-6700K. Установим параметр ‘CPU Loadline Calibration Control’ в BIOS в режим ‘Mode 1’. Мы установим напряжение vCore равное 1.3В и разгоним процессор до 4.5ГГц. Запустим тест Prime95.


Как включить LLC на материнской плате Z170A GAMING M7


В игру вступает LLC, поддерживая напряжение на процессоре равным 1.3В (нажмите для увеличения)

Как видите, напряжение vCore под нагрузкой сейчас составляет 1.304В, что точно соответствует установленному в BIOS значению. Мы видим, что напряжение vCore в простое также равно 1.304В. Пример показывает, что LLC это отличное решение для любого оверклокера, позволяющее разгонять систему и получать максимальную стабильность процессора при разгоне. Убедитесь сами, что LLC действительно незаменимая функция при разгоне. Именно для этой материнской платы, которую мы только что протестировали есть только один параметр функции LLC, это ‘Mode 1’. Однако, как мы отметили выше, есть модели материнских плат с большим количеством параметров LLC. Какие же параметры необходимо использовать, что бы получить под нагрузкой на 100% идентичное установленному напряжение?

Глава 3: Практическое применение LLC: Не переусердствуйте

Ключевой момент здесь заключается в тонкой настройке. Выясните какие настройки наиболее оптимальны для вашей системы, когда эффект падения напряжения перестает себя проявлять и в тоже время избегая чрезмерного повышения напряжения. В большинстве случаев настройки 50% или 75% LLC должно быть достаточно. Экстремальные оверклокеры могут попробовать включить параметр в 100%, что в большинстве случаев приведет к значительному повышению напряжения в простое и незначительному повышению напряжения под нагрузкой. Поиск оптимальных настроек это ключ к получению стабильности при разгоне в любых условиях. Однако, будьте аккуратны при повышении напряжения, если планируйте использовать систему в режиме 24/7, поскольку как было сказано выше, работа при повышенном напряжении приводит к быстрому деградированию процессора и сокращению срока его службы. Несмотря на то, что функция LLC незаменима при оверклокинге, будьте аккуратны при ее использовании, также как и при обычном поднятии напряжения vCore на процессоре.

img_0640

Заключение

При поиске оптимальных настроек для разгона системы, особенно если вы планируйте использовать разогнанную систему 7 дней в неделю, всегда проверяйте наличие опции LLC в BIOS вашей материнской платы и при наличии, обязательно включайте ее. LLC может по-настоящему помочь вам получить несколько лишних сотен мегагерц из вашей системы и улучшить стабильность при разгоне. Однако, исходя из общих соображений безопасности при разгоне, будьте аккуратны при использовании функции LLC. На некоторых материнских платах и в определенных конфигурациях может наблюдаться излишне высокое напряжение на процессоре, что приводит к быстрой его деградации (также зависит от используемой системы охлаждения). На платформе Z170 функция LLC оказывает значительное влияние поскольку регулятор напряжения находится на материнской плате, в то время как на платформе Haswell он спрятан внутри процессора, делая работу функции LLC практически невозможной. LLC делает нашу жизнь проще, попробуйте и убедитесь сами!

Все действия, связанные с разгоном, осуществляются в меню AI Tweaker (UEFI Advanced Mode) установкой параметра AI Overclock Tuner в Manual (рис. 1).



Рис. 1

BCLK/PEG Frequency

Параметр BCLK/PEG Frequency (далее BCLK) на рис. 1 становится доступным, если выбраны Ai Overclock Tuner\XMP или Ai Overclock Tuner\Manual. Частота BCLK, равная 100 МГц, является базовой. Главный параметр разгона – частота ядра процессора, получается путем умножения этой частоты на параметр – множитель процессора. Конечная частота отображается в верхней левой части окна Ai Tweaker (на рис. 1 она равна 4,1 ГГц). Частота BCLK также регулирует частоту работы памяти, скорость шин и т.п.
Возможное увеличение этого параметра при разгоне невелико – большинство процессоров позволяют увеличивать эту частоту только до 105 МГц. Хотя есть отдельные образцы процессоров и материнских плат, для которых эта величина равна 107 МГц и более. При осторожном разгоне, с учетом того, что в будущем в компьютер будут устанавливаться дополнительные устройства, этот параметр рекомендуется оставить равным 100 МГц (рис. 1).

ASUS MultiCore Enhancement

Когда этот параметр включен (Enabled на рис. 1), то принимается политика ASUS для Turbo-режима. Если параметр выключен, то будет применяться политика Intel для Turbo-режима. Для всех конфигураций при разгоне рекомендуется включить этот параметр (Enabled). Выключение параметра может быть использовано, если вы хотите запустить процессор с использованием политики корпорации Intel, без разгона.

Turbo Ratio

В окне рис. 1 устанавливаем для этого параметра режим Manual. Переходя к меню Advanced\. \CPU Power Management Configuration (рис. 2) устанавливаем множитель 41.



Рис. 2
Возвращаемся к меню AI Tweaker и проверяем значение множителя (рис. 1).
Для очень осторожных пользователей можно порекомендовать начальное значение множителя, равное 40 или даже 39. Максимальное значение множителя для неэкстремального разгона обычно меньше 45.

Internal PLL Overvoltage

Увеличение (разгон) рабочего напряжения для внутренней фазовой автоматической подстройки частоты (ФАПЧ) позволяет повысить рабочую частоту ядра процессора. Выбор Auto будет автоматически включать этот параметр только при увеличении множителя ядра процессора сверх определенного порога.
Для хороших образцов процессоров этот параметр нужно оставить на Auto (рис. 1) при разгоне до множителя 45 (до частоты работы процессора 4,5 ГГц).
Отметим, что стабильность выхода из режима сна может быть затронута, при установке этого параметра в состояние включено (Enabled). Если обнаруживается, что ваш процессор не будет разгоняться до 4,5 ГГц без установки этого параметра в состояние Enabled, но при этом система не в состоянии выходить из режима сна, то единственный выбор – работа на более низкой частоте с множителем меньше 45. При экстремальном разгоне с множителями, равными или превышающими 45, рекомендуется установить Enabled. При осторожном разгоне выбираем Auto. (рис. 1).

CPU bus speed: DRAM speed ratio mode

Этот параметр можно оставить в состоянии Auto (рис. 1), чтобы применять в дальнейшем изменения при разгоне и настройке частоты памяти.

Memory Frequency

Этот параметр виден на рис. 3. С его помощью осуществляется выбор частоты работы памяти.



Рис. 3
Параметр Memory Frequency определяется частотой BCLK и параметром CPU bus speed:DRAM speed ratio mode. Частота памяти отображается и выбирается в выпадающем списке. Установленное значение можно проконтролировать в левом верхнем углу меню Ai Tweaker. Например, на рис. 1 видим, что частота работы памяти равна 1600 МГц.
Отметим, что процессоры Ivy Bridge имеют более широкий диапазон настроек частот памяти, чем предыдущее поколение процессоров Sandy Bridge. При разгоне памяти совместно с увеличением частоты BCLK можно осуществить более детальный контроль частоты шины памяти и получить максимально возможные (но возможно ненадежные) результаты при экстремальном разгоне.
Для надежного использования разгона рекомендуется поднимать частоту наборов памяти не более чем на 1 шаг относительно паспортной. Более высокая скорость работы памяти дает незначительный прирост производительности в большинстве программ. Кроме того, устойчивость системы при более высоких рабочих частотах памяти часто не может быть гарантирована для отдельных программ с интенсивным использованием процессора, а также при переходе в режим сна и обратно.
Рекомендуется также сделать выбор в пользу комплектов памяти, которые находятся в списке рекомендованных для выбранного процессора, если вы не хотите тратить время на настройку стабильной работы системы.
Рабочие частоты между 2400 МГц и 2600 МГц, по-видимому, являются оптимальными в сочетании с интенсивным охлаждением, как процессоров, так и модулей памяти. Более высокие скорости возможны также за счет уменьшения вторичных параметров – таймингов памяти.
При осторожном разгоне начинаем с разгона только процессора. Поэтому вначале рекомендуется установить паспортное значение частоты работы памяти, например, для комплекта планок памяти DDR3-1600 МГц устанавливаем 1600 МГц (рис. 3).
После разгона процессора можно попытаться поднять частоту памяти на 1 шаг. Если в стресс-тестах появятся ошибки, то можно увеличить тайминги, напряжение питания (например на 0,05 В), VCCSA на 0,05 В, но лучше вернуться к номинальной частоте.

EPU Power Saving Mode

Автоматическая система EPU разработана фирмой ASUS. Она регулирует частоту и напряжение элементов компьютера в целях экономии электроэнергии. Эта установка может быть включена только на паспортной рабочей частоте процессора. Для разгона этот параметр выключаем (Disabled) (рис. 3).

OC Tuner

Когда выбрано (OK), будет работать серия стресс-тестов во время Boot-процесса с целью автоматического разгона системы. Окончательный разгон будет меняться в зависимости от температуры системы и используемого комплекта памяти. Включать не рекомендуется, даже если вы не хотите вручную разогнать систему. Не трогаем этот пункт или выбираем cancel (рис. 3).

DRAM Timing Control

DRAM Timing Control – это установка таймингов памяти (рис. 4).



Рис. 4.
Все эти настройки нужно оставить равными паспортным значениям и на Auto, если вы хотите настроить систему для надежной работы. Основные тайминги должны быть установлены в соответствии с SPD модулей памяти.



Рис. 5
Большинство параметров на рис. 5 также оставляем в Auto.

MRC Fast Boot

Включите этот параметр (Enabled). При этом пропускается тестирование памяти во время процедуры перезагрузки системы. Время загрузки при этом уменьшается.
Отметим, что при использовании большего количества планок памяти и при высокой частоте модулей (2133 МГц и выше) отключение этой настройки может увеличить стабильность системы во время проведения разгона. Как только получим желаемую стабильность при разгоне, включаем этот параметр (рис. 5).

DRAM CLK Period

Определяет задержку контроллера памяти в сочетании с приложенной частоты памяти. Установка 5 дает лучшую общую производительность, хотя стабильность может ухудшиться. Установите лучше Auto (рис. 5).

CPU Power Management

Окно этого пункта меню приведено на рис. 6. Здесь проверяем множитель процессора (41 на рис. 6), обязательно включаем (Enabled) параметр энергосбережения EIST, а также устанавливаем при необходимости пороговые мощности процессоров (все последние упомянутые параметры установлены в Auto (рис. 6)).
Перейдя к пункту меню Advanced\. \CPU Power Management Configuration (рис. 2) устанавливаем параметр CPU C1E (энергосбережение) в Enabled, а остальные (включая параметры с C3, C6) в Auto.



Рис. 6



Рис. 7.

DIGI+ Power Control

На рис. 7 показаны рекомендуемые значения параметров. Некоторые параметры рассмотрим отдельно.

CPU Load-Line Calibration

Сокращённое наименование этого параметра – LLC. При быстром переходе процессора в интенсивный режим работы с увеличенной мощностью потребления напряжение на нем скачкообразно уменьшается относительно стационарного состояния. Увеличенные значения LLC обуславливают увеличение напряжения питания процессора и уменьшают просадки напряжения питания процессора при скачкообразном росте потребляемой мощности. Установка параметра равным high (50%) считается оптимальным для режима 24/7, обеспечивая оптимальный баланс между ростом напряжения и просадкой напряжения питания. Некоторые пользователи предпочитают использовать более высокие значения LLC, хотя это будет воздействовать на просадку в меньшей степени. Устанавливаем high (рис. 7).

VRM Spread Spectrum

При включении этого параметра (рис. 7) включается расширенная модуляция сигналов VRM, чтобы уменьшить пик в спектре излучаемого шума и наводки в близлежащих цепях. Включение этого параметра следует использовать только на паспортных частотах, так как модуляция сигналов может ухудшить переходную характеристику блока питания и вызвать нестабильность напряжения питания. Устанавливаем Disabled (рис. 7).

Current Capability

Значение 100% на все эти параметры должны быть достаточно для разгона процессоров с использованием обычных методов охлаждения (рис. 7).



Рис. 8.

CPU Voltage

Есть два способа контролировать напряжения ядра процессора: Offset Mode (рис. 8) и Manual. Ручной режим обеспечивает всегда неизменяемый статический уровень напряжения на процессоре. Такой режим можно использовать кратковременно, при тестировании процессора. Режим Offset Mode позволяет процессору регулировать напряжение в зависимости от нагрузки и рабочей частоты. Режим Offset Mode предпочтителен для 24/7 систем, так как позволяет процессору снизить напряжение питания во время простоя компьютера, снижая потребляемую энергию и нагрев ядер.
Уровень напряжения питания будет увеличиваться при увеличении коэффициента умножения (множителя) для процессора. Поэтому лучше всего начать с низкого коэффициента умножения, равного 41х (или 39х) и подъема его на один шаг с проверкой на устойчивость при каждом подъеме.
Установите Offset Mode Sign в “+”, а CPU Offset Voltage в Auto. Загрузите процессор вычислениями с помощью программы LinX и проверьте с помощью CPU-Z напряжение процессора. Если уровень напряжения очень высок, то вы можете уменьшить напряжение путем применения отрицательного смещения в UEFI. Например, если наше полное напряжение питания при множителе 41х оказалась равным 1,35 В, то мы могли бы снизить его до 1,30 В, применяя отрицательное смещение с величиной 0,05 В.
Имейте в виду, что уменьшение примерно на 0,05 В будет использоваться также для напряжения холостого хода (с малой нагрузкой). Например, если с настройками по умолчанию напряжение холостого хода процессора (при множителе, равном 16x) является 1,05 В, то вычитая 0,05 В получим примерно 1,0 В напряжения холостого хода. Поэтому, если уменьшать напряжение, используя слишком большие значения CPU Offset Voltage, наступит момент, когда напряжение холостого хода будет таким малым, что приведет к сбоям в работе компьютера.
Если для надежности нужно добавить напряжение при полной нагрузке процессора, то используем “+” смещение и увеличение уровня напряжения. Отметим, что введенные как “+” так и “-” смещения не точно отрабатываются системой питания процессора. Шкалы соответствия нелинейные. Это одна из особенностей VID, заключающаяся в том, что она позволяет процессору просить разное напряжение в зависимости от рабочей частоты, тока и температуры. Например, при положительном CPU Offset Voltage 0,05 напряжение 1,35 В при нагрузке может увеличиваться только до 1,375 В.
Из изложенного следует, что для неэкстремального разгона для множителей, примерно равных 41, лучше всего установить Offset Mode Sign в “+” и оставить параметр CPU Offset Voltage в Auto. Для процессоров Ivy Bridge, ожидается, что большинство образцов смогут работать на частотах 4,1 ГГц с воздушным охлаждением.
Больший разгон возможен, хотя при полной загрузке процессора это приведет к повышению температуры процессора. Для контроля температуры запустите программу RealTemp.

DRAM Voltage

Устанавливаем напряжение на модулях памяти в соответствии с паспортными данными. Обычно это примерно 1,5 В. По умолчанию – Auto (рис. 8).

VCCSA Voltage

Параметр устанавливает напряжение для System Agent. Можно оставить на Auto для нашего разгона (рис. 8).

CPU PLL Voltage

Для нашего разгона – Auto (рис. 8). Обычные значения параметра находятся около 1,8 В. При увеличении этого напряжения можно увеличивать множитель процессора и увеличивать частоту работы памяти выше 2200 МГц, т.к. небольшое превышение напряжения относительно номинального может помочь стабильности системы.

PCH Voltage

Можно оставить значения по умолчанию (Auto) для небольшого разгона (рис. 8). На сегодняшний день не выявилось существенной связи между этим напряжением на чипе и другими напряжениями материнской платы.



Рис. 9

CPU Spread Spectrum

При включении опции (Enabled) осуществляется модуляция частоты ядра процессора, чтобы уменьшить величину пика в спектре излучаемого шума. Рекомендуется установить параметр в Disabled (рис. 9), т.к. при разгоне модуляция частоты может ухудшить стабильность системы.

Автору таким образом удалось установить множитель 41, что позволило ускорить моделирование с помощью MatLab.

Читайте также: