Как рассчитать антенну для wifi

Обновлено: 01.07.2024

Тема актуальна для абонентов, живущих за пределами крупных населенных пунктов и при большой удаленности от ближайших вышек сотовых операторов. Но и в городах с плотной застройкой прием прямого сотового сигнала иногда затруднён, приходится довольствоваться использованием отраженного сигнала, а он ослаблен в несколько раз. В этом случае поможет выносная антенна.

Конструкции таких антенн различны, отличающиеся принципом построения, сложностью конструкции и радиотехническими параметрами. В данной статье хотелось бы поделиться личным опытом по изготовлению и применению варианта антенны, доступного для повторения в домашних условиях, без применения сложных расчетов и технологий изготовления.

В моем случае, проблема состояла в крайне низкой скорости интернет соединения из-за большой удаленности от вышки (15 км по прямой) и, кроме того, прием прямого сигнала был невозможен из-за находящихся перед домом других зданий. По этой причине 3G–сигнал модемом практически не фиксировался, и работать он мог только в режиме GPRS (использовался модем от МТС (MF192+) и модели от Мегафона).

Были рассмотрены многие варианты для увеличения уровня принимаемого сигнала, в том числе на различных сайтах в интернете по этой теме. Анализ антенн различных конструкций и отзывы об их работе показали, что наиболее эффективно работают варианты направленных антенн типа «волновой канал» или с использованием отражателей-тарелок с расположением самого модема в их «фокусе». Но такие антенны требуют для изготовления точных и сложных расчетов, довольно специфических материалов, и, поэтому, делать в домашних условиях их не просто. А варианты с выносом самого модема «на улицу» (за окно, на крышу и др.) сразу отпали из-за необходимости применения при этом USB удлинителя более 15 м, а при такой длине модем вообще работал не устойчиво. Кроме того, модем в принципе не предназначен для работы в уличных условиях , при значительных перепадах температуры и влажности.

Поэтому рассматривался вариант комнатной направленной антенны, а по многочисленным положительным отзывам, таким вариантом являлась конструкция антенны «зигзаг Харченко» или «би-квадрат». Следует сказать, что в моем случае применение двойного и тройного вариантов «би-квадрата» не показало никакого значимого преимущества перед обычным, простым вариантом этой антенны. Поэтому в дальнейшем будет рассмотрен подробный расчет и особенности изготовления «классического» варианта «би-квадрата»:

Расчет антенны

Периметр рамки антенны такого типа должен быть равен длине волны принимаемого радиосигнала. В нашем случае длину волны можно рассчитать, зная частоту сигнала 3G, которая составляет 2100 МГц. Для этого нужно разделить скорость распространения радиоволн (300000 км/сек) на частоту:

300000 / 2100000 = 0, 143 м

- получаем длину рамки равной 143 мм. Поскольку рамка имеет форму квадрата, следует разделить ее общую длину на 4, в результате получим длину каждой стороны квадрата, равную 35,75 мм. (во многих источниках можно найти другие длины сторон - от 27 до 53 мм… Очевидно, такие антенны рассчитаны уже на другой диапазон - GSM или Wi-Fi, например, рабочие частоты у которых, соответственно, ниже или выше, чем в нашем случае).

Изготовление

Коэффициент усиления данной антенны примерно 6 дБ. При ее изготовлении все размеры нужно соблюдать как можно точнее, от качества изготовления сильно зависит и качество работы. Следует заметить, что любая антенна без усилителя не усиливает сигнал как таковой, а выделяет его на фоне других сигналов и различных помех (если антенна не широкополосная). Чтобы увеличить усиление до 9 дБ, нужно применить рефлектор . Это может быть металлическая пластина, мелкая сетка или даже фольга, наклеенная на фанеру или плотный картон, размерами на 10-15 % больше площади «полотна» самой антенны. В данном случае рефлектор будет иметь размеры 125 х 75 мм.

Для изготовления потребуется медный провод диаметром не менее 4 мм.кв (можно использовать «жилу» от силового электрического кабеля марки ВВГ или NUM). Периметр каждого квадрата равен длине волны – 143 мм. Поскольку антенна состоит из двух квадратов, то понадобится отрезок провода 2 х143 мм = 286 мм. Размечаем провод на 8 равных отрезков и изгибаем в этих местах под углом 90 градусов , а свободные концы спаиваем между собой, чтобы получился замкнутый контур:

Рефлектор следует закрепить позади «квадратов» антенны, причем расстояние до рефлектора тоже имеет большое значение, так как это влияет на входное сопротивление и согласование с кабелем. Теоретически это расстояние должно составлять ¼ длины волны, в нашем случае: 1 43 / 4 = 35,75 мм . Но моя антенна, например, лучше работает при расстоянии 18 мм, а это получается 1/8 длины волны. Поэтому это расстояние лучше сделать «регулируемым» и подбирать в процессе настройки. Для этого берем отрезок медной трубки подходящего диаметра (туда должен входить наш соединительный кабель), например - от телескопической антенны для приемников/телевизоров. Придаем ему форму, как показано на рисунке:

В пластине рефлектора сверлим отверстие в центре, чтобы туда плотно входила эта трубка. Её можно не припаивать к рефлектору и при настройке двигать, регулируя расстояние до плоскости антенны. Затем припаиваем рамку из двух квадратов к этой трубке, сквозь трубку пропускаем кабель (обычный телевизионный) и припаиваем его центральную жилу к внутреннему углу рамки напротив отверстия трубки, а оплетку-экран кабеля – к трубке с противоположной стороны рефлектора (всё это видно на фото ниже):

Трубку можно припаять к рефлектору после окончательной настройки антенны. Плоскость антенны должна быть строго параллельна плоскости рефлектора, потому что даже небольшой перекос сильно снизит уровень сигнала (!)

Соединение с модемом

Если на вашем модеме нет специального разъема для подключения внешней антенны, то нужно сделать своеобразный «адаптер», который надевается снаружи и передает сигнал на внутреннюю антенну модема методом переизлучения. В простейшем случае это 3-5 витков центральной жилы кабеля на корпусе модема, в месте расположения его внутренней антенны :

Количество витков подбирается при настройке по максимуму принимаемого сигнала. Затем эти витки следует закрепить на модеме изолентой. А можно сделать конструкцию посложнее, как на фото ниже:

- «кольцо» сделано из полосы медной фольги шириной 45 мм и плотно облегает корпус модема в месте расположения его внутренней антенны. К этому кольцу припаивается центральная жила соединительного ТВ-кабеля. Из другой полоски такой же фольги, но размерами 25 х 75 мм, изгибается «полукольцо», как на фото, и к нему припаивается оплетка-экран кабеля. Электрического контакта между кольцом и полукольцом быть не должно. Регулируя положение полукольца (угол его наклона относительно модема), можно добиться максимального уровня принимаемого сигнала. У модемов разных типов и моделей расположение встроенной антенны внутри корпуса также разное (в районе разъема USB или на другом его конце). Это следует учитывать при расположении «адаптера» на корпусе вашего модема!

Для соединения модема с антенной выбирайте качественный ВЧ-кабель, лучше марок: 10D-FB, 8D-FB, 5D-FB (в порядке ухудшения качества)

Настройка антенны

Расположив антенну так, чтобы она была направлена в сторону ближайшей вышки сотовой связи у окна или напротив него, отрегулируйте расстояние между ней и пластиной рефлектора, сдвигая трубку. Ориентироваться можно по уровню сигнала значка антенны в стандартной программе-коннекте для вашего модема (но там запоздалая реакция на изменение сигнала - до 20 сек (!),

В моем случае показатель шкалы антенны увеличился до 2-3 делений (до этого не было совсем). Однако скорость интернет соединения при этом поднялась очень ощутимо, так как важен даже не уровень сигнала, а отношение «сигнал-шум». Наша антенна работает в резонансе с полезным сигналом и «давит» посторонние шумы и помехи. Поэтому скорость обмена информацией увеличилась с 0,5 Мб/с до 3…4 Мб/с в дневное время (ночью - выше). А без антенны, как уже говорилось ранее, прием сигнала 3G был вообще практически невозможен.

Чтобы не быть голословным, ниже приведу скриншоты с уровнями сигнала и скоростью интернет-соединения с такой антенной:

Расчет ведется по формулам из книги - "Шабунин С.Н., Соловьянова И.П. Волноводы и объемные резонаторы 1998".

Конструкции антенны посвящена следующая статья

Схематическое изображение антенны:

расчет баночной антенны

Добавив к антенне насадку в виде раструба, мы из баночной антенны получаем простейшую коническую рупорную антенну. Такой прием позволяет получить добавку в усилении до 3 дБ по сравнению с простой банкой. Раструб можно изготовить из оцинкованной жести, его "выкройка" понятна из рисунка ниже, а необходимые размеры R1 и R2 рассчитываются в калькуляторе. Увеличивать размеры раструба для достижения еще большего усиления не рекомендуется, поскольку в конической рупорной антенне может наблюдаться эффект поворота плоскости поляризации. В результате, увеличив раструб, мы можем даже потерять в усилении. С большим раструбом лучший результат получается у пирамидальной рупорной антенны.

Если круглый волновод используется как линия передачи, то он работает в одномодовом режиме волны TE11(H11). При этом появления следующей моды TM01(E01) следует избегать. Однако, чтобы банка излучала своим открытым концом, ее следует возбуждать как раз в режиме волны TM01(E01). Размеры банки подобраны оптимальным образом для создания такого режима колебаний.

802.11b и 802.11g WiFi сети работают на частотах от 2412 МГц до 2462 МГц. Поэтому нижняя частота среза должна быть меньше 2412 МГц, а верхняя частота среза должна быть больше 2462 МГц.

Для других диапазонов Wi-Fi, а также для 3G, 4G - см. сводную таблицу частот.

Калькулятор, при выборе рабочего диапазона, автоматически предлагает оптимальный диаметр банки. При ручном вводе частоты необходимо также вручную подобрать диаметр банки таким, чтобы рабочий диапазон попал в ее полосу пропускания.

В оффлайн режиме можно воспользоваться небольшой программой для расчета баночной антенны. (обновлена 20.01.2014)

Расчет, аналогичный этому калькулятору, есть в андроид приложении Cantennator, доступном на Google play. Вы его можете загрузить на свое мобильное устройство, нажав на кнопку ниже или по QR-коду. Не забудьте оценить приложение.

двойной биквадрат

Хотите собрать дальнобойную WiFi антенну, тогда следует знать о некоторых её особенностях.

Первое и самое простое: большие антенны в 15 или 20 dBi (децибел изотропных) являются предельными по мощности, и не нужно делать их ещё мощнее.

Вот наглядная иллюстрация, как с ростом мощности антенны в dBi уменьшается зона её покрытия.

Делаем сверхдальнюю WiFi антенну

Так получается, что с увеличением дистанции действия антенны, площадь её покрытия значительно уменьшается. Дома вам придется постоянно ловить узкую полоску действия сигнала при слишком мощном WiFi излучателе. Встанете с дивана или приляжете на пол, и связь тут же пропадет.

Вот почему домашние роутеры имеют обычные, излучающие во все стороны, антенны мощностью в 2 dBi—так они наиболее эффективны на короткой дистанции.

Направленная

Антенны на 9 dBi работают только в заданном направлении (направленного действия) — в комнате они бесполезны, их лучше применять для дальней связи, во дворе, в гараже рядом с домом. Направленную антенну при установке потребуется регулировать для передачи четкого сигнала в нужном направлении.

 Направленную антенну при установке

Теперь к вопросу о несущей частоте. Какая антенна будет лучше работать на дальнем расстоянии, в 2.4 или 5 ГГц?

Сейчас есть новые роутеры, работающие на удвоенной частоте в 5 ГГц. Такие маршрутизаторы все еще остаются новинкой, они хороши для скоростной передачи данных. Но сигнал 5 ГГц не очень хорош для дальних расстояний, так как затухает быстрее, чем при 2.4 ГГц.

Потому старые роутеры на 2.4 ГГц будут работать лучше в дальнобойном режиме, чем новые быстродействующие в 5 ГГц.

Чертёж двойного самодельного биквадрата

Первые образцы самодельных распространителейWiFi сигнала, появились еще в 2005 году.

Наилучшие из них конструкции биквадрат, обеспечивающие усиление до 11–12 dBi и двойной биквадрат, имеющие несколько лучший результат в 14 dBi.

двойной биквадрат

двойной биквадрат

Согласно опыту использования, конструкция биквадрат является более подходящей в качестве многофункционального излучателя. Действительно, преимуществом этой антенны является то, что при неизбежном сжатии поля излучения, угол раскрытия сигнала остается достаточно широким, чтобы покрыть всю площадь квартиры при правильной установке.

двойной биквадрат

Все, возможные, версии биквадратной антенны являются простыми в реализации.

Необходимые детали

  • Металлический рефлектор—кусок фольгированноготекстолита123х123 мм, лист фольги, CD, DVD компакт диск, алюминиевая крышка с чайной банки.
  • Медная проволока сечением 2.5 мм.кв.
  • Отрезок коаксиального кабеля, лучше с волновым сопротивлением 50 Ом.
  • Пластмассовые трубочки — можно нарезать из шариковой ручки, фломастера, маркера.
  • Немного термоклея.
  • Разъем N-типа — пригодится для удобного подсоединения антенны.

Изготовление излучателя

Для частоты 2.4 ГГц, на которой планируется использовать передатчик, идеальными размерами биквадрата будут 30.5 мм. Но все-таки мы делаем не спутниковую антенну, поэтому допустимы некоторые отклонения в размерах активного элемента —30–31 мм.

Изготовление излучателя

К вопросу о толщине проволоки также нужно отнестись внимательно. С учетом выбранной частоты 2.4 ГГц, медную жилу надобно найти толщиной точно в 1.8 мм (сечением 2.5 мм.кв.).

о толщине проволоки

От края проволоки отмеряем расстояние 29 мм до загиба.

Делаем следующий загиб, проконтролировав наружный размер в 30–31 мм.

о толщине проволоки

Следующие загибы вовнутрь делаем на расстоянии 29 мм.

о толщине проволоки

Проверяем самый важный параметр у готового биквадрата —31 мм по средней линии.

Пропаиваем

Пропаиваем места для будущего крепления выводов коаксиального кабеля.

Рефлектор

Основная задача железного экрана за излучателем — отражать электромагнитные волны. Правильно отраженные волны будут накладываться своими амплитудами на колебания только что выпущенные активным элементом. Возникающая усиливающая интерференция даст возможность максимально далеко распространитьэлектромагнитныеволны от антенны.

Чтобы добиться полезной интерференции надо расположить излучатель на расстоянии кратном четверти длины волны от отражателя.

Расстояние от излучателя до рефлектора для антенн биквадрат и двойной биквадрат находим как лямбда / 10 — определяемую особенностями данной конструкции / 4.

Лямбда — длина волны, равная скорости света в м/с деленной на частоту в Гц.

Длина волны при частоте 2.4 ГГц — 0.125 м.

Увеличив пятикратно рассчитанное значение, получим оптимальное расстояние — 15.625 мм.

Размер рефлектора сказывается на коэффициенте усиления антенны в дБи. Оптимальные размеры экрана для биквадрата — 123х123 мм или больше, только в этом случае можно добиться усиления в 12 dBi.

Размеров CD иDVD дисков явно недостаточно для полного отражения, поэтому антенны биквадраты, построенные на них, имеют коэффициент усиления лишь в 8 dBi.

Ниже приведен пример использования крышки с чайной банки в качестве рефлектора. Размера такого экрана тоже недостаточно, коэффициент усиления антенны меньше, чем ожидалось.

рефлектор

Форма рефлектора должна быть только плоской. Старайтесь также найти пластинки максимально гладкие. Изгибы, царапины на экране приводят к рассеиванию высокочастотных волн, по причине нарушения отражения в заданном направлении.

В выше рассмотренном примере бортики на крышке явно лишние — они снижают угол раскрытия сигнала, создают рассеиваемые помехи.

Как только пластинка рефлектора будет готова, у вас есть два способа собрать на нем излучатель.

Установить медную трубку

Установить медную трубку

Чтобы зафиксировать двойной биквадрат понадобилось дополнительно сделать две стоечки из шариковой ручки.

  1. Закрепить все на пластмассовой трубке используя термоклей.

Закрепить все на пластмассовой трубке

Берем пластмассовую коробочку для дисков на 25 штук.

Отрезаем центральный штырь

Отрезаем центральный штырь, оставив по высоте на 18 мм.

Прорезаем надфилем

Прорезаем надфилем или напильником четыре шлица в пластмассовом штыре.

Подравниваем шлицы одинаково по глубине

Устанавливаем самодельную рамочку

Устанавливаем самодельную рамочку на шпиндель, проверяем, дабы её края оказались на одинаковой высоте от дна коробочки — около 16 мм.

Припаиваем выводы кабеля

Припаиваем выводы кабеля к рамке излучателя.

Взяв клеевой пистолет

Взяв клеевой пистолет, закрепляем CD диск на дне пластмассой коробочки.

Взяв клеевой пистолет

Взяв клеевой пистолет

Продолжаем работать клеевым пистолетом, фиксируем на шпинделе рамку излучателя.

 фиксируем на шпинделе рамку излучателя

С обратной стороны коробочки фиксируем термоклеем кабель.

Подключение к роутеру

У кого есть опыт, тот с легкостью припаяется к контактным площадкам на монтажной плате внутри роутера.

Иначе, будьте осторожны, тонкие дорожки могут оторваться от печатной платы при долговременном прогреве паяльником.

Можно к уже припаянномукусочку кабеляродной антенны подключиться через разъем SMA. С приобретением любого другого радиочастотного соединителя N-типа в ближайшей точке торговли электроникой не должно возникнуть проблем.

Подключение антенны к роутеру

Тесты антенны

Испытания показали, что идеальный биквадрат дает усиление около 11–12 дБи, а это до 4 км направленного сигнала.

Антенна из CDдиска дает 8 дБи, поскольку получается поймать WiFiсигнал на расстоянии 2 км.

Двойной биквадрат предоставляет 14 дБи— немного больше 6км.

Угол раскрытия антенн с квадратным излучателем составляет около 60 градусов, чего вполне достаточно для двора частного дома.

О дальности действия Вай Фай антен

От родной роутерной антенны на 2 dBi сигнал 2.4 ГГц, стандарта 802.11n может распространиться на 400 метров в пределах прямой видимости. Сигналы 2.4 ГГц, старых стандартов 802.11b, 802.11g хуже распространяются, имея вдвое меньшую дальность по сравнению с 802.11n.

Считая WiFi антенну за изотропный излучатель — идеальный источник, распространяющий электромагнитную энергию равномерно во всех направлениях, можно руководствоваться логарифмической формулой перевода дБи в прирост мощности.

Децибел изотропный (дБи) — коэффициент усиления антенны, определяемый как умноженный на десять десятичный алгоритм отношения усиленного электромагнитного сигнала к исходному его значению.

Перевод дБи антен в прирост мощностей.

A,дБи302018161514131210965321
A1/A01000100≈64≈40≈32≈25≈20≈1610≈8≈4≈3.2≈2≈1.6≈1.26

Судя по таблице, несложно сделать вывод, что направленный WiFi передатчик максимально допустимой мощности в 20 дБи может распространить сигнал в даль на 25 км при отсутствии преград.

Дальнейшее увеличение мощности антенны неразумно, распространение сигнала будет идти в слишком узкой зоне, имеющей форму диска.

Зона покрытия сетей Wi-Fi: как рассчитать и как увеличить

Вы с довольной улыбкой возвращаетесь из магазина с новеньким Wi-Fi-роутером, предвкушая быстрый доступ для всех устройств. Что дальше? А вот здесь вам придется проделать немалую работу — маршрутизатор нужно правильно установить и даже сделать некоторые настройки. Все это напрямую влияет на качество сигнала и, соответственно, скорость подключения. В этой статье мы расскажем, как установить и настроить маршрутизатор.

Как определить зону покрытия Wi-Fi

Первоочередной вопрос пользователей — как далеко будет добивать сигнал Wi-Fi? Ответ на этот вопрос зависит от множества факторов — количества и наличия преград в вашем доме или квартире, мощности и коэффициента усиления антенны, рабочей частоты Wi-Fi-сигнала.

Например, для роутера с антенной мощность 20 дБм и коэффициентом усиления 5–7 dBi на частоте 2,4 ГГц (стандарт 802.11n) в идеальных условиях зона покрытия ограничивается 100 метрами. На практике даже на открытом пространстве антенны добивают не дальше 50 метров. В помещениях все зависит от типа и количества преград. Обычно этот показатель сокращается до 10–15 метров.

Стандарт 802.11ac (5 ГГц) имеет еще меньшую зону покрытия и сильно уязвим к препятствиям. Например, при удалении от роутера на одно и то же расстояние мы получаем абсолютно разное падение сигнала в сравнении с предыдущим стандартом. Для 2,4 ГГц ухудшение составило с -60 dBm до -82 dBm. Для 5 ГГц сигнал упал с -63 dBm до -90 dBm.


Определить зону покрытия конкретно для вашей модели роутера можно несколькими способами. Мы расскажем о двух из них на примере типичного бюджетного TP-Link TL-WR840N — пара антенн мощностью 20 дБм с коэффициентом усиления 5 dBi, устройство работает на частоте 2,4 ГГц. Для тестов можно поставить роутер в геометрическом центре вашего жилья.

Первый способ подойдет для тех, у кого есть ноутбук. Вам необходимо использовать приложение NetSpot. Софт позволяет определить зону покрытия Wi-Fi и наложить ее на вашу карту помещения. Первый шаг — нарисовать максимально точный план помещения. В нашем случае это двухкомнатная квартира с лоджией.


Далее необходимо установить NetSpot на ваш ноутбук и подключиться к домашнему Wi-Fi. В программе выберите пункт New Survey и в качестве источника Map location укажите нарисованный ранее план. Программа работает с форматами .jpg и .bmp.


Запустив проект, вам необходимо кликнуть на карте в том месте, где вы находитесь сейчас. Как только будет выполнен замер — переходите в другую часть квартиры и повторите клик на карте. Рекомендуем посетить как минимум углы вашего дома или квартиры, а также сделать несколько замеров в каждой из комнат. По итогу в нашем случае получилась следующая карта.


Расставив необходимое количество точек, закончите сканирование (Stop Scan) и дождитесь, пока софт проведет необходимые расчеты и сформирует карту. Ваш роутер должен быть отмечен галочкой. Чтобы получить уровень сигнала в каждой точке, достаточно навести курсор в нужном месте карты и посмотреть результат.


Что можно понять по этой схеме? Обратите внимание на шкалу силы сигнала. Она измеряется от - 10 dBm до -96 dBm. Чем ближе показатель к нулю, тем лучше качество сигнала.

Возле роутера наш ноутбук принимает сигнал на уроне -37 dBm, а в самых удаленных точках -62 dBm. Если использовать шкалу в самой программе, то можно сделать вывод, что качество сигнала выше среднего.

Чтобы вам было проще, можете ориентироваться на следующее соответствие уровня сигнала для домашних роутеров:


Таким образом, покрытия от -30 до -60 dBm вполне хватает для большинства задач. Естественно, это касается только качества сигнала — какие именно скорости вам будут доступны уже зависит от характеристик роутера (наличие и тип MIMO, стандарт Wi-Fi) и даже принимающих гаджетов.

NetSpot позволяет получить максимально подробную карту, но софт платный, а для использования вам потребуется устройство на базе Windows или MacOS.

Более доступный способ замерить силу сигнала — воспользоваться вашим смартфоном и специализированным приложением. Подойдет приложение Wi-Fi Analyzer, которое можно скачать бесплатно в Play Market. Программа имеет несколько окон, отличающихся способом отображения данных.


Давайте выполним замеры сигнала с помощью мобильного в тех же точках и построим карту:


Как видно, замеры с помощью смартфона приблизительно соответствуют тем данным, которые мы получили с помощью программы NetSpot. Разницу в результатах можно оправдать разными типами приемников в каждом устройстве и особенностями ПО.

Если все комнаты находятся в зоне покрытия и сигнал не опускается ниже -60 dBm, то все хорошо. В нашем случае роутера TP-Link TL-WR840N полностью хватает на двухкомнатную квартиру. Обратите внимание, что модели на 5 ГГц более чувствительны к преградам, поэтому могут не покрывать площадь двух- или трехкомнатных квартир.

Что делать, если где-то нестабильный и очень плохой сигнал? Здесь мы переходим к следующему пункту.

Выбираем место установки роутера

Как мы говорили ранее, для начала можно поставить Wi-Fi-маршрутизатор в геометрическом центре вашего жилища. Для небольших домов и квартир это оптимальный вариант, поскольку сигнал от антенн будет равномерно распределен на всю площадь. Однако если роутер куда-то не «добивает», то нужно составить карту расположения устройств.

Определите на карте обычное расположение мобильных устройств. Например, чаще всего мы пользуемся смартфонами, когда лежим на диване, кровати или сидим в кресле. Реже мы пользуемся мобильным и ноутбуком в туалете или на кухне. Как только вы отметите расположение всех гаджетов с Wi-Fi, установите роутер так, чтобы он покрывал все устройства.


Другой распространенный вопрос — как выставлять антенны? Их количество лишь косвенно влияет на силу сигнала, но напрямую определяет сколько конкретно устройств могут взаимодействовать одновременно с роутером.

Сигнал от роутера распространяется перпендикулярно антенне и имеет форму бублика, как это показано на рисунке.


Насколько вытянутым будет этот бублик, определяет коэффициент усиления антенны.


Если все устройства находятся в пределах одного этажа, то антенны нужно располагать вертикально, чтобы покрыть максимальную площадь. Если вы живете в двух- или трехэтажном здании, то одну антенну расположите вертикально, а другие — горизонтально или под углом в 45 градусов, чтобы сигнал распространялся вверх и вниз.


Что делать, если сигнал местами слабый?

Вы выбрали оптимальное расположение роутера, но в некоторых местах соединение все равно нестабильное? Не спешите покупать дополнительное оборудование — рассмотрим несколько решений, которые могут помочь.

С минимальными вложениями

Убираем препятствия. Как мы говорили ранее, сигнал уязвим к различным преградам, особенно, если это 5 ГГц.

Читайте также: